De Interactie tussen Predator en Prooi in een Opwarmend Klimaat: een Ongelijke Strijd?

Maarten Van den Broeck
Verbrand je meer calorieën bij warmer weer?De warme nazomer van september 2011 roept een vakantiegevoel op: lekker luieren, een boekje lezen op een bankje in de zon of een terrasje doen. Warm weer geeft ons een ontspannen gevoel… maar dat is niet voor alle dieren het geval.

De Interactie tussen Predator en Prooi in een Opwarmend Klimaat: een Ongelijke Strijd?

Verbrand je meer calorieën bij warmer weer?

De warme nazomer van september 2011 roept een vakantiegevoel op: lekker luieren, een boekje lezen op een bankje in de zon of een terrasje doen. Warm weer geeft ons een ontspannen gevoel… maar dat is niet voor alle dieren het geval. Terwijl mensen en andere (warmbloedige) dieren passiever worden bij hogere temperaturen, zullen koudbloedige dieren, zoals zoetwaterorganismen en andere insecten, juist actiever worden wanneer hun omgeving opwarmt.

Zonnebaden

Zoetwaterorganismen (bijvoorbeeld libellen, waterjuffers en watervlooien, maar ook vissen, kikkers en salamanders) zijn koudbloedige dieren. Daarmee wordt bedoeld dat deze soorten niet zelf voor hun lichaamswarmte zorgen, maar dat hun lichaamstemperatuur wordt bepaald door de omgevingstemperatuur. Wordt deze warmer, zal ook de temperatuur van het organisme stijgen. Voor deze soorten is het dus van groot belang dat zij plaatsen kunnen opzoeken met de geschikte omgevingstemperatuur, bijvoorbeeld door te zonnebaden. Ook door klimaatsverandering kunnen dergelijke soorten nieuwe habitatten verkennen.

Klimaatsverandering simuleren voor dummies

Om na te gaan of zoetwaterorganismen actiever worden (en dus meer calorieën verbranden) bij warmer weer, werd gekeken hoeveel prooidieren een bepaald roofdier kon opeten in een bepaalde tijd. Er werden roofdieren (waterjuffers) geplaatst bij prooidieren (watervlooien), elk van verschillende afkomst, waarbij verschillende klimaatsscenario’s werden getest. Elk dier heeft namelijk zijn eigen optimale omgevingstemperatuur, die verschillend is per herkomst van elk organisme. Om klimaatsverandering te kunnen simuleren werden een aantal combinaties met Franse, Belgische en Zweedse dieren uitgevoerd. Zo werden onder andere waterjuffers van Franse afkomst bij watervlooien van Belgische afkomst gestopt. De klimaatsverandering voorspelt namelijk tegen het einde van deze eeuw een temperatuurstijging van 4°C in onze streken. Dit zou kunnen betekenen dat soorten vanuit Frankrijk naar hier migreren, omdat ze zich hier beter gaan voelen dan in hun land van herkomst.

Onvoorziene omstandigheden

En wat bleek? Roofdieren die in een omgeving werden geplaatst die 4°C warmer was dan de normale omgevingstemperatuur, bleken tot 30% meer prooidieren te eten. Ze gingen actiever op zoek naar prooien en konden ze veel sneller verscheuren. Bovendien aten de roofdieren meer wanneer deze in contact kwamen met prooien die ze niet gewoon waren: een aanwijzing dat ‘vreemde’ roofdieren voor onverwachte gevolgen kunnen zorgen door klimaatsverandering. Door de opwarming van de aarde kunnen geïmmigreerde roofdieren bij ons namelijk lelijk huishouden in de voedselketens, met vaak onvoorziene gevolgen voor mens, natuur en milieu.

Predator vs. prey

De interactie tussen roofdier en prooidier is sinds het ontstaan van beide soorten aan de gang, maar de recente inzichten omtrent de klimaatsverandering werpen nieuw licht op de zaak. Maakt de opwarming van de aarde een ongelijke strijd van de prooi/roofdier - interactie? Hun verhaal krijgt alleszins nog een staartje. 

