How are anatomical and hydraulic features of Avicennia marina and Rhizophora mucronata trees influenced by siltation?

Hannes De Deurwaerder
Mangrovemoordenaar op heterdaad betraptMangroves, een bostype dat voor de doorsnee persoon slechts vaag bekend is als achtergronddecor van het tv-programma ‘Expeditie Robinson’ wordt door natuurliefhebbers vaak bestempeld als één van de mooiste, meest biodiverse en ecologisch belangrijkste natuuromgevingen op aarde.

How are anatomical and hydraulic features of Avicennia marina and Rhizophora mucronata trees influenced by siltation?

Mangrovemoordenaar op heterdaad betrapt

Mangroves, een bostype dat voor de doorsnee persoon slechts vaag bekend is als achtergronddecor van het tv-programma ‘Expeditie Robinson’ wordt door natuurliefhebbers vaak bestempeld als één van de mooiste, meest biodiverse en ecologisch belangrijkste natuuromgevingen op aarde. Dit unieke ecosysteem dreigt echter aan een razend tempo verloren te gaan aan aanslibbing.

Mangroves worden aangetroffen in kustzones van tropische en subtropische gebieden en zijn vooral herkenbaar  aan het vlechtwerk van de  bovengrondse wortels die instaan voor de opname van zuurstof. Deze bossen worden door de lokale bevolking aangewend voor voedsel en huisvesting. Daarnaast spelen ze ook een belangrijke rol in de bescherming van koraalriffen en doen ze dienst als paaiplaats voor een grote variëteit aan vissen.

Deze bosgebieden en de daarin levende fauna lopen echter het risico binnen de komende 100 jaar  volledig te verdwijnen (Duke et al.,2007). Naast de gekende oorzaken van ontbossing zoals kaalkap, landbouw en vervuiling, stijgt sinds enige tijd het vermoeden dat ook aanslibbing een negatief effect heeft op de bomen. Onder aanslibbing verstaat men een ongewoon hoge sedimentatiegraad. Daarbij worden bodempartikels, zoals zand, in de mangroves gedropt waardoor de bovenste bodemlaag toeneemt in dikte. De luchtwortels van de mangrovebomen zullen hierbij gedrenkt worden in de bodempartikels, wat leidt tot minder zuurstoftoegang en onrechtstreekse wateropname zodat de boom een verstikkings-en uitdrogingsdood tegemoet treedt. Een belangrijke oorzaak van aanslibbing vindt zijn oorsprong in het illegaal lozen  van baggerslib van scampi-en tijgergarnaalkwekerijen in de wouden (Gautier et al., 2001).

Doodstrijd van een boom

Onderzoek in mangrovewouden nabij Mombasa (Kenia) bevestigt de hypothese dat aanslibbing een bedreiging vormt voor het voortbestaan van deze wouden. Openbaarmakingen van interne en externe indicatoren wijzen op de doodstrijd die de bomen leveren tegen het verstikkende effect van aanslibbing. Twee bestudeerde mangrovesoorten, Avicennia marina en Rhizophora mucronata, pasten zich aan de minder gunstige levensomstandigheden aan door middel van een groot aantal adaptaties.

Uit het onderzoek blijkt dat de beide mangrovesoorten zich gedeeltelijk op identieke wijze aanpassen aan de gewijzigde omgevingsfactoren. Zo werden onder andere meer en kleinere bladeren aangetroffen om het waterverlies via het groen te verkleinen. Ook huidmondjes, dit zijn de openingen in het blad die zorgen voor gasuitwisseling tussen atmosfeer en plant, worden kleiner. Anatomische kenmerken zoals vaten en floëemweefsel worden eveneens beïnvloed door de verhoogde graad aan aanslibbing.  De verklaring van deze veranderingen bevindt zich enerzijds in een betere waterregulatie van de boom en anderzijds in een vermindering van het risico op de intreding van lucht in het geleidingsweefsel van de bomen. Dit laatste is in wetenschappelijke kringen gekend als cavitatie, en leidt tot het verhinderen van watertransport van de wortels naar de bladeren.

De bomen hebben het dus steeds moeilijker om te overleven en kunnen als ‘ziek’ worden bestempeld. Wanneer de aanslibbing te hoog wordt kunnen de bomen niet langer meer opboksen tegen het verstikkende effect en zullen mangroves massaal sterven. Betere wetgeving voor baggerslibafvoer en verhindering van erosie van landbouwgrond door de introductie van bufferzones, zouden een grote stap kunnen zijn in de richting van de bescherming van mangroves.

Bovendien werd een opmerkelijke ontdekking gedaan tijdens de studie rond Avicennia marina. Volgens observaties zou deze soort in staat zijn om regen en zelfs ochtenddauw op te nemen via de bladeren en deze vervolgens, tegen haar natuurlijke stroom in, naar de wortels te transporteren. Gedurende de dag zal de boom opnieuw water transporteren in de vertrouwde richting, zijnde van wortels naar bladeren. Dit bijzondere fenomeen stelt de boom in staat om te overleven in zeer droge gebieden en droogteperiodes te overbruggen. Deze ontdekking plaatst onderzoekers een stapje dichter in de ontrafeling van de nog steeds grotendeels onbekende mangroves.

Bibliografie

Abuodha, P.A.W. & Kairo, J.G. (2001). Human-induced stresses on mangrove swamps along the Kenyan coast. Hydrobiologia, 458, 255-265.

Allingham, D.P. & Neil, D.T. (1995). The supratidal deposits and effects of coral dredging on mud island, Moreton Bay, Southeast Queensland. Zeitschrift Fur Geomorphologie, 39, 273-292.

Alongi, D.M. (2002). Present state and future of the world's mangrove forests. Environmental Conservation, 29, 331-349.

Alongi, D.M. (2008). Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuarine Coastal and Shelf Science, 76, 1-13.

Alongi, D.M., Pfitzner, J., Trott, L.A., Tirendi, F., Dixon, P. & Klumpp, D.W. (2005). Rapid sediment accumulation and microbial mineralization in forests of the mangrove Kandelia candel in the Jiulongjiang Estuary, China. Estuarine Coastal and Shelf Science, 63, 605-618.

Angeles, G., Lopez-Portillo, J. & Ortega-Escalona, F. (2002). Functional anatomy of the secondary xylem of roots of the mangrove Laguncularia racemosa (L.) Gaertn. (Combretaceae). Trees-Structure and Function, 16, 338-345.

Anyia, A.O. & Herzog, H. (2004). Water-use efficiency, leaf area and leaf gas exchange of cowpeas under mid-season drought. European Journal of Agronomy, 20, 327-339.

APHA (1998). Standard method for the examination of water and waste-water. (20th ed.).

Arnold, D.H. & Mauseth, J.D. (1999). Effects of environmental factors on development of wood. American Journal of Botany, 86, 367-371.

Ashton, E.C., Hogarth, P.J. & Ormond, R. (1999). Breakdown of mangrove leaf litter in a managed mangrove forest in Peninsular Malaysia. Hydrobiologia, 413, 77-88.

Baas, P., Werker, E. & Fahn, A. (1983). Some ecological trends in vessel characters. Iawa Bulletin, 4, 141-159.

Ball, M.C. (1980). Patterns of secondary succession in a mangrove forest of Southern Florida. Oecologia, 44, 226-235.

Ball, M.C. (1988a). Ecophysiology of mangroves. Trees-Structure and Function, 2, 129-142.

Ball, M.C. (1988b). Salinity tolerance in the mangroves Aegiceras-corniculatum and Avicennia-marina.1. water-use in relation to growth, carbon partitioning, and salt balance. Australian Journal of Plant Physiology, 15, 447-464.

Ball, M.C. & Anderson, J.M. (1986). Sensitivity of photosystem-II to NaCl in relation to salinity tolerance - comparative - studies with thylakoids of the salt - tolerant mangrove, Avicennia-marina, and the salt_sensitive pea, Pisum sativum. Australian Journal of Plant Physiology, 13, 689-698.

Ball, M.C. & Farquhar, G.D. (1984). Photosynthetic and stomatal responses of 2 mangrove species, Aegiveras corniculatum and Avicennia marina, to long-term salinity and humidity conditions. Plant Physiology, 74, 1-6.

Barrs, H.D. (1971). cyclic variations in stomatal aperture, transpiration, and leaf water potential under constant environmental conditions. Annual Review of Plant Physiology, 22, 223-&.

Blasco, F. & Aizpuru, M. (2001). Depletion of mangroves of continental Asia. Wetlands Ecol Manag, 9, 245-256.

Boto, K.G. & Wellington, J.T. (1984). Soil characteristics and nutrient status in a Northern Australian mangrove forest. Estuaries, 7, 61-69.

Brodribb, T.J. & Holbrook, N.M. (2004). Diurnal depression of leaf hydraulic conductance in a tropical tree species. Plant Cell and Environment, 27, 820-827.

Brokaw, N. & Thompson, J. (2000). The H for DBH. Forest Ecology and Management, 129, 89-91.

Brugnoli, E. & Lauteri, M. (1991). Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium-hirsutum L) and salt-sensitive (Phaseolus-vulgaris L) C3 non-halophytes. Plant Physiology, 95, 628-635.

Burghardt, M., Burghardt, A., Gall, J., Rosenberger, C. & Riederer, M. (2008). Ecophysiological adaptations of water relations of Teucrium chamaedrys L. to the hot and dry climate of xeric limestone sites in Franconia (Southern Germany). Flora, 203, 3-13.

Cannicci, S., Burrows, D., Fratini, S., Smith, T.J., Offenberg, J. & Dahdouh-Guebas, F. (2008). Faunal impact on vegetation structure and ecosystem function in mangrove forests: A review. Aquatic Botany, 89, 186-200.

Carey, G. (1934). Further inverstigations on the embryology of viviparous seeds. Proceedings of The Linnean Society of New South Wales, 59, 392-410.

Chapman, V.J. (1976). Mangrove vegetation. th ed.): Leutershousen.

Chaves, M.M., Flexas, J. & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103, 551-560.

Choat, B., Lahr, E.C., Melcher, P.J., Zwieniecki, M.A. & Holbrook, N.M. (2005). The spatial pattern of air seeding thresholds in mature sugar maple trees. Plant Cell and Environment, 28, 1082-1089.

Choat, B., Medek, D.E., Stuart, S.A., Pasquet-Kok, J., Egerton, J.J.G., Salari, H., Sack, L. & Ball, M.C. (2011). Xylem traits mediate a trade-off between resistance to freeze-thaw-induced embolism and photosynthetic capacity in overwintering evergreens. New Phytologist, 191, 996-1005.

Choudhury, J.K. (1997). Mangroves and other coastal forests Sustainable management of mangroves, forest development and social needs. XI World Forestry Congress. Antalya, Turkey. 6: 13-22.

Chu, H.Y., Chen, N.C., Yeung, M.C., Tam, N.F.Y. & Wong, Y.S. (1998). Tide-tank system simulating mangrove wetland for removal of nutrients and heavy metals from wastewater. Water Science and Technology, 38, 361-368.

Clarke, L.D. & Hannon, N.J. (1970). Mangrove swamp and salt marsh communities of Sydney district .3. plant growth in relation to salinity and waterlogging. Journal of Ecology, 58, 351.

Corcuera, L., Camarero, J.J. & Gil-Pelegrin, E. (2004). Effects of a severe drought on Quercus ilex radial growth and xylem anatomy. Trees-Structure and Function, 18, 83-92.

Dahdouh-Guebas, F., Mathenge, C., Kairo, J.G. & Koedam, N. (2000). Utilization of mangrove wood products around Mida Creek (Kenya) amongst subsistence and commercial users. Economic Botany, 54, 513-527.

Davis, J.H. (1940). The ecology and geologic role of mangroves in Florida. Carnegie Inst. Wash Pap. Tortugas Lab., 517, 305-412.

De Boer, A.H. & Volkov, V. (2003). Logistics of water and salt transport through the plant: structure and functioning of the xylem. Plant Cell and Environment, 26, 87-101.

De Ryck, D. (2009). Moving and Settling: Experiments on the dispersal and establishment of hydrochorous propagules. Biology, Vrije Universiteit Brussel, Brussel.

Drennan, P. & Pammenter, N.W. (1982). Physiology of salt excretion in the mangrove Avicennia-marina (Forsk) Vierh. New Phytologist, 91, 597-606.

Duke, N.C., Meynecke, J.O., Dittmann, S., Ellison, A.M., Anger, K., Berger, U., Cannicci, S., Diele, K., Ewel, K.C., Field, C.D., Koedam, N., Lee, S.Y., Marchand, C., Nordhaus, I. & Dahdouh-Guebas, F. (2007). A world without mangroves? Science, 317, 41-42.

Ellis, J., Nicholls, P., Craggs, R., Hofstra, D. & Hewitt, J. (2004). Effects of terrigenous sedimentation on mangrove physiology and associated macrobenthic communities. Marine Ecology-Progress Series, 270, 71-82.

Ellison, A.M. & Farnsworth, E.J. (1996). Spatial and temporal variability in growth of Rhizophora mangle saplings on coral cays: Links with variation in insolation, herbivory, and local sedimentation rate. Journal of Ecology, 84, 717-731.

Ellison, J.C. (1998). Impacts of sediment burial on mangroves. Marine Pollution Bulletin, 37, 420-426.

Elmqvist, T. & Cox, P.A. (1996). The evolution of vivipary in flowering plants. Oikos, 77, 3-9.

Feller, I.C. & Sitnik, M., (Eds.) (1996). Mangrove Ecology: a Manual for a Field Course, Sithsonian Institution.

Finlayson, C.M. & Spiers, A.G. (1999). Global review of wetland resources and priorityies for wetland inventory. Supervising Scientist report 144. S. Scientist. Canberra.

Franks, P.J. & Beerling, D.J. (2009a). Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proceedings of the National Academy of Sciences of the United States of America, 106, 10343-10347.

Franks, P.J., Drake, P.L. & Beerling, D.J. (2009b). Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: an analysis using Eucalyptus globulus. Plant Cell and Environment, 32, 1737-1748.

Franks, P.J. & Farquhar, G.D. (2001). The effect of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in Tradescantia virginiana. Plant Physiology, 125, 935-942.

Frusher, S.D., Giddins, R.L. & Smith, T.J. (1994). Distribution and abundance of grapsid crabs (Grapsidae) in a mangrove estuary - effects of sediment characteristics, salinity tolerances, and osmoregulatory ability. Estuaries, 17, 647-654.

Gartner, H. & Nievergelt, D. (2010). The core-microtome: A new tool for surface preparation on cores and time series analysis of varying cell parameters. Dendrochronologia, 28, 85-92.

Gautier, D., Amador, J. & Newmark, F. (2001). The use of mangrove wetland as a biofilter to treat shrimp pond effluents: preliminary results of an experiment on the Caribbean coast of Colombia. Aquaculture Research, 32, 787-799.

Gilman, E.L., Ellison, J., Duke, N.C. & Field, C. (2008). Threats to mangroves from climate change and adaptation options: A review. Aquatic Botany, 89, 237-250.

Giri, C., Ochieng, E., Tieszen, L.L., Zhu, Z., Singh, A., Loveland, T., Masek, J. & Duke, N. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20, 154-159.

Gopal, B. & Krishnamurthy, K. (1993). Wetlands of south Asia. Wetland of the world; Handbook of vegetation Science D.F. Whgham, D. Dykyjova and S. Henjny, Inventory Ecology and Management, 345-414.

Gordon, D.M. (1988). Disturbance to mangroves in tropical-arid Western-Australia - hypersalinity and restricted tidal exchange as factors leading to mortality. Journal of Arid Environments, 15, 117-145.

Gu, M., Rom, C.R., Robbins, J.A. & Oosterhuis, D.M. (2007). Effect of water deficit on gas exchange, osmotic solutes, leaf abscission, and growth of four birch genotypes (Betula L.) under a controlled environment. Hortscience, 42, 1383-1391.

Hacke, U.G., Sperry, J.S., Wheeler, J.K. & Castro, L. (2006). Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiology, 26, 689-701.

Hameed, M. & Ashraf, M. (2008). Physiological and biochemical adaptations of Cynodon dactylon (L.) Pers. from the Salt Range (Pakistan) to salinity stress. Flora, 203, 683-694.

Hamerlynck, E.P., Huxman, T.E., Loik, M.E. & Smith, S.D. (2000). Effects of extreme high temperature, drought and elevated CO2 on photosynthesis of the Mojave Desert evergreen shrub, Larrea tridentata. Plant Ecology, 148, 183-193.

Hao, G.Y., Jones, T.J., Luton, C., Zhang, Y.J., Manzane, E., Scholz, F.G., Bucci, S.J., Cao, K.F. & Goldstein, G. (2009). Hydraulic redistribution in dwarf Rhizophora mangle trees driven by interstitial soil water salinity gradients: impacts on hydraulic architecture and gas exchange. Tree Physiology, 29, 697-705.

Hao, G.Y., Sack, L., Wang, A.Y., Cao, K.F. & Goldstein, G. (2010). Differentiation of leaf water flux and drought tolerance traits in hemiepiphytic and non-hemiepiphytic Ficus tree species. Functional Ecology, 24, 731-740.

Hardin, G. (1968). TRAGEDY OF COMMONS. Science, 162, 1243-&.

Heckenberger, U., Roggatz, U. & Schurr, U. (1998). Effect of drought stress on the cytological status in Ricinus communis. Journal of Experimental Botany, 49, 181-189.

Herppich, W.B. (1997). Stomatal responses to changes in air humidity are not necessarily linked to nocturnal CO2 uptake in the CAM plant Plectranthus marrubioides Benth (Lamiaceae). Plant Cell and Environment, 20, 393-399.

Hogarth, P.J. (2007). The biology of mangroves and seagrasses. (2nd editionth ed.) New York, USA: Oxford University Press.

Hollins, S.E., Harrison, J.J., Jones, B.G., Zawadzki, A., Heijnis, H. & Hankin, S. (2011). Reconstructing recent sedimentation in two urbanised coastal lagoons (NSW, Australia) using radioisotopes and geochemistry. Journal of Paleolimnology, 46, 579-596.

Hoste, P. (2011a). Ecophysiology of mangrove in Australia: Hydraulic functioning. Faculteit Bio-ingenieurswetenschappen (LA), UGent, Gent.

Hoste, P. (2011b). Ecophysiology of mangrove in Australia: Hydraulic functioning. Faculteit Bio-ingenieurswetenschappen (LA), UGent, Gent.

Hutchings, P. & Seanger, P. (1987). Ecology of Mangroves. th ed.) St. Lucia: University of Queensland Press.

Jansen, S., Kitin, P., de Pauw, H., Idris, M., Beeckman, H. & Smets, E. (1998). Preparation of wood specimens for transmitted light microscopy and scanning electron microscopy. Belgian Journal of Botany, 131, 41-49.

Jimenez, J.A. & Sauter, K. (1991). Structure and dynamics of mangrove forests along a flooding gradient. Estuaries, 14, 49-56.

Jones, H.G. (1992). Plants and microclimate. (2ndth ed.) Cambridge: Cambridge University Press.

Kathiresan, K. (2011) Importance of Mangrove Ecosystem. Journal.,

Kathiresan, K. & Bingham, B.L. (2001). Biology of mangroves and mangrove ecosystems. Advances in Marine Biology, Vol 40. A.J. Southward, P.A. Tyler, C.M. Young and L.A. Fuiman. 40, 81-251.

Kitaya, Y., Yabuki, K., Kiyota, M., Tani, A., Hirano, T. & Aiga, I. (2002). Gas exchange and oxygen concentration in pneumatophores and prop roots of four mangrove species. Trees-Structure and Function, 16, 155-158.

Komiyama, A., Ong, J.E. & Poungparn, S. (2008). Allometry, biomass, and productivity of mangrove forests: A review. Aquatic Botany, 89, 128-137.

Krauss, K.W., Lovelock, C.E., McKee, K.L., Lopez-Hoffman, L., Ewe, S.M.L. & Sousa, W.P. (2008). Environmental drivers in mangrove establishment and early development: A review. Aquatic Botany, 89, 105-127.

Kristensen, E. & Alongi, D.M. (2006). Control by fiddler crabs (Uca vocans) and plant roots (Avicennia marina) on carbon, iron, and sulfur biogeochemistry in mangrove sediment. Limnology and Oceanography, 51, 1557-1571.

Lawlor, D.W. (2002). Limitation to photosynthesis in water-stressed leaves: Stomata vs. metabolism and the role of ATP. Annals of Botany, 89, 871-885.

Lee, S.Y. (1998). Ecological role of grapsid crabs in mangrove ecosystems: a review. Marine and Freshwater Research, 49, 335-343.

Lee, S.Y. (1999). Tropical mangrove ecology: Physical and biotic factors influencing ecosystem structure and function. Australian Journal of Ecology, 24, 355-366.

Lichtenthaler, H.K. (1998). The stress concept in plants: An introduction. Stress of Life: From Molecules to Man. P. Csermely. New York, New York Acad Sciences. 851, 187-198.

Lintunen, A. & Kalliokoski, T. (2010). The effect of tree architecture on conduit diameter and frequency from small distal roots to branch tips in Betula pendula, Picea abies and Pinus sylvestris. Tree Physiology, 30, 1433-1447.

Logullo, M.A., Salleo, S., Piaceri, E.C. & Rosso, R. (1995). Relations between vulnerability to xylem embolism and xylem conduit dimensions in youg trees of Quercus-cerris. Plant Cell and Environment, 18, 661-669.

Lopez-Portillo, J., Ewers, F.W. & Angeles, G. (2005). Sap salinity effects on xylem conductivity in two mangrove species. Plant, Cell & Environment, 28, 1285-1292.

Lugo, A.E. & Clintron, G., (Eds.) (1975). The mangrove forests of Puerto Rico and their management. Proceedings of the International Symposium on Biology and Management of Mangroves. Gainesville, University of Florida.

Lugo, A.E. & Snedaker, S.C. (1974). The ecology of mangroves. Annual Reviews of Ecology and Systematics. 5: 39-64.

Macnae, W. (1968). A general account of fauna and flora of mangrove swamps and forests in Indo-West-Pacific region. Advances in Marine Biology, 6, 73-&.

Matthijs, S., Tack, J., van Speybroeck, D. & Koedam, N. (1999). Mangrove species zonation and soil redox state, sulphide concentration and salinity in Gazi Bay (Kenya), a preliminary study. Mangroves and Salt Marshes, 3, 243-249.

Mauseth, J.D. & PlemonsRodriguez, B.J. (1997). Presence of paratracheal water storage tissue does not alter vessel characters in cactus wood. American Journal of Botany, 84, 815-822.

Mauseth, J.D. & Stevenson, J.F. (2004). Theoretical considerations of vessel diameter and conductive safety in populations of vessels. International Journal of Plant Sciences, 165, 359-368.

McKee, K.L. (1993). Soil physicochemical patterns and mangrove species distribution - reciprocal effects. Journal of Ecology, 81, 477-487.

McKee, K.L. (1995). Seedling recruitment patterns in a Belizean mangrove forest - effects of establishment ability and physicochemical factors. Oecologia, 101, 448-460.

McMillan, C. (1971). Environmental factors affecting seedling establishment of black mangrove on central Texas coast. Ecology, 52, 927-&.

Mimura, N., Yasuhara, K., Kawagoe, S., Yokoki, H. & Kazama, S. (2011). Damage from the Great East Japan Earthquake and Tsunami - A quick report. Mitigation and Adaptation Strategies for Global Change, 16, 803-818.

Moberg, F. & Ronnback, P. (2003). Ecosystem services of the tropical seascape: interactions, substitutions and restoration. Ocean & Coastal Management, 46, 27-46.

Mohamed, M.O.S., Neukermans, G., Kairo, J.G., Dahdouh-Guebas, F. & Koedam, N. (2009). Mangrove forests in a peri-urban setting: the case of Mombasa (Kenya). Wetlands Ecology and Management, 17, 243-255.

Moore, R.T., Miller, P.C., Albright, D. & Tieszen, L.L. (1972). COMPARATIVE GAS-EXCHANGE CHARACTERISTICS OF 3 MANGROVE SPECIES DURING WINTER. Photosynthetica, 6, 387-393.

Moore, R.T., Miller, P.C., Ehlering.J & Lawrence, W. (1973). SEASONAL TRENDS IN GAS-EXCHANGE CHARACTERISTICS OF 3 MANGROVE SPECIES. Photosynthetica, 7, 387-394.

Nagelkerken, I., van der Velde, G., Gorissen, M.W., Meijer, G.J., van't Hof, T. & den Hartog, C. (2000). Importance of mangroves, seagrass beds and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique. Estuarine Coastal and Shelf Science, 51, 31-44.

Naidoo, G. (2010). Ecophysiological differences between fringe and dwarf Avicennia marina mangroves. Trees-Structure and Function, 24, 667-673.

Naz, N., Hameed, M., Ashraf, M., Al-Qurainy, F. & Arshad, M. (2010). Relationships between gas-exchange characteristics and stomatal structural modifications in some desert grasses under high salinity. Photosynthetica, 48, 446-456.

Nickerson, N.H. & Thibodeau, F.R. (1985). Association between pore water sulfide concentrations and the distribution of mangroves. Biogeochemistry, 1, 183-192.

Nye, P.H. & Tinker, P.B. (1977). Solute Movement in the Soil-root System. th ed.) London: Blackwell Scientific Publications.

Paiva, E.A.S., Lemos, J.P. & Oliveira, D.M.T. (2006). Imbibition of Swietenia macrophylla (Meliaceae) seeds: The role of stomata. Annals of Botany, 98, 213-217.

Parida, A.K. & Jha, B. (2010). Salt tolerance mechanisms in mangroves: a review. Trees-Structure and Function, 24, 199-217.

Parsons, T.R., Maita, Y. & Lalli, C.M. (1984). A manual of chemical and biological methods for seawater analysis. (1st ed.th ed.) Oxford, New York: Pergamon Press.

Pezeshki, S.R., DeLaune, R.D. & Meeder, J.F. (1997). Carbon assimilation and biomass partitioning in Avicennia germinans and Rhizophora mangle seedlings in response to soil redox conditions. Environmental and Experimental Botany, 37, 161-171.

Pool, D.J., Snedaker, S.C. & Lugo, A.E. (1977). Structure of mangrove forests in Florida, Puerto-Rico, Mexico, and Costa-Rica. Biotropica, 9, 195-212.

Popp, M., Polania, J. & Weiper, M., (Eds.) (1993). Physiological adaptations to different salinity levels in mangrove. Towards the Rational Use of High Salinity Tolerant Plants. Dordrecht, Kluwer Academic Publishers.

Quarrie, S.A. & Jones, H.G. (1977). Effects of abscisic-acid and water stress on development and morphology of wheat. Journal of Experimental Botany, 28, 192-&.

Rabinowitz, D. (1978). DISPERSAL PROPERTIES OF MANGROVE PROPAGULES. Biotropica, 10, 47-57.

Rahnama, A., James, R.A., Poustini, K. & Munns, R. (2010). Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Functional Plant Biology, 37, 255-263.

Rapp, A.O. & Behrmann, K. (1998). Preparation of wood for microscopic analysis after decay testing. Holz Als Roh-Und Werkstoff, 56, 277-278.

Reef, R., Feller, I.C. & Lovelock, C.E. (2010). Nutrition of mangroves. Tree Physiology, 30, 1148-1160.

Robert, E.M.R., Koedam, N., Beeckman, H. & Schmitz, N. (2009). A safe hydraulic architecture as wood anatomical explanation for the difference in distribution of the mangroves Avicennia and Rhizophora. Functional Ecology, 23, 649-657.

Robert, E.M.R., Schmitz, N., Boeren, I., Driessens, T., Herremans, K., De Mey, J., Van de Casteele, E., Beeckman, H. & Koedam, N. (2011a). Successive Cambia: A Developmental Oddity or an Adaptive Structure? Plos One, 6.

Robert, E.M.R., Schmitz, N., Okello, J.A., Boeren, I., Beeckman, H. & Koedam, N. (2011b). Mangrove growth rings: fact or fiction? Trees-Structure and Function, 25, 49-58.

Robertson, A.I. & Daniel, P.A. (1989). The influence of crabs on litter processing in high intertidal mangrove forests in tropical Australia. Oecologia, 78, 191-198.

Ruwa, R.K. & Polk, P. (1986). Additional information on mangrove distribution in Kenya: some observations and remarks. Kenya Journal of Sciences Series, B 7, 41-45.

Ruzin, S.E. (1999). Plant microtechnique and microscopy. th ed.) New York, USA: Oxford University Press.

Saenger, P. (2002). Mangrove ecology, silvicurture and conservation. th ed.) Dordrecht: Kluwer Academic Publishers.

Salleo, S., Lo Gullo, M.A., Trifilo, P. & Nardini, A. (2004). New evidence for a role of vessel-associated cells and phloem in the rapid xylem refilling of cavitated stems of Laurus nobilis L. Plant Cell and Environment, 27, 1065-1076.

Salleo, S., Trifilo, P. & Lo Gullo, M.A. (2006). Phloem as a possible major determinant of rapid cavitation reversal in stems of Laurus nobilis (laurel). Functional Plant Biology, 33, 1063-1074.

Sanchez, H.B., Lemeur, R., Van Damme, P. & Jacobsen, S.E. (2003). Ecophysiological analysis of drought and salinity stress of quinoa (Chenopodium quinoaWilld.). Food Reviews International, 19, 111-119.

Sansanayuth, P., Phadungchep, A., Ngammontha, S., Ngdngam, S., Sukasem, P., Hoshino, H. & Ttabucanon, M.S. (1996). Shrimp pond effluent: Pollution problems and treatment by constructed wetlands. Water Science and Technology, 34, 93-98.

Schmitz, N. (2004). Houtanatomie van de mangrove Rhizophora mucronata Lamk. en de relatie met de omgeving. De betekenis van de vatendichtheid voor de veiligheid van het watertransportsysteem. Biologie, Vrije Universiteit Brussel, Brussel.

Schmitz, N., Verheyden, A., Beeckman, H., Kairo, J.G. & Koedam, N. (2006). Influence of a salinity gradient on the vessel characters of the mangrove species Rhizophora mucronata. Annals of Botany, 98, 1321-1330.

Scholand, P.F., Bradstre, E.D., Hammel, H.T. & Hemmings, E.A. (1966). Sap concentrations in halophytes and some other plants. Plant Physiology, 41, 529.

Scholander, P.F., Hemmingsen, E., Garey, W. & Hammel, H.T. (1962). Salt balance in mangroves. Plant Physiology, 37, 722.

Scholander, P.F., Hemmingsen, E.A., Hammel, H.T. & Bradstreet, E.D.P. (1964). Hydrostatic pressure + osmotic potential in leaves of mangroves + some other plants. Proceedings of the National Academy of Sciences of the United States of America, 52, 119.

Scholander, P.F., Vandam, L. & Scholander, S.I. (1955). Gas exchange in the roots of mangroves. American Journal of Botany, 42, 92-98.

Scholz, F.G., Bucci, S.J., Goldstein, G., Meinzer, F.C., Franco, A.C. & Miralles-Wilhelm, F. (2007). Biophysical properties and functional significance of stem water storage tissues in Neotropical savanna trees. Plant Cell and Environment, 30, 236-248.

Schurr, U., Heckenberger, U., Herdel, K., Walter, A. & Feil, R. (2000). Leaf development in Ricinus communis during drought stress: dynamics of growth processes, of cellular structure and of sink-source transition. Journal of Experimental Botany, 51, 1515-1529.

Schwarzbach, A.E. & Ricklefs, R.E. (2000). Systematic affinities of Rhizophoraceae and Anisophylleaceae, and intergeneric relationships within Rhizophoraceae, based on chloroplast DNA, nuclear ribosomal DNA, and morphology. American Journal of Botany, 87, 547-564.

Sherrod, C.L., Hockaday, D.L. & McMillan, C. (1986). Survival of red mangrove, Rhizophora-mangle, on the gulf-of-Mexico coast of Texas. Contributions in Marine Science, 29, 27-36.

Sherrod, C.L. & McMillan, C. (1985). The distributional history and ecology of mangrove vegetation along the Northern gulf of Mexico coastal region. Contributions in Marine Science, 28, 129-140.

Shimony, C., Fahn, A. & Reinhold, L. (1973). Ultrastructure and ion gradients in salt-glands of Avicennia-marina (Forssk) Vierh. New Phytologist, 72, 27.

Smith, N.F., Wilcox, C. & Lessmann, J.M. (2009). Fiddler crab burrowing affects growth and production of the white mangrove (Laguncularia racemosa) in a restored Florida coastal marsh. Marine Biology, 156, 2255-2266.

Smith, T.J. (1987). Seed predation in relation to tree dominance and distribution in mangrove forests. Ecology, 68, 266-273.

Sobrado, M.A. (2000). Relation of water transport to leaf gas exchange properties in three mangrove species. Trees-Structure and Function, 14, 258-262.

Sobrado, M.A. (2007). Relationship of water transport to anatomical features in the mangrove Laguncularia racemosa grown under contrasting salinities. New Phytologist, 173, 584-591.

Sorrell, B.K., Mendelssohn, I.A., McKee, K.L. & Woods, R.A. (2000). Ecophysiology of wetland plant roots: A modelling comparison of aeration in relation to species distribution. Annals of Botany, 86, 675-685.

Spalding, M., R., B. & Field, C. (1997). World Mangrove Atlas. th ed.) Okinawa, Japan: The International Society for Mangrove Ecosystems.

Srivastava, J., Farooqui, A. & Hussain, S.M. (2012). Sedimentology and salinity status in Pichavaram mangrove wetland, South East coast of India, International Journal of Geology, Earth and Environmental Sciences. 2: 7-15.

Steinke, T.D., Rajh, A. & Holland, A.J. (1993). The feeding-behavior of the red mangrove crab Sesarma-meierti-De Man, 1887 (Crustacea, Decapoda, Grapsidae) and its effect on the degradation of mangrove leaf-litter. South African Journal of Marine Science-Suid-Afrikaanse Tydskrif Vir Seewetenskap, 13, 151-160.

Stepien, P. & Klobus, G. (2006). Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. Biologia Plantarum, 50, 610-616.

Steppe, K. (2011). Ecophysiologie. th ed.) Gent: Faculteit Bio-Ingenieurswetenschappen, Universiteit Gent.

Steppe, K., Dzikiti, S., Lemeur, R. & Milford, J.R. (2006). Stomatal oscillations in orange trees under natural climatic conditions. Annals of Botany, 97, 831-835.

Sternberg, L.D.L. & Swart, P.K. (1987). Utilization of fresh-water and ocean water by coastal plants of Southern Florida. Ecology, 68, 1898-1905.

Sternberg, L.D.L., Teh, S.Y., Ewe, S.M.L., Miralles-Wilhelm, F. & DeAngelis, D.L. (2007). Competition between hardwood hammocks and mangroves. Ecosystems, 10, 648-660.

Stevenson, J.F. & Mauseth, J.D. (2004). Effects of environment on vessel characters in cactus wood. International Journal of Plant Sciences, 165, 347-357.

Stieglitz, T., Ridd, P. & Muller, P. (2000). Passive irrigation and functional morphology of crustacean burrows in a tropical mangrove swamp. Hydrobiologia, 421, 69-76.

Stuart, S.A., Choat, B., Martin, K.C., Holbrook, N.M. & Ball, M.C. (2007). The role of freezing in setting the latitudinal limits of mangrove forests. New Phytologist, 173, 576-583.

Taiz, L. & Zeiger, E. (2006). Plant physiology. (4th ed.) Sunderland, Massachusetts: Sinauer Associates.

Tam, N.F.Y. & Wong, Y.S. (1995). Mangrove soils as sinks for waste-water-borne pollutants. Hydrobiologia, 295, 231-241.

Terrados, J., Thampanya, U., Srichai, N., Kheowvongsri, P., Geertz-Hansen, O., Boromthanarath, S., Panapitukkul, N. & Duarte, C.M. (1997). The effect of increased sediment accretion on the survival and growth of Rhizophora apiculata seedlings. Estuarine Coastal and Shelf Science, 45, 697-701.

Thampanya, U., Vermaat, J.E. & Duarte, C.M. (2002). Colonization success of common Thai mangrove species as a function of shelter from water movement. Marine Ecology-Progress Series, 237, 111-120.

Thom, B.G. (1967). Mangrove ecology and deltaic geomorphology - tabasco Mexico. Journal of Ecology, 55, 301.

Thom, B.G. (1984). Coastal landforms and geomorphic processes. th ed.) Paris: UNESCO.

Tomlinson, P.B. (1986). The Botany of Mangroves. (1th ed.) Cambridge, UK: Cambridge University Press.

Tomlinson, P.B. & Cox, P.A. (2000). Systematic and functional anatomy of seedlings in mangrove Rhizophoraceae: vivipary explained? Botanical Journal of the Linnean Society, 134, 215-231.

Tri, N.H., Adger, W.N. & Kelly, P.M. (1998). Natural resource management in mitigating climate impacts: the example of mangrove restoration in Vietnam. Global Environmental Change-Human and Policy Dimensions, 8, 49-61.

Vaiphasa, C., De Boer, W.F., Panitchart, S., Vaiphasa, T., Bamrongrugsa, N. & Santitamnont, P. (2007). Impact of solid shrimp pond waste materials on mangrove growth and mortality: a case study from Pak Phanang, Thailand. Hydrobiologia, 591, 47-57.

van Mensvoort, T. (1998). Mangrove Research Discussion List Communication.

Verheyden, A., Kairo, J.G., Beeckman, H. & Koedam, N. (2004). Growth rings, growth ring formation and age determination in the mangrove Rhizophora mucronata. Annals of Botany, 94, 59-66.

Verheyden, A., Roggeman, M., Bouillon, S., Elskens, M., Beeckman, H. & Koedam, N. (2005). Comparison between delta C-13 of alpha-cellulose and bulk wood in the mangrove tree Rhizophora mucronata: Implications for dendrochemistry. Chemical Geology, 219, 275-282.

Villagra, P.E. & Junent, F.A.R. (1997). Wood structure of Prosopis alpataco and P-argentina growing under different edaphic conditions. Iawa Journal, 18, 37-51.

Villar-Salvador, P., Castro-Diez, P., Perez-Rontome, C. & Montserrat-Marti, G. (1997). Stem xylem features in three Quercus (Fagaceae) species along a climatic gradient in NE Spain. Trees-Structure and Function, 12, 90-96.

Waisel, Y. (1972). Biology of Halophytes. th ed.) New York: Academic Press.

Walsh, G.E., Holliste, T.A. & Forester, J. (1974). Translocation of 4 organochlorine compounds by red mangrove (Rhizophora-mangle L) seedlings. Bulletin of Environmental Contamination and Toxicology, 12, 129-135.

Wullschleger, S.D., Tschaplinski, T.J. & Norby, R.J. (2002). Plant water relations at elevated CO2 - implications for water-limited environments. Plant Cell and Environment, 25, 319-331.

Zwieniecki, M.A., Hutyra, L., Thompson, M.V. & Holbrook, N.M. (2000). Dynamic changes in petiole specific conductivity in red maple (Acer rubrum L.), tulip tree (Liriodendron tulipifera L.) and northern fox grape (Vitis labrusca L.). Plant Cell and Environment, 23, 407-414.

Universiteit of Hogeschool
Bio-ingenieurswetenschappen: landbouwkunde
Publicatiejaar
2012
Share this on: