Does elevated [CO2] mitigate the impact of climate extremes on northern red oak seedlings: a multifactor approach

Ingvar
Bauweraerts

Zal het gras morgen groener zijn dan vandaag?

De keerzijde van de CO2-medaille.

Je kan er tegenwoordig nog maar moeilijk aan ontsnappen. Sinds wetenschappers voor het eerst de term ‘global warming’ introduceerden, hoor je hem steeds vaker vallen. De media kondigen het ene doemscenario na het andere aan, producenten verkopen alleen nog maar goederen die ‘CO2-neutraal’ zijn en onze politici maken snoepreisjes naar alle hoeken van de wereld om een oplossing te zoeken voor de verandering van het klimaat (na Kopenhagen en Cancun is de volgende bestemming Durban in Zuid-Afrika).

Kort gezegd bedoelt men met global warming, in het Nederlands opwarming van de aarde, dat de gemiddelde temperatuur, gemeten over de hele wereld, aan het stijgen is. Deze stijging wijt men meestal aan de zogenaamde broeikasgassen, waarvan CO2 zonder meer het bekendste is. Traditioneel roept deze term negatieve gevoelens op, ongetwijfeld een gevolg van de sensatiegefundeerde wisselwerking tussen media en publiek. De waarheid is echter complexer dan ze wordt voorgesteld en de laatste jaren groeit de vraag naar genuanceerd onderzoek. Wat zal er bijvoorbeeld precies gebeuren met de oogsten? Kunnen de planten de komende klimaatverandering wel aan? Blijven de bossen en wouden van vandaag intact of sterven alle loofbomen af? Deze huidige niche in de wetenschap is nu net waar mijn onderzoek zich situeert.

Het klimaat van de toekomst zal waarschijnlijk warmer zijn, er zal zich meer CO2 in de lucht bevinden en we zullen veel vaker te maken krijgen met hittegolven gepaard met periodes van droogte. Er is al heel wat onderzoek gebeurd naar de afzonderlijke effecten van deze factoren, maar het is pas in de laatste 10 jaar dat men goed beseft dat de combinatie van deze factoren een heel andere uitkomst heeft dan je zou verwachten. Mijn onderzoek is het eerste en enige tot nu toe dat een combinatie van verschillende CO2-niveaus, temperatuurniveaus en watergiftniveaus in verschillende hittegolven gebruikte om zo een goed beeld te krijgen van wat er allemaal kan gebeuren in de toekomst. We pasten deze combinaties toe op enkele honderden zaailingen van de Amerikaanse eik op een site in Georgia (VS), waar de soort inheems is, en stonden versteld. Wat we ontdekten had niemand verwacht.

Om goed te kunnen begrijpen waarom we zo versteld stonden, zijn er aantal dingen die ik kort wil uitleggen. Het eerste is fotosynthese. De meeste mensen weten wel dat een plant licht nodig heeft om te groeien. Dit komt omdat de plant de energie van de zon nodig heeft om voedingsstoffen, bouwstenen en zuurstof te kunnen maken uit bodem, water en CO2. Meer CO2 betekent dus meer ‘voedsel’ voor de plant. Dit proces van het maken van bouwstenen en zuurstof uit licht, water en CO2 noemt men fotosynthese. Er bestaan heel wat apparaten die fotosynthese kunnen meten en een hoge waarde betekent in het algemeen dat de plant gezond is en goed functioneert.

Het tweede gaat over schade aan de plant. In dit onderzoek moesten we rekening houden met twee types schade, namelijk schade door hitte en schade door droogte. Schade door hitte kan plaatsvinden wanneer de temperatuur van de plant zo hoog oploopt dat deze niet meer kan functioneren en dat er zelfs delen van de plant kapot gaan. Je kan het vergelijken met de motor van een auto of de processor van een computer. Maar net als een motor of een processor heeft ook een plant een ingenieus koelingsysteem. Dit systeem heet transpiratie, wat eigenlijk niets anders is dan ons eigen koelsysteem, namelijk zweten. Al wat de plant hiervoor moet doen is zijn stomata, ofwel huidmondjes, open zetten en water laten verdampen om zich af te koelen. Maar wat gebeurt er wanneer de plant niet genoeg water heeft om zich af te kunnen koelen? Schade door droogte betekent dat de plant te weinig water heeft om te kunnen transpireren of om bouwstenen te kunnen maken om zichzelf te onderhouden, waardoor hij ernstige stress kan ondervinden.

Het derde is wat complexer en gaat over de manieren waarop CO2, temperatuur en droogte elkaar en de plant kunnen beïnvloeden. Hierboven werd reeds uitgelegd hoe de combinatie van extreme hitte en droogte schadelijk en zelfs dodelijk kan zijn voor een plant. Een verhoging van de CO2-concentratie heeft ongeveer een tegengesteld effect. Meer CO2 betekent meer voedsel voor de plant, levert hogere fotosynthese waarden en zorgt ervoor dat de plant minder water nodig heeft. Meer CO2 heeft echter ook een nadeel, namelijk dat het de huidmondjes van de plant laat sluiten, waardoor deze minder kan transpireren en dus oververhit kan geraken. Het gecombineerd effect van al deze factoren is complex en niet altijd duidelijk, wat er meteen voor zorgt dat wetenschappers hier intensief onderzoek naar doen.

Met deze informatie is het misschien mogelijk zelf al een voorspelling te maken van wat er zou gebeuren wanneer men kwetsbare zaailingen blootstelt aan een hittegolf van meer dan 53°C en ze amper water geeft. Wij dachten in ieder geval dat er heel wat gingen sterven, en dat de overlevenden het erg slecht gingen stellen. Het leukste aan wetenschappelijk onderzoek doen is te weten komen dat je helemaal fout was. Gelukkig maar.

Uit mijn metingen bleek dat de zwaarst gestreste zaailingen in de strenge hittegolf met weinig water niet gewoon overleefden, ze deden het zelfs beter dan buiten de hittegolf. Dat niet alleen, ze deden het zelfs beter dan de zaailingen met veel water! Ter vergelijking: ik ben één dag vergeten water mee te nemen tijdens het meten en ben toen nagenoeg flauw gevallen, zo warm was het dus. Toch slaagden die kleine zaailingen er in om zichzelf en hun minder gestreste collega’s te overtreffen in deze hitte.

Om terug te komen op het grote geheel: in vergelijking met de CO2-concentratie van vandaag presteerde elke zaailing beter in de CO2-concentratie van de toekomst, ook diegenen die onder hitte- en droogtestress stonden. Voor meer details wordt de lezer hartelijk uitgenodigd zich te verdiepen in mijn scriptie.

Wat betekent dit nu voor de toekomst? Hoeven we ons geen zorgen meer te maken om het klimaat en komt alles vanzelf weer in orde? Onze politici mogen op beide oren slapen, hun vakantie in Durban komt heus niet in gevaar. De resultaten van mijn onderzoek mogen dan wel opmerkelijk zijn, ze stellen op dit moment nog maar weinig voor. Pas wanneer tal van dergelijke experimenten voltooid zijn, kunnen we ons een correct beeld vormen van de toekomst. Mijn werk vormt echter een krachtige drijfveer die deze experimenten in een hoopvolle schijnwerper stelt.

Tot slot: wie nog steeds twijfelt aan de extreme omstandigheden van het experiment mag gerust eens komen kijken bij de bio-ingenieurs van de Universiteit Gent. Op de tweede verdieping hangt een poster van een meelijwekkende student, volledig bezweet doch enorm begeesterd door zijn grensverleggend onderzoek.

Bibliografie

Deze bibliografie is onvolledig, de volledige versie is terug te vinden in de scriptie zelf.

  • Ainsworth, E. A. and Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant, Cell and Environment, 30, 258–270.
  • Albert, K., Ro-Poulsen, H., Mikkelsen, T., Michelsen, A., Linden, L. V. D. and Beier, C. (2011). Effects of elevated CO2, warming and drought episodes on plant carbon uptake in a temperate heath ecosystem are controlled by soil water status. Plant, Cell and Environment, 34, 1–16.
  • Alonso, A., Pérez, P., Morcuende, R. and Martinez-Carrasco, R. (2008). Future CO2 concentrations, though not warmer temperatures, enhance wheat photosynthesis temperature responses. Physiologia Plantarum, 132, 102– 112.
  • Ameye, M., Wertin, T., Bauweraerts, I., Teskey, R. O. and Steppe, K. (2011). Heeft een verhoogde CO2 concentratie een effect op de gevolgen van hittegolven bij bomen? Master’s thesis, University of Ghent.
  • Anderson, P. D. and Tomlinson, P. T. (1998). Ontogeny affects response of northern red oak seedlings to elevated CO2 and water stress - I. Carbon assimilation and biomass production. New Phytologist, 140, 477–491.
  • Apostol, K. G., Jacobs, D. F., Wilson, B. C., Salifu, K. F. and Dumroese, R. K. (2007). Growth, gas exchange and root respiration of Quercus rubra seedlings exposed to low root zone temperatures in solution culture. Forest Ecology and Management, 253, 89–96.
  • Apostol, K. G., Jacobs, D. F. and Dumroese, R. K. (2009). Root desiccation and drought stress responses of bareroot Quercus rubra seedlings treated with a hydrophilic polymer root dip. Plant Soil, 315, 229–240.
  • Aranjuelo, I., Irigoyen, J. J. and Sánchez-Díaz, M. (2007). Effect of elevated temperature and water availability on CO2 exchange and nitrogen fixation of nodulated alfalfa plants. Environmental and Experimental Botany, 59, 99–108.
  • Aranjuelo, I., Irigoyen, J. J., Sánchez-Díaz, M. and Nogués, S. (2008). Carbon partitioning in N2 fixing Medicago sativa plants exposed to different CO2 and temperature conditions. Functional Plant Biology, 35, 306–317.
  • Arp, W. (1991). Effects of source-sink relations on photosynthetic acclimation to elevated CO2. Plant, Cell and Environment, 14(8), 869–875.
  • Asseng, S., Jamieson, P., Kimball, B., Pinter, P., Sayre, K., Bowden, J. and Howden, S. (2004). Simulated wheat growth affected by rising temperature, increased water deficit and elevated atmospheric CO2. Field Crops Research, 85, 85–102.
  • Auge, R. M., Duan, X., Croker, J. L., Witte, W. T. and Green, C. D. (1998). Foliar dehydration tolerance of twelve deciduous tree species. Journal of Experimental Botany, 49, 753–759.
  • Baker, J. T. Jr., L. H. A., Boote, K. J. and Pickerings, N. B. (1997). Rice responses to drought under carbon dioxide enrichment. Global Change Biology, 3, 119–128.
  • BassiriRad, H. (2000). Kinetics of nutrient uptake by roots: responses to global change. New Phytologist, 147, 155–169.
  • BassiriRad, H., Griffin, K. L., Reynolds, J. F. and Strain, B. R. (1997). Changes in root NH4+ and NO3- absorption rates of loblolly and ponderosa pine in response to CO2 enrichment. Plant and Soil, 190, 1–9.
  • BassiriRad, H., Prior, S. A., Norby, R. J. and Rogers, H. H. (1999). A field method of determining NH4+ and NO3- uptake kinetics in intact roots: Effect of CO2 enrichment on trees and crop species. Plant and Soil, 217, 195–204.
  • BassiriRad, H., Gutschick, V. P. and Lussenhop, J. (2001). Root system adjustments: regulation of plant nutrient uptake and growth responses to elevated CO2. Oecologia, 126, 305–320.
  • BassiriRad, H., Constable, J. V., Lussenhop, J., Kimball, B. A., Norbys, R. J., Oechel,W. C., Reich, P. B., Schlesinger, W. H., Zitzer, S., Sehtiya, H. L. and Silim, S. (2003). Widespread foliage d15N depletion under elevated CO2: inferences for the nitrogen cycle. Global Change Biology, 9, 1582–1590.
  • Beck, D. (1970). Effect of competition on survival and height growth of red oak seedlings.
  • Beerling, D., Heath, J., Woodward, F. and Mansfield, T. (1996). Drought-CO2 interactions in trees: observations and mechanisms. New Phytologist, 134, 235–242.
  • Belote, R. T., Weltzin, J. F. and Norby, R. J. (2003). Response of an understory plant community to elevated [CO2] depends on differential responses of dominant invasive species and is mediated by soil water availability. New Phytologist, 161, 827–835.
  • Berry, J. and Björkman, O. (1980). Photosynthetic response and adaption to temperature in higher plants. Annual Review of Plant Biology, 31, 491–543.
  • Boeck, H. J. D., Dreesen, F. E., Janssens, I. A. and Nijs, I. (2010). Climatic characteristics of heat waves and their simulation in plant experiments. Global Change Biology, 16, 1992–2000.
  • Boeck, H. J. D., Dreesen, F. E., Janssens, I. A. and Nijs, I. (2011). Whole-system responses of experimental plant communities to climate extremes imposed in different seasons. New Phytologist, 189, 806–817.
  • Boyette, M. and Bilderback, T. (1996). A small Backyard Greenhouse for the Home Gardener. North Carolina Cooperative Extension Service, Raleigh, NC, USA.
  • Bragazza, L. (2008). A climatic threshold triggers the die-off of peat mosses during an extreme heat wave. Global Change Biology, 14, 2688–2695.
  • Buckley, T., Mott, K. and Farquhar, G. (2003). A hydromechanical and biochemical model of stomatal conductance. Plant, Cell and Environment, 26, 1767–1785.
  • Buckley, T. N. (2005). The control of stomata by water balance. New Phytologist, 168, 275–292.
  • Bunce, J. A. (2005). Response of Respiration of Soybean Leaves Grown at Ambient and Elevated Carbon Dioxide Concentrations to Day-to-day Variation in Light and Temperature under Field Conditions. Annals of Botany, 95, 1059–1066.
  • Burns, R. M. and Honkala, B. H. (1990). Silvics of North America - Volume 2. USDA Forest Service.
  • Caspersen, J. P. and Kobe, R. K. (2001). Interspecific variation in sapling mortality in relation to growth and soil moisture. Oikos, 92, 160–168.
  • Catovsky, S., Holbrook, N. and Bazzaz, F. (2002). Coupling whole-tree transpiration and canopy photosynthesis in coniferous and broad-leaved tree species. Canadian Journal of Forest Research, 32, 295–309.
  • Cavender-Bares, J. and Bazzaz, F. (2000). Changes in drought response strategies with ontogeny in Quercus rubra: implications for scaling from seedlings to mature trees. Oecologia, 124, 8–18.
  • Cen, Y. and Sage, R. (2005). The regulation of Rubisco activity in response to variation in temperature and atmospheric CO2 partial pressure in sweet potato. Plant Physiology, 139, 979–990.
  • Centritto, M. (2005). Photosynthetic limitations and carbon partitioning in cherry in response to water deficit and elevated [CO2]. Agriculture, Ecosystems and Environment, 106, 233–242.
  • Centritto, M., Magnani, F., Lee, H. and Jarvis, P. (1999). Interactive effects of elevated [CO2] and drought on cherry (Prunus avium) seedlings - II. Photosynthetic capacity and water relations. New Phytologist, 141, 141–153.
  • Chen, K., Hu, G., Keutgen, N., Janssens, M. J. and Lenz, F. (1999). Effects of NaCl salinity and CO2 enrichment on pepino (Solanum muricatum Ait.) - II. Leaf photosynthetic properties and gas exchange. Scientia Horticulturae, 81, 43–56.
  • Chiatante, D., Iorio, A. D., Maiuro, L. and Scippa, S. (1999). Effect of water stress on root meristems in woody and herbaceous plants during the first stage of development. Plant and Soil, 217, 159–172.
  • Chun, J. A., Wang, Q., Timlin, D., Fleisher, D. and Reddy, V. R. (2011). Effect of elevated carbon dioxide and water stress on gas exchange and water use efficiency in corn. Agricultural and Forest Meteorology, 151, 378–384.
  • Cochard, H., Breda, N. and Granier, A. (1996). Whole tree hydraulic conductance and water loss regulation in Quercus during drought-evidence for stomatal control of embolism. Annales des Sciences Forestières, 53, 197–206.
  • Collins, R. J. and Carson,W. P. (2004). The effects of environment and life stage on Quercus abundance in the eastern deciduous forest, USA: are sapling densities most responsive to environmental gradients? Forest Ecology and Management, 201, 241–258.
  • Cure, J. and Acock, B. (1986). Crop responses to carbon dioxide doubling: a literature survey. Agricultural and Forest Meteorology, 38, 127–145.
  • Curtis, P. (1996). A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide. Plant, Cell and Environment, 19, 127–137.
  • Curtis, P. S. and Wang, X. (1998). A meta-analysis of elevated CO2 effects on woody plant mass, form and physiology. Oecologia, 113, 299–313.
  • da Silva, J. M. and Arrabac, M. C. (2004). Photosynthesis in the water-stressed C4 grass Setaria sphacelata is mainly limited by stomata with both rapidly and slowly imposed water deficits. Physiologia Plantarum, 121, 409–420.
  • Dai, Z. W., Wanga, L. J., Zhao, J. Y., Fan, P. G. and Li, S. H. (2007). Effect and after-effect of water stress on the distribution of newly-fixed 14C-photoassimilate in micropropagated apple plants. Environmental and Experimental Botany, 60, 484–494.
  • Dias, A. S., Semedo, J., Ramalho, J. C. and Lidon, F. C. (2011). Bread and Durum Wheat under Heat Stress: A Comparative Study on the Photosynthetic Performance. Journal of Agronomy and Crop Science, 197, 50–56.
  • Diffenbaugh, N. S. and Ashfaq, M. (2010). Intensification of hot extremes in the United States. Geophysical Research Letters, 37, 1–14.
  • Dore, M. H. (2005). Climate change and changes in global precipitation patterns: What do we know? Environment International, 31, 1167–1181.
  • Drake, B., González-Meler, M. and Long, S. (1997). More efficient plants: A consequence of rising atmospheric CO2? Annual Review of Plant Biology, 48, 609–639.
  • Ellsworth, D. (1999). CO2 Enrichment in a maturing Pine Forest: are CO2 Exchange and Water Status in the Canopy affected? Plant, Cell and Environment, 22, 461–472.
  • Ellsworth, D. S. (2000). Seasonal CO2 assimilation and stomatal limitations in a Pinus taeda canopy. Tree Physiology, 20, 435–445.
  • Engel, V., Stieglitz, M., Williams, M. and Griffin, K. (2002). Forest canopy hydraulic properties and catchment water balance: observations and modelling. Ecological Modelling, 154, 263–288.
  • Farquhar, G., von Caemmerer, S. and Berry, J. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 78–90.
  • Ferris, R., Nijs, I., Behaeghe, T. and Impens, I. (1996). Elevated CO2 and Temperature have Different Effects on Leaf Anatomy of Perennial Ryegrass in Spring and Summer. Annals of Botany, 78, 489–497.
  • Fritschi, F. B., Boote, K. J., Sollenberger, L. E. and Junior, L. H. A. (1999). Carbon dioxide and temperature effects on forage establishment: tissue composition and nutritive value. Global Change Biology, 5, 743–753.
  • Ghannoum, O., Phillips, N. G., Sears, M. A., Logan, B. A., Lewis, J. D., Conroy, J. P. and Tissue, D. T. (2010). Photosynthetic responses of two eucalypts to industrial-age changes in atmospheric [CO2] and temperature. Plant, Cell and Environment, 33, 1671–1681.
  • Gifford, R. (1979). Growth and yield of CO2-enriched wheat under water-limited conditions. Australian Journal of Plant Physiology, 6, 367–378.
  • Généré, B., Garriou, D., Omarzad, O., Grivet, J. P. and Hagège, D. (2004). Effect of a strong cold storage induced desiccation on metabolic solutes, stock quality and regrowth, in seedlings of two oak species. Trees, 18, 559–565.
  • Goldstein, G. andrade, J., Meinzer, F., Holbrook, N., Cavelier, J., Jackson, P. and Celis, A. (1998). Stem water storage and diurnal patterns of water use in tropical forest canopy trees. Plant, Cell and Environment, 21, 397–406.
  • Gray, D.W., Lerdeau, M. T. and Goldstein, A. H. (2003). Influences of Temperature History, Water Stress and Needle Age on Methylbutenol Emissions. Ecology, 84, 765–776.
  • Guak, S., Olsyzk, D. M., Fuchigami, L. H. and Tingey, D. T. (1998). Effects of elevated CO2 and temperature on cold hardiness and spring bud burst and growth in Douglas-fir (Pseudotsuga menziesii). Tree Physiology, 18, 671–679.
  • Gunderson, C. and Wullschleger, S. (1994). Photosynthetic acclimation in trees to rising atmospheric CO2: a broader perspective. Photosynthesis Research, 39, 369–388.
  • Guralnick, L. J., Edwards, G., Ku, M. S., Hockema, B. and Franceschi, V. R. (2002). Photosynthetic and anatomical characteristics in the C4-crassulacean acid metabolism-cycling plant, Portulaca grandiflora. Functional Plant Biology, 29, 763–773.
  • Hamerlynck, E. P., Huxman, T. E., Loik, M. E. and Smith, S. D. (2000). Effects of extreme high temperature, drought and elevated CO2 on photosynthesis of the Mojave Desert evergreen shrub, Larrea tridentata. Plant Ecology, 148, 183–193.
  • Hanson, P. J. and Weltzin, J. (2000). Drought disturbance from climate change: response of United States forests. Science of the Total Environment, 262, 205–220.
  • Harris, J. A., Hobbs, R. J., Higgs, E. and Aronson, J. (2006). Ecological Restoration and Global Climate Change. Society for Ecological Restoration International, 14, 170–176.
  • Haupt-Herting, S. and Fock, H. P. (2001). Oxygen Exchange in Relation to Carbon Assimilation in Water-stressed Leaves During Photosynthesis. Annals of Botany, 89, 851–859.
  • He, J.-S., Wolfe-Bellin, K. S. and Bazzaz, F. A. (2005). Leaf-level Physiology, Biomass and Reproduction of Phytolacca americana under conditions of elevated CO2 and altered Temperature Regimes. International Journal of Plant Sciences, 166, 615–622.
  • Hemmer-Derks, H., Mitchell, R., Mitchell, V. and Lawlor, D. (1998). Response of sugar beet (Beta vulgaris L.) yield and biochemical composition to elevated CO2 and temperature at two nitrogen applications. Plant, Cell and Environment, 21, 829–836.
  • Hetherington, T. M. A. and Atkinson, C. (1990). Some current aspects of stomatal physiology. Annual Review of Plant Physiology and Plant Molecular Biology, 41, 55–75.
  • Holtum, J. A. M. and Winter, K. (2010). Elevated [CO2] and forest vegetation: more a water issue than a carbon issue? Functional Plant Biology, 37, 694–702.
  • Houghton, J., Ding, Y., Griggs, D., Noguer, M., van der Linden, P., Dai, X., Maskell, K. and Johnson, C. (2001). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • Hättenschwiler, S., Miglietta, F., Raschi, A. and Körner, C. (1997). Thirty years of in situ tree growth under elevated CO2: a model for future forest responses? Global Change Biology, 3, 463–471.
  • Hunt, E. J., Running, S. and Federer, C. (1991). Extrapolating plant water flow resistances and capacitances to regional scales. Agricultural and Forest Meteorology, 54, 169–195.
  • Huxman, T., Hamerlynck, E., Loik, M. and Smith, S. (1998). Gas exchange and chlorophyll fluorescence responses of three south-western Yucca species to elevated CO2 and high temperature. Plant, Cell and Environment, 21, 1275–1283.
  • Hüve, K., Bichele, I., Rasulov, B. and Ülo Niimenets (2011). When it is too hot for photosynthesis: heat-induced instability of photosynthesis in relation to respiratory burst, cell permeability changes and H2O2 formation. Plant, Cell and Environment, 34, 113–126.
  • Ibánez, I., Clark, J. S., La Deau, S. and Lambers, J. H. R. (2007). Exploiting Temporal Variability to understand Tree Recruitment Response to Climate Change. Ecological Monographs, 77(2), 163–177.
  • IPCC (1996). Climate change 1995: impacts, adaptations and mitigation of climate change: scientific-technical analyses. In Watson RT, Zinyowera MC, Moss RH, editors. Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change [IPCC]. Cambridge, UK Cambridge University Press.
  • IPCC (2007a). Climate Change 2007: Synthesis Report. Cambridge University Press, Cambridge, UK.
  • IPCC (2007b). Climate Change 2007: The Regional Climate Projections. Cambridge University Press, Cambridge, UK.
  • Jentsch, A., Kreyling, J., Elmer, M., Gellesch, E., Glaser, B., Grant, K., Hein, R., Lara, M., Mirzae, H., Nadler, S. E., Nagy, L., Otieno, D., Pritsch, K., Rascher, U., Schädler, M., Schloter, M., Singh, B. K., Stadler, J., Walter, J., Wellstein, C.,Wöllecke, J. and Beierkuhnlein, C. (2011). Climate extremes initiate ecosystem-regulating functions while maintaining productivity. Journal of Ecology, 99, 689–702.
  • Jia, W. and Zhang, J. (2000). Water stress-induced abscisic acid accumulation in relation to reducing agents and sulfhydryl modifiers in maize plant. Plant, Cell and Environment, 23, 1389–1395.
  • Johns, C. V. and Hughes, L. (2002). Interactive effects of elevated CO2 and temperature on the leaf-miner Dialectica scalariella Zeller (Lepidoptera: Gracillariidae) in Paterson’s Curse, Echium plantagineum (Boraginaceae). Global Change Biology, 8, 142–152.
  • Johnson, J. D., Tognetti, R. and Paris, P. (2002). Water relations and gas exchange in poplar and willow under water stress and elevated atmospheric CO2. Physiologia Plantarum, 115, 93–100.
  • Karl, T. and Nicholls, N. (1997). The Coming Climate. Scientific American, 276, 78–84.
  • Keeling, C. and Whorf, T. (2005). Atmospheric CO2 records from sites in the SIO air sampling network, trends: a compendium of data on global change. Technical report, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tenn., USA.
  • Kilpeläinen, A., Peltola, H., Rouvinen, I. and Kellomäki, S. (2006). Dynamics of daily height growth in Scots pine trees at elevated temperature and CO2. Trees, 20, 16–27.
  • Kim, S.-H., Jung, W.-S., Ahn, J.-K., Kim, J.-A. and Chung, I.-M. (2005). Quantitative analysis of the isoflavone content and biological growth of soybean (Glycine max L.) at elevated temperature, CO2 level and N application. Journal of the Science of Food and Agriculture, 85, 2557–2566.
  • Kitao, M., Lei, T., Koike, T., Tobita, H. and Maruyama, Y. (2003). Higher electron transport rateobserved at low intercellular CO2 concentration in long-term drought-acclimated leaves of Japanese mountain birch (Betula ermanii). Physiologia Plantarum, 118, 406–413.
  • Kostiainen, K., Kaakinen, S., Saranpää, P., Sigurdsson, B. D., Lundqvists, S.-O., Linder, S. and Vapaavuori, E. (2009). Stem wood properties of mature Norway spruce after 3 years of continuous exposure to elevated [CO2] and temperature. Global Change Biology, 15, 368–379.
  • Kouril, R., Lazàr, D., Ilík, P., Skotnica, J., Krchnák, P. and Naus, J. (2004). High-temperature induced chlorophyll fluorescence rise in plants at 40-50°C: experimental and theoretical approach. Photosynthesis Research, 81, 49–66.
  • Kubiske, M. E. and Pregitzer, K. S. (1996). Effects of elevated CO2 and light availability on the photosynthetic light response of trees of contrasting shade tolerance. Tree Physiology, 16, 351–358.
  • Kuokkanen, K., Julkunen-Tiitto, R., Keinänen, M., Niemelä, P. and Tahvanainen, J. (2001). The effect of elevated CO2 and temperature on the secondary chemistry of Betula pendula seedlings. Trees, 15, 378–384.
  • Kuokkanen, K., Niemelä, P., Matala, J., Julkunen-Tiitto, R., Heinonen, J., Rousis, M., Henttonen, H., Tahvanainen, J. and Kellomäki, S. (2004). The effects of elevated CO2 and temperature on the resistance of winter-dormant birch seedlings (Betula pendula) to hares and voles. Global Change Biology, 10, 1504–1512.
  • Levia, D. and Herwitz, S. (2005). Interspecific variation of bark water storage capacity of three deciduous tree species in relation to stemflow yield and solute flux to forest soils. Catena, 64, 117–137.
  • Lewis, J., Lucash, M., Olsyzk, D. and Tingey, D. (2001). Seasonal patterns of photosynthesis in Douglas fir seedlings during the third and fourth year of exposure to elevated CO2 and temperature. Plant, Cell and Environment, 24, 539–548.
  • Lewis, J., Lucash, M., Olsyzk, D. and Tingey, D. (2002). Stomatal responses of Douglas-fir seedlings to elevated carbon dioxide and temperature during the third and fourth years of exposure. Plant, Cell and Environment, 25, 1411–1421.
  • LI-COR Biosciences, I. (2008). Using the LI-6400 / LI-6400XT Portable Photosynthesis System, version 6.1.
  • Lin, G., Ehleringer, J. R., Rygiewicz, P. T., Johnson, M. G. and Tingey, D. T. (1999). Elevated CO2 and temperature impacts on different components of soil CO2 efflux in Douglas-fir terracosms. Global Change Biology, 5, 157–168.
  • Little, E. (1971). Atlas of United States trees, conifers and important hardwoods. U.S. Department of Agriculture Miscellaneous Publication 1146.
  • Lloyd, J. and Farquhar, G. D. (2008). Effects of rising temperatures and [CO2] on the physiology of tropical forest trees. Philosophical Transactions of The Royal Society of Biological Sciences, 363, 1811–1817.
  • Loka, D. and Oosterhuis, D. (2010). Effect of high night temperatures on cotton respiration, ATP levels and carbohydrate content. Environmental and Experimental Botany, 68, 258–263.
  • Long, S. (1991). Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: has its importance been underestimated? Plant, Cell and Environment, 14, 729–739.
  • Long, S. P., Ainsworth, E. A., Rogers, A. and Ort, D. R. (2004). Rising Atmospheric Carbon Dioxide: Plants FACE the Future. Annual Review of Plant Biology, 55, 591–628.
  • Long, S. P., Ainsworth, E. A., Leakey, A. D. B., Nösberger, J. and Ort, D. R. (2006). Food for Thought: Lower-Than- Expected Crop Yield Stimulation with Rising CO2 Concentrations. Science, 312, 1918–1921.
  • Longstreth, D. and Nobel, P. (1980). Nutrient Influences on Leaf Photosynthesis - Effects of Nitrogen, Phosphorus and Potassium for Gossypium hirsutum L. Plant Physiology, 65(3), 541–543.
  • Lu, C. and Zhang, J. (1999). Effects of water stress on photosystem II photochemistry and its thermostability in wheat plants. Journal of Experimental Botany, 50, 1199–1206.
  • Lu, P., Biron, P., Granier, A. and Cochard, H. (1996). Water relations of adult Norway spruce (Picea abies (L.) Karst) under soil drought in the Vosges mountains: whole-tree hydraulic conductance, xylem embolism and water loss regulation. Annales des Sciences Forestières, 53, 113–121.
  • Luis, I. D., Irigoyen, J. and Sanchez-Diaz, M. (1999). Elevated CO2 enhances plant growth in droughted N2-fixing alfalfa without improving water status. Physiologia Plantarum, 107, 84–89.
  • Luo, Y., Gerten, D., Maire, G. L., Parton, W. J., Weng, E., Zhou, X., Keough, C., Beier, C., Ciais, P., Cramer, W., Dukes, J. S., Emmet, B., Hanson, P. J., Knapp, A., Linder, S., Nepstad, D. and Rustad, L. (2008). Modeled interactive effects of precipitation, temperature and [CO2] on ecosystem carbon and water dynamics in different climatic zones. Global Change Biology, 14, 1986–1999.
  • Luomala, E.-M., Laitinen, K., Sutinen, S., Kellomäki, S. and Vapaavuori, E. (2005). Stomatal density, anatomy and nutrient concentrations of Scots pine needles are affected by elevated CO2 and temperature. Plant, Cell and Environment, 28, 733–749.
  • Maherali, H. and Delucia, E. H. (2000). Interactive Effects of elevated CO2 and Temperature on Water Transport in Ponderosa Pine. American Journal of Botany, 87, 243–249.
  • Maier, C. A., Palmroth, S. and Ward, E. (2008). Short-term effects of fertilization on photosynthesis and leaf morphology of field-grown loblolly pine following long-term exposure to elevated CO2 concentration. Tree Physiology, 28, 597–606.
  • Marchand, F. L., Kockelbergh, F., van de Vijver, B., Beyens, L. and Nijs, I. (2006). Are heat and cold resistance of arctic species affected by successive extreme temperature events? New Phytologist, 170, 291–300.
  • Maxwell, K. and Johnson, G. N. (2000). Chlorophyll fluorescence - a practical guide. Journal of Experimental Botany, 51, 659–668.
  • McCarthy, J., Canziani, O. F., Leary, N. A., Dokken, D. J. and White, K. S. (2001). Climate change 2001: impacts, adaptation and vulnerability. Cambridge University Press, Cambridge, United Kingdom.
  • McGee, C. (1968). Northern red oak seedlings growth varies by light intensity and seed source.
  • Medlyn, B. E., Barton, C. V. M., Broadmeadow, M. S. J., Ceulemans, R., Angelis, P. D., Forstreuter, M., Freeman, M., Jackson, S. B., Kellomäki, S., Laitat, E., Rey, A., Roberntz, P., Sigurdsson, B. D., Strassemeyer, J., Wang, K., Curtis, P. S. and Jarvis, P. G. (2001). Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytologist, 149, 247–264.
  • Meehl, G. and Tebaldi, C. (2004). More intense, more frequent and longer lasting heat waves in the 21st century. Science, 305, 994–997.
  • Meire, L., Wertin, T., Mannaerts, T., Clement, L., Teskey, R. O. and Steppe, K. (2009). Analyse van de interactie tussen verhoogde temperatuur, CO2 en droogtestress op de fotosynthese en groei van Pinus taeda L. Master’s thesis, University of Ghent.
  • Mishra, S., Heckathorn, S. A., Barua, D., Wang, D., Joshi, P., Hamilton, E. W. I. and Frantz, J. (2008). Interactive Effects of Elevated CO2 and Ozone on Leaf Thermotolerance in Field-grown Glycine max. Journal of Integrative Plant Biology, 50(11), 1396–1405.
  • Moore, B., Cheng, S., Rice, J. and Seemann, J. (1998). Sucrose cycling, Rubisco expression and prediction of photosynthetic acclimation to elevated atmospheric CO2. Plant, Cell and Environment, 21, 905–915.
  • Morgan, P. B., Bollero, G. A., Nelson, R. L., Dohleman, F. G. and Long, S. P. (2005). Smaller than predicted increase in aboveground net primary production and yield of field-grown soybean under fully open-air [CO2] elevation. Global Change Biology, 11, 1856–1865.
  • Morison, J. (1987). Stomatal Function, chapter Intercellular CO2 concentration and stomatal responses to CO2, pages 229–251. Stanford University Press.
  • Morse, S., Wayne, P., Miao, S. and Bazzaz, F. (1993). Elevated CO2 and drought alter tissue water relations of birch (Betula populifolia Marsh.) seedlings. Oecologia, 95, 599–602.
  • Mott, K. (1990). Sensing of atmospheric CO2 by plants. Plant, Cell and Environment, 13(7), 731–737.
  • Mott, K. A. (1988). Do Stomata Respond to CO2 Concentrations Other than Intercellular? Plant Physiology, 86, 200–203.
  • Mrema, A., Granhall, U. and Sennerby-Forsse, L. (1997). Plant growth, leaf water potential, nitrogenase activity and nodule anatomy in Leucaena leucocephala as affected by water stress and nitrogen availability. Trees, 12, 42–48.
  • Munasinghe, M. and Swart., R. (2005). Primer on climate change and sustainable development. Cambridge University Press, Cambridge, United Kingdom.
  • Myers, D., Thomas, R. and Delucia, E. (1999). Photosynthetic capacity of loblolly pine (Pinus taeda L.) trees during the first year of carbon dioxide enrichment in a forest ecosystem. Plant, Cell and Environment, 22, 473–481.
  • Nakicenovic, N., Alcamo, J., Davis, G., de Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Grübler, A., Jung, T. Y., Kram, T., Rovere, E. L. L., Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, H., Price, L., Riahi, K., Roehrl, A., Rogner, H.-H., Sankovski, A., Schlesinger, M., Shukla, P., Smith, S., Swart, R., van Rooijen, S., Victor, N. and Dadi, Z. (2000). Special Report on Emissions Scenarios. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • Naudts, K., den Berge, J. V., Janssens, I., Nijs, I. and Ceulemans, R. (2011). Does an extreme drought event alter the response of grassland communities to a changing climate? Environmental and Experimental Botany, 70, 151–157.
  • Nedlo, J. E., Martin, T. A., Vose, J. M. and Teskey, R. O. (2009). Growing season temperatures limit growth of loblolly pine (Pinus taeda L.) seedlings across a wide geographic transect. Trees, 23, 751–759.
  • Niinemets, U. (2010). Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: Past stress history, stress interactions, tolerance and acclimation. Forest Ecology and Management, 260, 1623–1639.
  • Niinemets, U., Flexas, J. and Penüelas, J. (2011). Evergreens favored by higher responsiveness to increased CO2. Trends in Ecology and Evolution, 26, 136–142.
  • Niyogi, K. K. (1999). Photoprotection Revisited: Genetic and Molecular approaches. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 333–359.
  • Norby, R., O’Neill, E. and Luxmoore, R. (1986). Effects of atmospheric CO2 enrichment on the growth and mineral nutrition of Quercus alba seedlings in nutrient-poor soil. Plant Physiology, 82, 83–89.
  • Norby, R., Long, T., Hartz-Rubin, J. and O’Neill, E. (2000). Nitrogen resorption in senescing tree leaves in a warmer, CO2-enriched atmosphere. Plant and Soil, 224, 15–29.
  • Norby, R. J. and Luo, Y. (2004). Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytologist, 162, 281–293.
  • Norby, R. J., Edwards, N. T., Riggs, J. S., Abner, C. H., Wullschleger, S. D. and Gunderson, C. A. (1997). Temperature-controlled open-top chambers for global change research. Global Change Biology, 3, 259–267.
  • Osborne, C. P. and Beerling, D. J. (2003). The Penalty of a Long, Hot Summer. Photosynthetic Acclimation to High CO2 and Continuous Light in ”Living Fossil” Conifers. Plant Physiology, 133, 803–812.
  • Ow, L., Griffin, K., Whitehead, D., Walcroft, A. and Turnbull, M. (2008a). Thermal acclimation of leaf respiration but not photosynthesis in Populus deltoids nigra. New Phytologist, 178, 123–134.
  • Ow, L., Whitehead, D., Walcroft, A. and Turnbull, M. (2008b). Thermal acclimation of respiration but not photosynthesis in Pinus radiate. Functional Plant Biology, 35, 448–461.
  • Parry, M. andralojc, P., Mitchell, R., Madgwick, P. and Keys, A. (2003). Manipulation of Rubisco: the amount, activity, function and regulation. Journal of Experimental Botany, 54, 1321–1333.
  • Peak, D. and Mott, K. A. (2010). A new, vapour-phase mechanism for stomatal responses to humidity and temperature. Plant, Cell and Environment, 34, 162–178.
  • Pearson, P. and Palmer, M. (2000). Atmosperic carbon dioxide concentrations over the past 60 million years. Nature, 406, 695–699.
  • Pegoraro, E., Rey, A., Barron-Gafford, G., Monson, R., Malhi, Y. and Murthy, R. (2005). The interacting effects of elevated atmospheric CO2 concentration, drought and leaf-to-air vapour pressure deficit on ecosystem isoprene fluxes. Oecologia, 146, 120–129.
  • Picon, C., Guehl, J. and Aussenac, G. (1996). Growth dynamics, transpiration and water-use efficiency in Quercus robur plants submitted to elevated CO2 and drought. Annales des Sciences Forestières, 53, 431–446.
  • Pinto, C. M. (1980). Control of photosynthesis by photosynthate demand: possible mechanisms. Photosynthetica, 14(4), 611–637.
  • Prasad, P. V., Boote, K. J. and Jr., L. H. A. (2006). Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum [Sorghum bicolor (L.) Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agricultural and Forest Meteorology, 139, 237–251.
  • Pérez, J., Syvertsen, J., Botia, P. and Garcia-Sanchez, F. (2007). Leaf Water Relations and Net Gas Exchange Responses of Salinized Carrizo Citrange Seedlings during Drought Stress and Recovery. Annals of Botany, 100, 335–345.
  • Qaderi, M. M., Kurepin, L. V. and Reid, D. M. (2006). Growth and physiological responses of canola (Brassica napus) to three components of global climate change: temperature, carbon dioxide and drought. Physiologia Plantarum, 128, 710–721.
  • R Development Core Team (2009). R: A Language and Environment for Statistical Computing. ISBN 3-900051-07-0.
  • Reich, P., Teskey, R., Johnson, P. and Hinckley, T. (1980). Periodic root and shoot growth in oak. Forest Science, 26(4), 590–598.
  • Ribas-Carbo, M., Taylor, N. L., Giles, L., Busquets, S., Finnegan, P. M., Day, D. A., Lambers, H., Medrano, H., Berry, J. A. and Flexas, J. (2005). Effects of Water Stress on Respiration in Soybean Leaves. Plant Physiology, 139, 466–473.
  • Räisänen, T., Ryyppö, A. and Kellomäki, S. (2008a). Effects of elevated CO2 and temperature on monoterpene emission of Scots pine (Pinus sylvestris L.). Atmospheric Environment, 42, 4160–4171.
  • Räisänen, T., Ryyppö, A., Julkunen-Tiitto, R. and Kellomäki, S. (2008b). Effects of elevated CO2 and temperature on secondary compounds in the needles of Scots pine (Pinus sylvestris L.). Trees, 22, 121–135.
  • Ro, H.-M., Kim, P.-G., Lee, I.-B., Yiem, M.-S. and Woo, S.-Y. (2001). Photosynthetic characteristics and growth responses of dwarf apple (Malus domestica Borkh. cv. Fuji) saplings after 3 years of exposure to elevated atmospheric carbon dioxide concentration and temperature. Trees, 15, 195–203.
  • Rockwell, F., Holbrook, N. and Zwieniecki, M. (2011). Hydraulic conductivity of red oak (Quercus rubra L.) leaf tissue does not respond to light. Plant, Cell and Environment, 34, 565-579.
  • Sack, L., Streeter, C. M. and Holbrook, N. M. (2004). Hydraulic Analysis of Water Flow through Leaves of Sugar Maple and Red Oak. Plant Physiology, 134, 1824–1833.
  • Sage, R. and Sharkey, T. (1987). The effect of temperature on the occurrence of O2 and CO2 insensitive photosynthesis in fieldgrown plants. Plant Physiology, 84, 658–664.
  • Sage, R. F. and Kubien, D. S. (2007). The temperature response of C3 and C4 photosynthesis. Plant, Cell and Environment, 30, 1086–1106.
  • Samarah, N. H. (2005). Effects of drought stress on growth and yield of barley. Agronomy for Sustainable Development, 25, 145–149.
  • Sanchez-Rodriguez, J. (1999). Photosynthesis, carbohydrate levels and chlorophyll fluorescence-estimated intercellular CO2 in water-stressed Casuarina equisetifolia. Plant, Cell and Environment, 22, 867–873.
  • Sander, I. L. (1965). Northern red oak Quercus rubra L. In Silvics of forest trees of the United States. U.S. Department of Agriculture, Agriculture Handbook.
  • Sander, I. L. (1971). Height growth of new oak sprouts depends on size of advance reproduction. Journal of Forestry, 69(11), 809–811.
  • Sander, I. L. (1972). Size of oak advance reproduction: key to growth following harvest cutting.
  • Sander, I. L. (1979). Regenerating oaks with the shelterwood system. In J. S. Wright, editor, Regenerating Oaks in Upland Hardwood Forests, West Lafayette, IN. Purdue University.
  • Santrucek, J. and Sage, R. (1996). Acclimation of stomatal conductance to a CO2-enriched atmosphere and elevated temperature in Chenopodium album. Australian Journal of Plant Physiology, 23, 467–478.
  • Saveyn, A., Steppe, K., McGuire, M. A., Lemeur, R. and Teskey, R. O. (2007). Stem respiration and carbon dioxide efflux of young Populus deltoides trees in relation to temperature and xylem carbon dioxide concentration. Oecologia, 154, 637–649.
  • Saxe, H., Ellsworth, D. S. and Heath, J. (1998). Tree and forest functioning in an enriched CO2 atmosphere. New Phytologist, 139, 395–436.
  • Schindler, D. (1997). Widespread effects of climatic warming on freshwater ecosystems in North America. Hydrological Processes, 11, 1043–1067.
  • Schär, C., Vidale, P. L., Lüthi, D., Frei, C., Häberli, C., Liniger, M. A. and Appenzeller, C. (2004). The role of increasing temperature variability in European summer heatwaves. Nature, 427, 332–336.
  • Seidel, K. W. (1972). Drought Resistance and internal water-balance of oak seedlings. Forest Science, 18, 34–40.

Deze bibliografie is onvolledig, de volledige versie is terug te vinden in de scriptie zelf.

Download scriptie (14.79 MB)
Universiteit of Hogeschool
Universiteit Gent
Thesis jaar
2011