Bibliografie
  •  2007. STATISTICA (data analysis software system) version 8.0. StatSoft, Inc. www.statsoft.com.
  • ABRAHAMS, M. V. & KATTENFELD, M. G. 1997. The role of turbidity as a constraint on predator-prey interactions in aquatic environments. Behavioral Ecology and Sociobiology, 40, 169-174.
  • ABRAHAMS, M. V., MANGEL, M. & HEDGES, K. 2007. Predator-prey interactions and changing environments: who benefits? Philosophical Transactions of the Royal Society, 362, 2095-2104.
  • ACUNA-SOTO, R., STAHLE, D. W., THERRELL, M. D., GOMEZ CHAVEZ, S. & CLEAVELAND, M. K. 2005. Drought, epidemic disease, and the fall of classic period cultures in Mesoamerica (AD 750-950). Hemorrhagic fevers as a cause of massive population loss. Medical Hypotheses, 65, 405-409.
  • AGRAWAL, A. A. 1998. Algal defense, grazers, and their interactions in aquatic trophic cascades. Acta Oecologica-International Journal of Ecology, 19, 331-337.
  • ANGILLETTA, M. J. 2009. Thermal Adaptation: A Theoretical and Empirical Synthesis, Oxford: Oxford University Press, pp. 320.
  • BEUHLER, M. 2003. Potential impacts of global warming on water resources in southern California. Water Science and Technology, 47, 165-168.
  • BLASHKI, G., MCMICHAEL, T. & KAROLY, D. J. 2007. Climate change and primary health care. Australian Family Physician, 36, 986-989.
  • BOON, P. I., BUNN, S. E., GREEN, J. D. & SHIEL, R. J. 1994. Consumption of Cyanobacteria by Fresh-Water Zooplankton - Implications for the Success of Top-down Control of Cyanobacterial Blooms in Australia. Australian Journal of Marine and Freshwater Research, 45, 875-887.
  • BOTH, C., VAN ASCH, M., BIJLSMA, R. G., VAN DEN BURG, A. B. & VISSER, M. E. 2009. Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? Journal of Animal Ecology, 78, 73-83.
  • BOTH, C. & VISSER, M. E. 2001. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature, 411, 296-298.
  • BOUCHARD, R. W. 2009. Guide to Aquatic Invertebrate Families of Mongolia Chapter 5: ODONATA, St Paul: University of Minnesota, pp. 212.
  • BRAUNE, E., RICHTER, O., SÖNDGERATH, D. & SUHLING, F. 2008. Voltinism flexibility of a riverine dragonfly along thermal gradients. Global Change Biology, 14, 470-482.
  • BRODIE, E. D. & BRODIE, E. D. J. 1999. Predator–Prey Arms Races: Asymmetrical selection on predators and prey may be reduced when prey are dangerous. American Institute of Biological Sciences, 49, 557-568.
  • BROHAN, P., KENNEDY, J. J., HARRIS, I., TETT, S. F. B. & JONES, P. D. 2006. Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. Journal of Geophysical Research, 111, 1582-1588.
  • BROUWERS, J. 2010. Evolutie aantal zware overstromingen. MIRA - rapport, pp. 2.
  • CARVALHO, G. R. 1987. The clonal ecology of Daphnia magna (Crustacea: Cladocera): II. Thermal differentiation among seasonal clones. Journal of Animal Ecology, 56, 469-478.
  • CHATTOPADHAYAY, J., SARKAR, R. R. & MANDAL, S. 2002. Toxin-producing plankton may act as a biological control for planktonic blooms--field study and mathematical modelling. Journal of Theoretical Biology, 215, 333-344.
  • CHIVERS, D. P. & SMITH, R. J. F. 1997. Chemical alarm signalling in aquatic predator-prey system: A review and prospects. Ecoscience, 5, 338-352.
  • CLARK, J. S. & MCLACHLAN, J. S. 2003. Stability of forest biodiversity. Nature, 423, 635-8.
  • COLE, D. N. & LANDRES, P. B. 1996. Threats to Wilderness Ecosystems: Impacts and Research Needs. Ecological Applications, 6, 168-184.
  • CORBET, P. S., SUHLING, F. & SÖNDGERATH, D. 2006. Voltinism of Odonata: a review. International Journal of Odonatology, 9, 1-44.
  • CREEL, S. & CHRISTIANSON, D. 2008. Relationships between direct predation and risk effects. Trends in Ecology & Evolution, 23, 194-200.
  • DAUFRESNE, M., LENGFELLNER, K. & SOMMER, U. 2009. Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences, 106, 12788-12793.
  • DAWKINS, R. & KREBS, J. R. 1979. Arms Races between and within Species. Proceedings of the Royal Society of London. Series B. Biological Sciences, 205, 489-511.
  • DE BLOCK, M. & STOKS, R. 2003. Adaptive sex-specific life history plasticity to temperature and photoperiod in a damselfly. Journal of Evolutionary Biology, 16, 986-995.
  • DECLERCK, S., COUSYN, C. & DE MEESTER, L. 2001. Evidence for local adaptation in neighbouring Daphnia populations: a laboratory transplant experiment. Freshwater Biology, 46, 187-198.
  • DIJKSTRA, K. D. B. & LEWINGTON, R. 2006. Field guide to the dragonflies of britain and europe, Gillingham: British Wildlife Publishing LTD, pp. 320.
  • DREISIG, H. 1981. The rate of predation and its temperature dependence in a tiger beetle, Cicindela hybrida. Oikos, 36.
  • DUNLOP, J. M. 1991. Blooming algae. British Medical Journal, 302, 671-672.
  • EBERT, D. 2005. Ecology, Epidemiology, and Evolution of Parasitism in Daphnia, Bethesda: National Center for Biotechnology Information, pp. 110.
  • FLENNER, I. & SAHLÉN, G. 2008. Dragonfly community reorganisation in boreal forest lakes: rapid species turnover driven by climate change? Insect Conservation and Diversity, 1, 169-179.
  • GILBERT, N. & RAWORTH, D. A. 1996. Insects and temperature - a general theory. Canadian Entomologist, 128, 1-13.
  • GLIWICZ, Z. M. & MASZCZYK, P. 2007. Daphnia growth is hindered by chemical information on predation risk at high but not at low food levels. Oecologia, 150, 706-15.
  • GUPTA, R. K. 2002. Water and energy linkages for groundwater exploitation: a case study of Gujarat State, India. Water Science and Technology, 45, 151-166.
  • HAAGSMA, J. 1991. Pathogenic anaerobic bacteria and the environment. Revue Scientifique et Technique, 10, 749-764.
  • HALL, J. W., SAYERS, P. B., WALKDEN, M. J. & PANZERI, M. 2006. Impacts of climate change on coastal flood risk in England and Wales: 2030-2100. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 364, 1027-1049.
  • HANAZATO, T. 2001. Pesticide effects on freshwater zooplankton: an ecological perspective. Environment Pollution, 112, 1-10.
  • HARMON, J. P., MORAN, N. A. & IVES, A. R. 2009. Species response to environmental change: impacts of food web interactions and evolution. Science, 323, 1347-1350.
  • HASSAL, C. & THOMPSON, D. J. 2008. The effects of environmental warming on Odonata: a review. International Journal of Odonatology, 11, 131-153.
  • HAVEL, J. E. 1987. Predator induced defences: a review. Predation: Direct and indirect impacts on aquatic communities. Hanover: University Press of New England, 263-278.
  • HEBERT, P. D. N. & BEATON, M. J. 1993. Methodologies for allozymes analysis using cellulose acetate electrophoresis: a practical handbook, Beaumont: Helena Laboratories,  pp. 39.
  • HELLER, N. E. & ZAVALETA, E. S. 2009. Biodiversity management in the face of climate change: A review of 22 years of recommendations. Biological Conservation, 142, 14-32.
  • HERENDEEN, R. A. 2003. Bottom-up and top-down effects in food chains depend on functional dependence: an explicit framework. Ecological Modelling, 171, 21-33
  • HICKLING, R., ROY, D. B., HILL, J. K., FOX, R. & THOMAS, C. D. 2006. The distribution of a wide range of taxonomic groups are expanding polewards. Global Change Biology, 12, 450-455.
  • HICKLING, R., ROY, D. B., HILL, J. K. & THOMAS, C. D. 2005. A northward shift of range margins in British Odonata. Global Change Biology, 11, 502-506.
  • HIETALA, J., LAURENMAATTA, C. & WALLS, M. 1997. Life history responses of Daphnia clones to toxic Microcystis at different food levels. Journal of Plankton Research, 19, 917-926.
  • HUEY, R. B. & KINGSOLVER, J. G. 1989. Evolution of thermal sensitivity of ectotherm performance. Trends in Ecology & Evolution, 4, 131-135.
  • HUISMAN, J., MATTHIJS, H. C. P. & VISSER, P. M. 2005. Harmful cyanobacteria, Dordrecht: Springer, pp. 241.
  • JIGUET, F., BROTONS, L. & DEVICTOR, V. 2011. Community responses to extreme climatic conditions. Current Zoology, 57, 406-413.
  • JOHNSON, D. M., AKRE, B. G. & CROWLEY, P. H. 1975. Modeling Arthropod Predation: Wasteful Killing by Damselfly Naiads. Ecology, 56, 1081-1093.
  • KATS, L. B. & DILL, L. M. 1998. The scent of death: Chemosensory assessment of predation risk by prey animals. Ecoscience, 5, 361-394.
  • KIRBY, R. R. & BEAUGRAND, G. 2009. Trophic amplification of climate warming. Proceedings of the Royal Society B: Biological Sciences, 276, 4095-4103.
  • KNIGHT, T. M., MCCOY, M. W., CHASE, J. M., MCKOY, K. A. & HOLT, R. D. 2005. Trophic cascades across ecosystems. Nature, 437, 880-883.
  • KRUSE, P. D., TOFT, S. & SUNDERLAND, K. D. 2008. Temperature and prey capture: opposite relationships in two predator taxa. Ecological Entomology, 33, 305-312.
  • LAMPERT, W. 1993. Ultimate causes of diel vertical migration of zooplankton: new evidence for the predator avoidance hypothesis. Archiv für Hydrobiologie, Beiheft Ergebnisse der Limnologie, 39, 79-88.
  • LAU, C. L., SMYTHE, L. D., CRAIG, S. B. & WEINSTEIN, P. 2010. Climate change, flooding, urbanisation and leptospirosis: fuelling the fire? Transactions of the Royal Society of Tropical Medicine and Hygiene, 104, 631-638.
  • LAWRENCE, D., D'ODORICO, P., DIEKMANN, L., DELONGE, M., DAS, R. & EATON, J. 2007. Ecological feedbacks following deforestation create the potential for a catastrophic ecosystem shift in tropical dry forest. Proceedings of the National Academy of Sciences, 104, 20696-20701.
  • LEIBOLD, M. A., HOLYOAK, M., MOUQUET, N., AMARASEKARE, P., CHASE, J. M., HOOPES, M. F., HOLT, R. D., SHURIN, J. B., LAW, R., TILMAN, D., LOREAU, M. & GONZALEZ, A. 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters, 7, 601–613.
  • LISTER, A. M. & STUART, A. J. 2008. The impact of climate change on large mammal distribution and extinction: Evidence from the last glacial/interglacial transition. Comptes Rendus Geoscience, 340, 615-620.
  • MAY, M. 1985. Thermoregulation. Annual Review of Entomology, 24, 313-318.
  • MCGREGOR-LOWNDES, M. & SCAIFE, W. 2008. "Of droughts and flooding rains": philanthropy for health and medical research. Medical Journal of Australia, 188, 631-632.
  • MCGREGOR, D. F. M., DODMAN, D., BARKER, D. & BAILEY, S. 2009. Global change and Caribbean vulnerability : environment, economy and society at risk, Kingston: University of the West Indies Press, pp. 389.
  • MCLACHLAN, J. S., HELLMANN, J. J. & SCHWARTZ, M. W. 2007. A Framework for Debate of Assisted Migration in an Era of Climate Change. Conservation Biology, 21, 297-302.
  • MCMICHAEL, P. 2004. Development and social change: a global perspective, California: Pine Forge Press, pp. 359.
  • MITCHELL & LAMPERT 2000. Temperature adaptation in a geographically widespread zooplankter, Daphnia magna. Journal of Evolutionary Biology, 13, 371-382.
  • MOHAGHEGH, J., DE CLERQ, P. & TIRRY, L. 2001. Functional response of the predators Podisus maculiventris and Podisus nigrispinus to the beet armyworm, Spodoptera exigua: effect of temperature. Journal of Applied Entomology, 125, 131-134.
  • PACHAURI, R. K. & REISINGER, A. 2007. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Fourth Assessment Report, pp. 104.
  • PALUMBI, S. R. 2001. Humans as the world's greatest evolutionary force. Science, 293, 1786-1790.
  • PARMESAN, C. 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637-669.
  • PARMESAN, C., RYRHOLM, N., STEFANESCU, C., HILL, J. K., THOMAS, C. D., DESCIMON, H., HUNTLEY, B., KAILA, L., KULLBERG, J., TAMMARU, T., TENNENT, W. J., THOMAS, J. A. & WARREN, M. 1999. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 399, 579-583.
  • PEARSON, R. G. 2006. Climate change and the migration capacity of species  Trends in Ecology & Evolution, 21, 111-113.
  • PELLETIER, F., GARANT, D. & HENDRY, A. P. 2009. Eco-evolutionary dynamics. Philosophical Transactions of the Royal Society, 364, 1483-1489.
  • PIMENTEL, D., ZUNIGA, R. & MORRISON, D. 2005. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics, 52, 273-288.
  • PINTO, J., BONACIC, C., HAMILTON-WEST, C., ROMERO, J. & LUBROTH, J. 2008. Climate change and animal diseases in South America. Revue Scientifique et Technique, 27, 599-613.
  • PIRES, L. M. D., IBELINGS, B. W., BREHM, M. & VAN DONK, E. 2005. Comparing grazing on lake seston by Dreissena and Daphnia: Lessons for biomanipulation. Microbial Ecology, 50, 242-252.
  • PROWSE, T. D., WRONA, F. J., REIST, J. D., GIBSON, J. J., HOBBIE, J. E., LEVESQUE, L. M. & VINCENT, W. F. 2006. Climate change effects on hydroecology of arctic freshwater ecosystems. Ambio, 35, 347-58.
  • REES, W. E. 2003. Economic development and environmental protection: an ecological economics perspective. Environmental Monitoring and Assessment, 86, 29-45.
  • RIESSEN, H. P. 1992. Cost-benefit model for the induction of an antipredator defense. American Naturalist, 140, 349-62.
  • RINKE, K. & VIJVERBERG, J. 2005. A model approach to evaluate the effect of temperature and food concentration on individual life-history and population dynamics of Daphnia. Ecological Modelling, 186, 326–344.
  • ROBB, T. & ABRAHAMS, M. V. 2003. Variation in tolerance to hypoxia in a predator and prey species: an ecological advantage of being small? Fish Biology, 62, 1067-1081.
  • ROBERTSON, H. M. & PATERSON, H. E. H. 1982. Mate recognition and mechanical isolation in Enallagma damselflies (Odonata: Coenagrionidae). Evolution, 36, 243-250.
  • RODRÍGUEZ-TRELLES, F. & RODRÍGUEZ, M. A. 1998. Rapid micro-evolution and loss of chromosomal diversity in Drosophila in response to climate warming. Evolutionary Ecology, 12, 829-838.
  • SARNELLE, O. 1993. Herbivore Effects on Phytoplankton Succession in a Eutrophic Lake. Ecological Monographs, 63, 129-149.
  • SCHMALHOFER, V. R. & CASEY, T. M. 1999. Crab spider hunting performance is temperature insensitive. Ecological Entomology, 24, 345-353.
  • SENHORST, H. A. & ZWOLSMAN, J. J. 2005. Climate change and effects on water quality: a first impression. Water Science and Technology, 51, 53-59.
  • SHAMA, L. N. S., CAMPERO-PAZ, M., WEGNER, K. M., DE BLOCK, M. & STOKS, R. in press. Latitudinal and voltinism compensation shape thermal reaction norms for growth rate (in press).
  • SMITH, L. C., SHENG, Y. W., FORSTER, R. R., STEFFEN, K., FREY, K. E. & ALSDORF, D. E. 2003. Melting of small Arctic ice caps observed from ERS scatterometer time series. Geophysical Research Letters, 30, 1-4.
  • SPRAY, S. L. & MCGLOTHLIN, K. L. 2003. Loss of biodiversity, Maryland: Rowman & Littlefield, pp. 179.
  • SPRENGER, C., LORENZEN, G., HULSHOFF, I., GRUTZMACHER, G., RONGHANG, M. & PEKDEGER, A. 2011. Vulnerability of bank filtration systems to climate change. Science of the Total Environment, 409, 655-663.
  • STRZEPEK, K., YOHE, G., NEUMANN, J. & BOEHLERT, B. 2010. Characterizing changes in drought risk for the United States from climate change. Environmental Research Letters, 5, 9.
  • THOMAS, C. D., CAMERON, A., GREEN, R. E., BAKKENES, M., BEAUMONT, L. J., COLLINGHAM, Y. C., ERASMUS, B. F. N., DE SIQUEIRA, M. F., GRAINGER, A., HANNAH, L., HUGHES, L., HUNTLEY, B., VAN JAARSVELD, A. S., MIDGLEY, G. F., MILES, L., ORTEGA-HUERTA, M. A., PETERSON, A. T., PHILLIPS, O. L. & WILLIAMS, S. E. 2004. Extinction risk from climate change. Nature, 427, 145-148.
  • THOMPSON, D. J. 1978. Towards a Realistic Predator-Prey Model: The Effect of Temperature on the Functional Response and Life History of Larvae of the Damselfly, Ischnura elegans. Journal of Animal Ecology, 47, 757-767.
  • VITOUSEK, P. M. 1994. Beyond Global Warming: Ecology and Global Change. Ecology, 75, 1861-1876.
  • WALTHER, G. R., POST, E., CONVEY, P., MENZEL, A., PARMESAN, C., BEEBEE, T. J., FROMENTIN, J. M., HOEGH-GULDBERG, O. & BAIRLEIN, F. 2002. Ecological responses to recent climate change. Nature, 416, 389-95.
  • WEIDER, L. J. & PIJANOWSKA, I. 1993. Plasticity of Daphnia life-histories in response to chemical cues from predators. Oikos, 67, 385-392.
  • WESTERLING, A. L., HIDALGO, H. G., CAYAN, D. R. & SWETNAM, T. W. 2006. Warming and earlier spring increase western U.S. forest wildfire activity. Science, 313, 940-943.
  • WILSON, R. J., DAVIES, Z. G. & THOMAS, C. D. 2009. Modelling the effect of habitat fragmentation on range expansion in a butterfly. Proceedings of the Royal Society B-Biological Sciences, 276, 1421-1427.
  • WINDER, M. & SCHINDLER, D. E. 2004. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology, 85, 2100–2106.
  • WINDER, M., SPAAK, P. & MOOIJ, W. M. 2004. Trade-offs in Daphnia habitat selection. Ecology, 85, 2027-2036.
  • WU, J. Z., LI, B. & ZHANG, X. S. 2007. Ecosystem service value and its aplication in evaluation of eco-economic harmonious development. Ying Yong Sheng Tai Xue Bao, 18, 2554-2558.
  • WU, N., GAO, J. X., SUDEBILIGE, RICKETTS, T. H., OLWERO, N. & LUO, Z. L. 2010. Evaluation of ecosystem provisioning service and its economic value. Ying Yong Sheng Tai Xue Bao, 21, 409-414.
  • XENOPOULOS, M. A. & LODGE, D. M. 2006. Going with the flow: using species-discharge relationships to forecast losses in fish biodiversity. Ecology, 87, 1907-1914.
  • ZEIS, B., MAURER, J., PINKHAUS, O., BONGARTZ, E. & PAUL, R. J. 2004. A swimming activity assay shows that the thermal tolerance of Daphnia magna is influenced by temperature acclimation. Canadian Journal of Zoology, 82, 1605-1613.
Universiteit of Hogeschool
Biologie
Publicatiejaar
2011
Kernwoorden
Share this on: