Structurele en reologische karakterisatie van wortel- en tomatensuspensies

Tina Verrijssen Katlijn Moelants Marc Hendrickx
De reologische eigenschappen van een groente- of fruitpuree zijn enerzijds een kwaliteitskenmerk voor de klant aangezien onder andere het mondgevoel en de nutritionele kwaliteit erdoor worden bepaald. Anderzijds zijn deze eigenschappen van belang voor de industrie om bijvoorbeeld de verpompingsenergie te bepalen en te minimaliseren. Om de reologische eigenschappen (zoals de viscositeit en de vloeispanning) te voorspellen en te optimaliseren is de kennis van de structuureigenschappen (zoals de partikelconcentratie, -vorm en –grootte) zeer belangrijk.

Structurele en reologische karakterisatie van wortel- en tomatensuspensies

De reologische eigenschappen van een groente- of fruitpuree zijn enerzijds een kwaliteitskenmerk voor de klant aangezien onder andere het mondgevoel en de nutritionele kwaliteit erdoor worden bepaald. Anderzijds zijn deze eigenschappen van belang voor de industrie om bijvoorbeeld de verpompingsenergie te bepalen en te minimaliseren. Om de reologische eigenschappen (zoals de viscositeit en de vloeispanning) te voorspellen en te optimaliseren is de kennis van de structuureigenschappen (zoals de partikelconcentratie, -vorm en –grootte) zeer belangrijk. Zo kan bijvoorbeeld best gewerkt worden met suspensies die kleine partikels bezitten of suspensies met een lage viscositeit wanneer een optimale opname van nutriënten uit een groente- of fruitsuspensie gewenst is (Hedrén et al., 2002). Voor de industie zijn de reologische eigenschappen tevens van belang voor het ontwerpen van apparatuur en procedures. Zo moet de puree goed verpompbaar zijn en blijven onder verschillende condities zoals een veranderende temperatuur of verpompingssnelheid. Door in te spelen op de partikeleigenschappen van tomaten- of wortelpuree wordt een poging gedaan de relatie tussen deze partikeleigenschappen en reologische eigenschappen te verklaren.

Bibliografie

 

  • Ahmed, J., Shivhare, U.S. & Raghavan, G.S.V. (2000). Rheological characteristics and kinetics of colour degradation of green chilli puree. Journal of Food Engineering, 44: 239-244.
  • Alkorta, I., Garbisu, C., Llama, M.J. & Serra, J.L. (1998). Industrial applications of pectic enzymes: a review. Process Biochemistry, 33: 21-28.
  • Alvarez, M.D., Canet, W. & Fernández, C. (2007). The effect of temperature, geometry, gap and surface friction on oscillatory rheological properties of mashed potatoes. Journal of Food Process Engineering, 30: 267-292.
  • Álvarez, E., Cancela, M.A., Delgado-Bastidas, N. & Maceiras, R. (2008). Rheological characterization of commercial baby fruit purees. International Journal of Food Properties, 11: 321-329.
  • Al-Qsous, S., Carpentier, E., Klein-Eude, D., Burel, C., Mareck, A., Dauchel, H., Gomord, V. & Balangé, A.P. (2004). Identification and isolation of a pectin methylesterase isoform that could be involved in flax cell wall stiffening. Planta, 219: 369-378.
  • Anthon, G.E. & Barrett, D.M. (2002). Kinetic parameters for the thermal inactivation of quality-related enzymes in carrots and potatoes. Journal of Agricultural and Food Chemistry, 50: 4119-4125.
  • Balmforth, N.J., Craster, R.V., Perona, P., Rust, A.C. & Sassi, R. (2007). Viscoplastic dam breaks and the bostwick consistometer. Journal of Non-Newtonian Fluid Mechanics, 142: 63-78.
  • Barrett, D.M., Garcia, E. & Wayne, J.E. (1998). Textural modification of processing tomatoes. Critical Reviews in Food Science and Nutrition, 38 (3): 173-258.
  • Bayod, E., Månnson, P., Innings, F., Bergenståhl, B. & Tornberg, E. (2007). Low shear rheology of concentrated tomato products. Effect of particle size and time. Food Biophysics, 2: 146-157.
  • Bayod, E. (2008). Microstructural and rheological properties of concentrated tomato suspensions during processing. Ph.D.thesis. Lunds Universitet, Switzerland. 77p.
  • Bayod, E. & Tornberg, E. (2011). Microstructure of higly concentrated tomato suspensions on homogenization and subsequent shearing. Food Research International, 44 (3): 755-764.
  • Braccini, I. & Pérez, S. (2001). Molecular basis of Ca+2-induced gelation in alginates and pectins: the egg-box model revisited. Biomacromolecules, 2: 1089-1096.
  • Brett, C.T. & Waldron, K.W. (1996). Physiology and biochemistry of plant cell walls. Chapman & Hall, Londen. 255 p.
  • Burton, R.A., Gidley, M.J. & Fincher, G.B. (2010). Heterogeneity in the chemistry, structure and function of plant cell walls. Nature Chemical Biology, 6: 724-732.
  • Caffall, K.H. & Mohnen, D. (2009). The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydrate Research, 344: 1879-1900.
  • Carpita, N.C. & Gibeaut, D.M. (1993). Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. The Plant Journal, 3: 1-30.
  • Coussot, P. & Ancey, A. (1999). Rheophysical classification of concentrated suspensions and granular pastes. Physical Review, 59 (4): 4445-4457.
  • Day, L., Xu, M., Oiseth, S., Hemar, Y. & Lundin, L. (1997). Rheological properties of plant dispersions in relation to their microstructure. Journal of Food Science, 62(3): 442-567.
  • Den Ouden, F.W.C. & Van Vliet, T. (1997). Particle size distribution in tomato concentrate and effects on rheological properties. Journal of Food Science, 62 (3): 565-567.
  • Denès, J.-M., Baron, A., Renard, C.M.G.C., Péan, C. & Drilleau, J.-F. (2000). Different action patterns for apple pectin methylesterase at pH 7,0 and 4,5. Carbohydrate Research, 327: 385-393.
  • Diaz, J.V., Anthon, G.E. & Barrett, D.M. (2009). Conformational changes in serum pectins during industrial tomato paste production. Journal of Agricultural and Food Chemistry, 57(18): 8453-8458.
  • Dzuy, N.Q. & Boger, D.V. (1983). Yield stress measurement for concentrated suspensions. Journal of Rheology, 27 (4): 321-349.
  • Fachin, D., Van Loey, A.M., Ly Nguyen, B., Verlent, I., Indrawati & Hendrickx, M.E. (2002). Comparative study of the inactivation kinetics of pectinmethylesterase in tomato juice and purified form. Biotechnology Progress, 18: 739-744.
  • Fachin, D., Smout, C., Verlent, I., Ly Nguyen, B., Van Loey, A.M. & Hendrickx, M.E. (2004). Inactivation kinetics of purified tomato polygalacturonase by thermal and high-pressure processing. Journal of Agricultural and Food Chemistry, 52: 2697-2703.
  • Fito, P.J., Clemente, G. & Sanz, F.J. (1983). Rheological behaviour of tomato concentrate (hot break and cold break). Journal of Food Engineering, 2: 51-62.
  • Guerrero-Beltrán, J.A., Barbosa-Cánovas, G.V. & Swanson, B.G. (2005) High hydrostatic pressure processing of fruit and vegetable products. Food Reviews International, 21: 411-425.
  • Hedrén, E., Diaz, V. & Svanberg, W. (2002). Estimation of carotenoid accessibility from carrots determined by an in vetro digestion method. European Journal of Clinical Nutrition, 56: 425-430.
  • Hurtado, M.C., Greve, L.C. & Labavitch, J.M. (2002). Changes in cell wall pectins accompanying tomato (Lycopersicon esculentum Mill.) paste manufacture. Journal of Agricultural and Food Chemistry, 50: 273-278.
  • Iqbal, T., Rodrigues, F.A.S., Mahajan, P.V., Kerry, J.P., Gil, L., Manso, M.C. & Cunha, L.M. (2008). Effect of minimal processing conditions on respiration rate of carrots. Journal of Food Science, 73 (8): 396-402.
  • Iqbal, T., Rodrigues, F.A.S., Mahajan, P.V. & Kerry, J.P. (2009) Effect of time, temperature and slicing on respiration rate of mushrooms. Journal of Food Science, 74 (6): 298-303.
  • Konno, H., Nakashima, S., Nakato, T. & Katoh, K. (2002). Pectin-bound β-galactosidase present in cell walls of carrot cells under the different calcium status. Physiologia Plantarum, 114: 213-222.
  • Krokida, M.K., Maroulis, Z.B. & Saravacos, G.D. (2001). Rheological properties of fluid fruit and vegetable puree products: compilation of literature data. International Journal of Food Properties, 4 (2): 179-200.
  • Lee, C.Y., Bourne, M.C. & Van Buren, J.P. (1979). Effect of blanching treatments on the firmness of carrots. Journal of Food Science, 44 (2): 615-616.
  • Löfgren, C., Guillotin, S., Evenbratt, H., Schols, H. & Hermansson, A.-M. (2005). Effect of calcium, pH and blockiness on kinetic rheological behaviour and microstructure of HM pectin gels. Biomacromolecules, 6: 646-652.
  • Lopez-Sanchez, P., Nijsse, J., Blonck, H.C.G., Bialek, L., Schumm, S. & Langton, M. (2011). Effect of mechanical and thermal treatments on the microstructure and rheological properties of carrot, broccoli and tomato dispersions. Journal of the Science of Food and Agriculture, 91: 207-217.
  • Luckham, P.F. & Ukeje, M.A. (1999). Effect of particle size distribution on the rheology of dispersed systems. Journal of Colloid and Interface Science, 220: 347-356.
  • Ly-Nguyen, B., Van Loey, A.M., Fachin, D., Verlent, I., Indrawati & Hendrickx, M.E. (2002). Partial purification, characterization and thermal and high-pressure inactivation of pectin methylesterase from carrots (Daucus carrota L.). Journal of Agricultural and Food Chemistry, 50: 5437-5444.
  • Ly-Nguyen, B., Van Loey, A.M., Smout, C., Özcan, S.E., Fachin, D., Verlent, I., Truong, S.V., Duvetter, T. & Hendrickx, M.E. (2003). Mild-heat and high-pressure inactivation of carrot pectin methylesterase: a kinetic study. Journal of Food Science, 68 (4): 1377-1383.
  • Maceiras, R., Álvarez, E. & Cancela, M.A. (2007). Rheological properties of fruit purees: effect of cooking. Journal of Food Engineering, 80: 763-769.
  • Malvern. (2009). 10 ways to control rheology by changing particle properties (size, zeta potential and shape) [on line]. Malvern Instruments Ltd. Beschikbaar op http://www.malvern.com/common/downloads/campaign/MRK1236-01.pdf[datum van opzoeking: 30/09/2010].
  • Marin-Rodriguez, M.C., Orchard, J. & Seymour, G.B. (2002). Pectaat lyases, cell wall degradation and fruit softening. Journal of Experimental Botany, 53 (377): 2115-2119.
  • McCann, M.C. & Roberts, K. (1996). Plant cell wall architecture: the role of pectins. In: Pectins and pectinases. Visser, J. en Voragen, A.G.J. (eds.). Elsevier, Amsterdam, 91-108.
  • Micheli, F. (2001). Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends in Plant Science, 6: 414-419.
  • Mohnen, D. (2008). Pectin structure and biosynthesis. Current Opinion in Plant Biology, 11: 266-277.
  • Plaza, L., Duvetter, T., Monfort, S., Clynen, E., Schoofs, L., Van Loey, A.M. & Hendrickx, M.E. (2007). Purification and thermal and high-pressure inactivation of pectinmethylesterase isoenzymes from tomatoes (Lycopersicon esculentum): a novel pressure labile isoenzyme. Journal of Agricultural and Food Chemistry, 55: 9259-9265.
  • Prasanna, V., Prabha, T.N. & Tharanathan, R.N. (2007). Fruit ripening phenomena – An overview. Critical Reviews in Food Science and Nutrition, 47: 1-19.
  • Ramana, S.V. & Taylor, A.J. (1992). Development of a method to measure rheological properties of carrot cell and cell-wall materials. Journal of the Science of Food and Agriculture, 60: 39-45.
  • Raven, P.H., Johnson, G.B., Losos, J.B. & Singer, S.R. (2005). Biology, seventh edition. McGraw-Hill, Boston. 1250 p.
  • Redgwell, R.J., Curti, D. & Gehin-Delval, C. (2008) Physicochemical properties of cell wall materials from apple, kiwifruit and tomato. European Food Research and Technology, 227: 607-618.
  • Santamaria-Holek, I. & Mendoza, C.I. (2010). The rheology of concentrated suspensions of arbitrarily-shaped particles. Journal of Colloid and Interface Science, 346: 118-126.
  • Sato, A.C.K. & Cunha, R.L. (2009). Effect of particle size on rheological properties of jaboticaba pulp. Journal of Food Engineering, 91: 566-570.
  • Schijvens, E.P.H.M., van Vliet, T. & van Dijk, C. (1998). Effect of processing on the composition and rheological properties of applesauce. Journal of Texture Studies, 29: 123-143.
  • Schols, H.A. & Voragen, A.G.J. (2002). The chemical structure of pectins. In: Pectins and their manipulation. Seymour, G.B. en Know, J.P. (eds.). Blackwell Publishing, Oxford, 1-29.
  • Schopfer, P. (2001). Hydroxyl radical-induced cell-wall loosening in vitro and in vivo: implications for the control of elongation growth. The Plant Journal, 28(6): 679-688.
  • Sci-Tec Inc. Werking van de turbiscan MA 2000 [on line]. Beschikbaar op http://www.sci-tec-inc.com/TurMapr.html?reload_coolmenus [datum van opzoeking: 12/04/2011].
  • Seyedarabi, A., To, T.T., Ali, S., Hussain, S., Fries, M., Madsen, R., Clausen, M.H., Teixteira, S., Brocklehurst, K. & Pickersgill, R.W. (2010). Structural insights into substrate specificity and the anti β-elimination mechanism of pectate lyase. Biochemistry, 49: 539-546.
  • Sila, D.N., Duvetter, T., De Roeck, A., Verlent, I., Smout, C., Moates, G.K., Hills, B.P., Waldron, K.W., Hendrickx, M. & Van Loey, A. (2008). Texture changes of processed fruits and vegetables: potential use of high-pressure processing. Trends in Food Science & Technology, 19: 309-319.
  • Steffe, J.F. (1996). Rheological methods in food process engineering. Freeman Press, USA. 428 p.
  • Tabilo-Munizaga, G. & Barbosa-Cánovas, G.V. (2005). Rheology for the food industry. Journal of Food Engineering, 67: 147-156.  
  • Tanglertpaibul, T. & Rao, M.A. (1987). Intrinsic viscosity of tomato serum as affected by methods of determination and methods of processing concentrates. Journal of Food Science, 52(6): 1642-1645.
  • Van Buren, J.P. (1979). The chemistry of texture in fruits and vegetables. Journal of Texture Studies, 10: 1-23.
  • Vincken, J.-P., Schols, H.A., Oomen, R.J.F.J., Mc Cann, M.C., Ulvskov, P., Voragen, A.G.J. & Visser, R.G.F. (2003). If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture. Plant Physiology, 132: 1781-1789.
  • Waldron, K.W., Smith, A.C., Parr, A.J., Ng, A. & Parker, M.L. (1997a). New approaches to understanding and controlling cell separation in relation to fruit and vegetable texture. Trends in Food Science & Technology, 8: 213-221.
  • Waldron, K.W., Parker, M.L. & Smith, A.C. (2003). Plant cell walls and food quality. Comprehensive Reviews in Food Science and Food Safety, 2: 101-119.
  • Willats, W.G.T., McCartney, L., Mackie, W. & Knox, J.P. (2001). Pectin: cell biology and prospects for functional analysis. Plant Molecular Biology, 47: 9-27.
  • Willats, W.G.T., Know, J.P. & Mikkelsen, J.D. (2006). Pectin: new insights into an old polymer are starting to gel. Trends in Food Science and Technology, 17: 97-104.
  • Wolf , S., Mouille, G. & Pelloux, J. (2009). Homogalacturonan methyl-esterification and plant development. Molecular Plant, 2 (5): 851-860.
  • Yoo, B. & Rao, M.A. (1994). Effect of unimodal particle size and pulp content on rheological properties of tomato puree. Journal of Texture Studies, 25: 421-436.
  • Yoo, B., Rao, M.A. & Steffe, J.F. (1995). Yield stress of food dispersions with the vane method at controlled shear rate and shear stress. Journal of Texture Studies, 26: 1-10.
  • Yamamoto, H., Hoshino, T. & Uchiyama, T. (1999). Convenient preparation and quantification of 5,5’-diferulic acid. Bioscience, Biotechnology and Biochemistry, 63: 390-394.
Universiteit of Hogeschool
bio-ingenieur
Publicatiejaar
2011
Kernwoorden
Share this on: