Presence of multidrug resistance and ER stress in a mouse model of hepatocellular carcinoma

Yves-Paul Vandewynckel Hans Van Vlierberghe Isabelle Colle
Achilleshiel van tumoren ontdekt in leverkankerIedereen kent wel iemand in zijn omgeving die getroffen werd door kanker. Momenteel wordt voor de behandeling van kanker vooral chemotherapie gebruikt. Dit heeft echter vele bijwerkingen zoals haaruitval en misselijkheid. Ook is de verbetering van de levensverwachting door de huidige chemotherapie slechts beperkt. In een muismodel voor leverkanker is een nieuwe universele strategie ontdekt die de weg opent naar een innovatieve vorm van kankerbehandeling voor dit type, maar ook voor alle andere tumoren.

Presence of multidrug resistance and ER stress in a mouse model of hepatocellular carcinoma

Achilleshiel van tumoren ontdekt in leverkanker

Iedereen kent wel iemand in zijn omgeving die getroffen werd door kanker. Momenteel wordt voor de behandeling van kanker vooral chemotherapie gebruikt. Dit heeft echter vele bijwerkingen zoals haaruitval en misselijkheid. Ook is de verbetering van de levensverwachting door de huidige chemotherapie slechts beperkt. In een muismodel voor leverkanker is een nieuwe universele strategie ontdekt die de weg opent naar een innovatieve vorm van kankerbehandeling voor dit type, maar ook voor alle andere tumoren. Deze ondervinden door hun snelle groei een gebrek aan voedingstoffen en zuurstof. Ons mechanisme zorgt ervoor dat de tumorcellen zich kunnen aanpassen aan de stressvolle omstandigheden waarin ze moeten opgroeien. Wanneer we medicamenteus dit aanpassingsvermogen van de tumorcellen kunnen verminderen zullen specifiek de tumorcellen die deze stress ondervinden afsterven. Onafhankelijk van het kankertype en zelfs bij uitgezaaide kankers kan deze strategie soelaas bieden voor deze vreselijke ziekte.

Kanker is en blijft een zware diagnose. Iedereen kent wel iemand in zijn nabije omgeving die met deze verwoestende ziekte in contact is gekomen. Samen met de patiënten en hun familie blijven we hopen op een significante doorbraak. Kanker ontstaat door de ongebreidelde groei van cellen die op deze manier een gezwel vormen. Dit kan in bijna alle weefsels van het lichaam voorkomen. Sinds enkele jaren weten we dat tijdens de groei van een tumor de bestaande bloedvaten tekortschieten en de tumor via loslating van groeifactoren nieuwe bloedvaten probeert aan te leggen. (Fig. 1)  Deze zijn echter van mindere kwaliteit zijn als de bestaande en dit veroorzaakt een tekort aan zuurstof en suiker in de kern van de tumor. Het gezwel zal hierdoor stress ondervinden op celniveau. Niet de psychologische stress die eenieder onder ons wel eens ondervindt, maar wel een verstoring van de normale processen binnenin de cel, in dit geval een tumorcel.

Om te overleven moeten cellen eiwitten kunnen produceren. Dit productieproces bestaat uit verschillende stappen. Een belangrijke stap hierin is de opvouwing van de eiwitketens in de juiste vorm. In stressvolle omstandigheden zal het opvouwen moeizaam verlopen en ontstaan er meer onopgevouwen eiwitten. Ons lichaam probeert steeds het gezond evenwicht te herstellen. Ook op celniveau heeft de cel herstelmechanismen ontwikkeld om deze slechte eiwitten te verwijderen. Als de hoeveelheid aan schade echter te groot is om te herstellen, zal de cel beslissen om gecontroleerd in celdood te gaan, de  cel pleegt als het ware zelfmoord.

Door versterking van dit herstelmechanisme heeft de tumorcel zich echter gewapend om in deze stressvolle omstandigheden toch te kunnen overleven. Wanneer we medicamenteus dit herstel verminderen, kunnen we specifiek de cellen in ons lichaam die ernstige stress ondervinden doen afsterven. Men kan dit zien als een directe aanval op de Achilleshiel van de tumor. In een gezonde mens ondervinden de cellen geen ernstige stress en krijgen alle weefsels voldoende zuurstof en energie. Bij een kankerpatiënt zullen enkel de cellen in de gezwellen deze stress ondervinden en dit geeft ons een manier om alleen de kankercellen te behandelen zonder alle andere cellen schade te berokkenen zoals nu gebeurt met de huidige chemotherapie.

Onderzoek naar kanker kan meestal niet gebeuren op de patiënten zelf. Daarvoor gebruiken we muizen met bepaalde kankers. (Fig. 2) Leverkanker is wereldwijd het 3de belangrijkste type qua kankergerelateerde sterfte. In ons labo onderzoeken we muizen met leverkanker. Dit stelt ons in staat om theorieën en geneesmiddelen te testen op een ethisch verantwoorde manier. In dit onderzoek werd de theorie bevestigd dat onopgevouwen eiwitten aanwezig zijn in de levertumoren van de muizen. Ook werd er aangetoond dat de bovenvermelde herstelmechanismen geactiveerd zijn in de tumoren. Dit vormt de basis voor verder onderzoek naar een nieuwe behandeling via onderdrukking van deze mechanismen. Hierbij is het belangrijk te vermelden dat dit principe in feite niet alleen op levertumoren, maar op alle tumoren die snel groeien van toepassing is. Deze universele strategie biedt hoop aan het onderzoek naar kankerbehandelingen die de laatste decennia ondanks aanzienlijke budgetten slechts een beperkte toename aan levensverwachting heeft opgeleverd.

Het onderzoeksproject omvatte ook een luik om de aanwezigheid van resistentie in het diermodel aan te tonen. Resistentie aan chemotherapie is een majeur probleem in de kankerbehandeling, zeker in het geval van de levertumoren. Hierbij zag men onverwachts dat de muizen geen resistentiegenen vertoonden terwijl deze toch belangrijke rol spelen in de resistentie van leverkanker bij mensen.

Het slotstuk van het onderzoek was de innovatieve beeldvorming van de levertumoren in de muizen. Dit is tot stand gekomen door zelf specifieke antilichamen te merken met radioactiviteit en hiermee welbepaalde scans te doen. Dit is wereldwijd nog nooit gebeurd met dergelijke antilichamen. Deze spelen een rol in de bloedvatvorming en in het beschermingsmechanisme van de tumorcellen zoals hierboven beschreven. De resultaten hiervan worden momenteel door een team van experts verder geanalyseerd en zal later dit jaar worden gepubliceerd.

We kunnen concluderen dat dit resultaat hoop biedt aan de onderzoekers op dit vakgebied om eindelijk een nieuwe universele strategie voor kankerbehandeling te ontwikkelen. Het herstelmechanisme is enkel geactiveerd in de tumorcellen die door hun groei onder stress moeten overleven en dit maakt dat de gezonde cellen onbehandeld blijven waardoor de bijwerkingen van deze strategie waarschijnlijk beperkt zullen zijn. Deze theorie moet, zoals bij elk onderzoek, nog bevestigd worden in de praktijk, maar het snel stijgend aantal onderzoeksprojecten rond dit mechanisme zal dit proces zeker versnellen.

Bibliografie

Adachi, Y., Yamamoto, K., Okada, T., Yoshida, H., Harada, A., & Mori, K. (2008). ATF6 is a transcription factor specializing in the regulation of quality control proteins in the endoplasmic reticulum. Cell structure and function, 33(1), 75-89. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18360008

Al-Rawashdeh, F. Y., Scriven, P., Cameron, I. C., Vergani, P. V., & Wyld, L. (2010). Unfolded protein response activation contributes to chemoresistance in hepatocellular carcinoma. European journal of gastroenterology & hepatology, 22(9), 1099-105. doi:10.1097/MEG.0b013e3283378405

Apel, A., Herr, I., Schwarz, H., Rodemann, H. P., & Mayer, A. (2008). Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer research, 68(5), 1485-94. doi:10.1158/0008-5472.CAN-07-0562

Arai, M., Kondoh, N., Imazeki, N., Hada, A., Hatsuse, K., Kimura, F., Matsubara, O., et al. (2006). Transformation-associated gene regulation by ATF6alpha during hepatocarcinogenesis. FEBS letters, 580(1), 184-90. doi:10.1016/j.febslet.2005.11.072

Austin, R. C. (2009). The unfolded protein response in health and disease. Antioxidants & redox signaling, 11(9), 2279-87. doi:10.1089/ARS.2009.2686

Bertolotti, A., Zhang, Y., Hendershot, L. M., Harding, H. P., & Ron, D. (2000). Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nature cell biology, 2(6), 326-32. doi:10.1038/35014014

Bobrovnikova-Marjon, E., Grigoriadou, C., Pytel, D., Zhang, F., Ye, J., Koumenis, C., Cavener, D., et al. (2010). PERK promotes cancer cell proliferation and tumor growth by limiting oxidative DNA damage. Oncogene, 29(27), 3881-95. doi:10.1038/onc.2010.153

Borel, F., Han, R., Visser, A., Petry, H., van Deventer, S. J. H., Jansen, P. L. M., & Konstantinova, P. (2012). Adenosine triphosphate-binding cassette transporter genes up-regulation in untreated hepatocellular carcinoma is mediated by cellular microRNAs. Hepatology (Baltimore, Md.), 55(3), 821-32. doi:10.1002/hep.24682

Brewer, J. W., & Jackowski, S. (2012). UPR-Mediated Membrane Biogenesis in B Cells. Biochemistry research international, 2012, 738471. doi:10.1155/2012/738471

Bruix, J., & Llovet, J. M. (2002). Prognostic prediction and treatment strategy in hepatocellular carcinoma. Hepatology (Baltimore, Md.), 35(3), 519-24. doi:10.1053/jhep.2002.32089

Buchholz, M., Braun, M., Heidenblut, A., Kestler, H. A., Klöppel, G., Schmiegel, W., Hahn, S. A., et al. (2005). Transcriptome analysis of microdissected pancreatic intraepithelial neoplastic lesions. Oncogene, 24(44), 6626-36. doi:10.1038/sj.onc.1208804

Cao, S. S., Song, B., & Kaufman, R. J. (2012). PKR protects colonic epithelium against colitis through the unfolded protein response and prosurvival signaling. Inflammatory bowel diseases. doi:10.1002/ibd.22878

Cazanave, S. C., Elmi, N. A., Akazawa, Y., Bronk, S. F., Mott, J. L., & Gores, G. J. (2010). CHOP and AP-1 cooperatively mediate PUMA expression during lipoapoptosis. American journal of physiology. Gastrointestinal and liver physiology, 299(1), G236-43. doi:10.1152/ajpgi.00091.2010

Chakrabarti, A., Chen, A. W., & Varner, J. D. (2011). A review of the mammalian unfolded protein response. Biotechnology and bioengineering, 108(12), 2777-93. doi:10.1002/bit.23282

Chen, R., Dai, R. Y., Duan, C. Y., Liu, Y. P., Chen, S. K., Yan, D. M., Chen, C. N., et al. (2011). Unfolded protein response suppresses cisplatin-induced apoptosis via autophagy regulation in human hepatocellular carcinoma cells. Folia biologica, 57(3), 87-95. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21888831

Chen, T. C., Wang, W., Golden, E. B., Thomas, S., Sivakumar, W., Hofman, F. M., Louie, S. G., et al. (2011). Green tea epigallocatechin gallate enhances therapeutic efficacy of temozolomide in orthotopic mouse glioblastoma models. Cancer letters, 302(2), 100-8. doi:10.1016/j.canlet.2010.11.008

Chen, Z.-S., & Tiwari, A. K. (2011). Multidrug resistance proteins (MRPs/ABCCs) in cancer chemotherapy and genetic diseases. The FEBS journal, 278(18), 3226-45. doi:10.1111/j.1742-4658.2011.08235.x

Clarke, R., Cook, K. L., Hu, R., Facey, C. O. B., Tavassoly, I., Schwartz, J. L., Baumann, W. T., et al. (2012). Endoplasmic reticulum stress, the unfolded protein response, autophagy, and the integrated regulation of breast cancer cell fate. Cancer research, 72(6), 1321-31. doi:10.1158/0008-5472.CAN-11-3213

Cross, B. C. S., Bond, P. J., Sadowski, P. G., Jha, B. K., Zak, J., Goodman, J. M., Silverman, R. H., et al. (2012). The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule. Proceedings of the National Academy of Sciences of the United States of America. doi:10.1073/pnas.1115623109

Darwish, Hebatallah A. El-Boghdady, N. A. (2011). Possible involvement of oxidative stress in diethylnitrosamine - induced hepatocarcinogenesis chemopreventive effect of curcumin. Journal of Food Biochemistry, no-no. doi:10.1111/j.1745-4514.2011.00637.x

Dawany, N. B., Dampier, W. N., & Tozeren, A. (2011). Large-scale integration of microarray data reveals genes and pathways common to multiple cancer types. International journal of cancer. Journal international du cancer, 128(12), 2881-91. doi:10.1002/ijc.25854

Duan, Q., Wang, X., Gong, W., Ni, L., Chen, C., He, X., Chen, F., et al. (2012). ER Stress Negatively Modulates the Expression of the miR-199a/214 Cluster to Regulates Tumor Survival and Progression in Human Hepatocellular Cancer. PloS one, 7(2), e31518. doi:10.1371/journal.pone.0031518

Estaquier, J., Vallette, F., Vayssiere, J.-L., & Mignotte, B. (2012). The mitochondrial pathways of apoptosis. Advances in experimental medicine and biology, 942, 157-83. doi:10.1007/978-94-007-2869-1_7

Gargalovic, P. S., Gharavi, N. M., Clark, M. J., Pagnon, J., Yang, W.-P., He, A., Truong, A., et al. (2006). The unfolded protein response is an important regulator of inflammatory genes in endothelial cells. Arteriosclerosis, thrombosis, and vascular biology, 26(11), 2490-6. doi:10.1161/01.ATV.0000242903.41158.a1

Gething, M. J. (1999). Role and regulation of the ER chaperone BiP. Seminars in cell & developmental biology, 10(5), 465-72. doi:10.1006/scdb.1999.0318

Gorman, A. M., Healy, S. J. M., Jäger, R., & Samali, A. (2012). Stress management at the ER: Regulators of ER stress-induced apoptosis. Pharmacology & therapeutics. doi:10.1016/j.pharmthera.2012.02.003

Greenman, C., Stephens, P., Smith, R., Dalgliesh, G. L., Hunter, C., Bignell, G., Davies, H., et al. (2007). Patterns of somatic mutation in human cancer genomes. Nature, 446(7132), 153-8. doi:10.1038/nature05610

Guan, D., Wang, H., Li, V. E., Xu, Y., Yang, M., & Shen, Z. (2009). N-glycosylation of ATF6beta is essential for its proteolytic cleavage and transcriptional repressor function to ATF6alpha. Journal of cellular biochemistry, 108(4), 825-31. doi:10.1002/jcb.22310

Hai, T., Jalgaonkar, S., Wolford, C. C., & Yin, X. (2011). Immunohistochemical detection of activating transcription factor 3, a hub of the cellular adaptive-response network. Methods in enzymology, 490, 175-94. doi:10.1016/B978-0-12-385114-7.00011-8

Hanahan, D., & Weinberg, R. a. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646-74. Elsevier Inc. doi:10.1016/j.cell.2011.02.013

Hatle, K. M., Neveu, W., Dienz, O., Rymarchyk, S., Barrantes, R., Hale, S., Farley, N., et al. (2007). Methylation-controlled J protein promotes c-Jun degradation to prevent ABCB1 transporter expression. Molecular and cellular biology, 27(8), 2952-66. doi:10.1128/MCB.01804-06

Haze, K., Yoshida, H., Yanagi, H., Yura, T., & Mori, K. (1999). Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Molecular biology of the cell, 10(11), 3787-99. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=25679&tool=pm…

Hegedűs, T., Őrfi, L., Seprődi, A., Váradi, A., Sarkadi, B., & Kéri, G. (2002). Interaction of tyrosine kinase inhibitors with the human multidrug transporter proteins, MDR1 and MRP1. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1587(2-3), 318-325. doi:10.1016/S0925-4439(02)00095-9

Heindryckx, F., Mertens, K., Charette, N., Vandeghinste, B., Casteleyn, C., Van Steenkiste, C., Slaets, D., et al. (2010). Kinetics of angiogenic changes in a new mouse model for hepatocellular carcinoma. Molecular Cancer, 9(1), 219. BioMed Central. doi:10.1186/1476-4598-9-219

Hetz, C., Bernasconi, P., Fisher, J., Lee, A.-H., Bassik, M. C., Antonsson, B., Brandt, G. S., et al. (2006). Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science (New York, N.Y.), 312(5773), 572-6. doi:10.1126/science.1123480

Hetz, C., & Glimcher, L. H. (2009). Fine-tuning of the unfolded protein response: Assembling the IRE1alpha interactome. Molecular cell, 35(5), 551-61. doi:10.1016/j.molcel.2009.08.021

Hetz, C., Martinon, F., Rodriguez, D., & Glimcher, L. H. (2011). The unfolded protein response: integrating stress signals through the stress sensor IRE1α. Physiological reviews, 91(4), 1219-43. doi:10.1152/physrev.00001.2011

Hollander, M. C., Poola-Kella, S., & Fornace, A. J. (2003). Gadd34 functional domains involved in growth suppression and apoptosis. Oncogene, 22(25), 3827-32. doi:10.1038/sj.onc.1206567

Hollien, J., Lin, J. H., Li, H., Stevens, N., Walter, P., & Weissman, J. S. (2009). Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. The Journal of cell biology, 186(3), 323-31. doi:10.1083/jcb.200903014

Hollien, J., & Weissman, J. S. (2006). Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science (New York, N.Y.), 313(5783), 104-7. doi:10.1126/science.1129631

Huang, K.-H., Kuo, K.-L., Chen, S.-C., Weng, T.-I., Chuang, Y.-T., Tsai, Y.-C., Pu, Y.-S., et al. (2012). Down-Regulation of Glucose-Regulated Protein (GRP) 78 Potentiates Cytotoxic Effect of Celecoxib in Human Urothelial Carcinoma Cells. PloS one, 7(3), e33615. Public Library of Science. doi:10.1371/journal.pone.0033615

Jauhiainen, A., Thomsen, C., Strömbom, L., Grundevik, P., Andersson, C., Danielsson, A., Andersson, M. K., et al. (2012). Distinct Cytoplasmic and Nuclear Functions of the Stress Induced Protein DDIT3/CHOP/GADD153. PloS one, 7(4), e33208. doi:10.1371/journal.pone.0033208

Ji, C. (2012). Mechanisms of alcohol-induced endoplasmic reticulum stress and organ injuries. Biochemistry research international, 2012, 216450. Hindawi Publishing Corporation. doi:10.1155/2012/216450

Jing, G., Wang, J. J., & Zhang, S. X. (2012). ER stress and apoptosis: a new mechanism for retinal cell death. Experimental diabetes research, 2012, 589589. doi:10.1155/2012/589589

Klee, M., Pallauf, K., Alcalá, S., Fleischer, A., & Pimentel-Muiños, F. X. (2009). Mitochondrial apoptosis induced by BH3-only molecules in the exclusive presence of endoplasmic reticular Bak. The EMBO journal, 28(12), 1757-68. doi:10.1038/emboj.2009.90

Kozutsumi, Y., Segal, M., Normington, K., Gething, M. J., & Sambrook, J. (1988). The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature, 332(6163), 462-4. doi:10.1038/332462a0

Kraskiewicz, H., & Fitzgerald, U. (2012). InterfERing with endoplasmic reticulum stress. Trends in pharmacological sciences, 33(2), 53-63. doi:10.1016/j.tips.2011.10.002

Lee, A. S. (2007). GRP78 induction in cancer: therapeutic and prognostic implications. Cancer research, 67(8), 3496-9. doi:10.1158/0008-5472.CAN-07-0325

Leggas, M., Adachi, M., Scheffer, G. L., Sun, D., Wielinga, P., Du, G., Mercer, K. E., et al. (2004). Mrp4 confers resistance to topotecan and protects the brain from chemotherapy. Molecular and cellular biology, 24(17), 7612-21. doi:10.1128/MCB.24.17.7612-7621.2004

Li, B., Chu, X., Gao, M., & Xu, Y. (2011). The effects of CD59 gene as a target gene on breast cancer cells. Cellular immunology, 272(1), 61-70. doi:10.1016/j.cellimm.2011.09.006

Li, G., Chen, X., Wang, Q., Xu, Z., Zhang, W., & Ye, L. (2007). The roles of four multi-drug resistance proteins in hepatocellular carcinoma multidrug resistance. Journal of Huazhong University of Science and Technology. Medical sciences = Hua zhong ke ji da xue xue bao. Yi xue Ying De wen ban = Huazhong keji daxue xuebao. Yixue Yingdewen ban, 27(2), 173-5. doi:10.1007/s11596-007-0217-8

Li, J., Lee, B., & Lee, A. S. (2006). Endoplasmic reticulum stress-induced apoptosis: multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA by p53. The Journal of biological chemistry, 281(11), 7260-70. doi:10.1074/jbc.M509868200

Li, Y., Wan, D., Wei, W., Su, J., Cao, J., Qiu, X., Ou, C., et al. (2008). Candidate genes responsible for human hepatocellular carcinoma identified from differentially expressed genes in hepatocarcinogenesis of the tree shrew (Tupaia belangeri chinesis). Hepatology research : the official journal of the Japan Society of Hepatology, 38(1), 85-95. doi:10.1111/j.1872-034X.2007.00207.x

Li, Z., & Li, Z. (2012). Glucose regulated protein 78: A critical link between tumor microenvironment and cancer hallmarks. Biochimica et biophysica acta. doi:10.1016/j.bbcan.2012.02.001

Lin, J. H., Li, H., Yasumura, D., Cohen, H. R., Zhang, C., Panning, B., Shokat, K. M., et al. (2007). IRE1 signaling affects cell fate during the unfolded protein response. Science (New York, N.Y.), 318(5852), 944-9. doi:10.1126/science.1146361

Lin, Y., Wang, Z., Liu, L., & Chen, L. (2011). Akt is the downstream target of GRP78 in mediating cisplatin resistance in ER stress-tolerant human lung cancer cells. Lung cancer (Amsterdam, Netherlands), 71(3), 291-7. doi:10.1016/j.lungcan.2010.06.004

Lipson, K. L., Ghosh, R., & Urano, F. (2008). The role of IRE1alpha in the degradation of insulin mRNA in pancreatic beta-cells. PloS one, 3(2), e1648. doi:10.1371/journal.pone.0001648

Liu, W. K., Ling, Y. H., Cheung, F. W. K., & Che, C.-T. (2012). Stellettin A Induces Endoplasmic Reticulum Stress in Murine B16 Melanoma Cells. Journal of natural products. American Chemical Society. doi:10.1021/np2008158

Liu, Y, Adachi, M., Zhao, S., Hareyama, M., Koong, A. C., Luo, D., Rando, T. A., et al. (2009). Preventing oxidative stress: a new role for XBP1. Cell death and differentiation, 16(6), 847-57. doi:10.1038/cdd.2009.14

Liu, Yan, László, C., Liu, Y., Liu, W., Chen, X., Evans, S. C., & Wu, S. (2010). Regulation of G(1) arrest and apoptosis in hypoxia by PERK and GCN2-mediated eIF2alpha phosphorylation. Neoplasia (New York, N.Y.), 12(1), 61-8. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2805884&tool=…

Llovet, J. M., Ricci, S., Mazzaferro, V., Hilgard, P., Gane, E., Blanc, J.-F., de Oliveira, A. C., et al. (2008). Sorafenib in advanced hepatocellular carcinoma. The New England journal of medicine, 359(4), 378-90. doi:10.1056/NEJMoa0708857

Lundemo, A. G., Pettersen, C. H. H., Berge, K., Berge, R. K., & Schønberg, S. A. (2011). Tetradecylthioacetic acid inhibits proliferation of human SW620 colon cancer cells--gene expression profiling implies endoplasmic reticulum stress. Lipids in health and disease, 10, 190. BioMed Central. doi:10.1186/1476-511X-10-190

Luo, B., & Lee, A. S. (2012). The critical roles of endoplasmic reticulum chaperones and unfolded protein response in tumorigenesis and anticancer therapies. Oncogene. doi:10.1038/onc.2012.130

Maiuolo, J., Bulotta, S., Verderio, C., Benfante, R., & Borgese, N. (2011a). Selective activation of the transcription factor ATF6 mediates endoplasmic reticulum proliferation triggered by a membrane protein. Proceedings of the National Academy of Sciences of the United States of America, 108(19), 7832-7. National Academy of Sciences. doi:10.1073/pnas.1101379108

Maiuolo, J., Bulotta, S., Verderio, C., Benfante, R., & Borgese, N. (2011b). Selective activation of the transcription factor ATF6 mediates endoplasmic reticulum proliferation triggered by a membrane protein. Proceedings of the National Academy of Sciences of the United States of America, 108(19), 7832-7. doi:10.1073/pnas.1101379108

Majumder, M., Huang, C., Snider, M. D., Komar, A. A., Tanaka, J., Kaufman, R. J., Krokowski, D., et al. (2012). A Novel Feedback Loop Regulates the Response to Endoplasmic Reticulum Stress via the Cooperation of Cytoplasmic Splicing and mRNA Translation. Molecular and cellular biology, 32(5), 992-1003. doi:10.1128/MCB.06665-11

Malhi, H., & Kaufman, R. J. (2011). Endoplasmic reticulum stress in liver disease. Journal of hepatology, 54(4), 795-809. doi:10.1016/j.jhep.2010.11.005

Mann, M. J., & Hendershot, L. M. (2006). UPR activation alters chemosensitivity of tumor cells. Cancer Biology & Therapy, 5(7), 736-740. Retrieved from http://www.landesbioscience.com/journals/cbt/article/2969/

Marcinak, S. J., & Ron, D. (2010). The unfolded protein response in lung disease. Proceedings of the American Thoracic Society, 7(6), 356-62. doi:10.1513/pats.201001-015AW

Marciniak, S. J., Yun, C. Y., Oyadomari, S., Novoa, I., Zhang, Y., Jungreis, R., Nagata, K., et al. (2004). CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes & development, 18(24), 3066-77. doi:10.1101/gad.1250704

Michalak, M., Groenendyk, J., Szabo, E., Gold, L. I., & Opas, M. (2009). Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. The Biochemical journal, 417(3), 651-66. doi:10.1042/BJ20081847

Minamino, T., & Kitakaze, M. (2010). ER stress in cardiovascular disease. Journal of molecular and cellular cardiology, 48(6), 1105-10. doi:10.1016/j.yjmcc.2009.10.026

Mori, K. (2009). Signalling pathways in the unfolded protein response: development from yeast to mammals. Journal of biochemistry, 146(6), 743-50. doi:10.1093/jb/mvp166

Mungrue, I. N., Pagnon, J., Kohannim, O., Gargalovic, P. S., & Lusis, A. J. (2009). CHAC1/MGC4504 is a novel proapoptotic component of the unfolded protein response, downstream of the ATF4-ATF3-CHOP cascade. Journal of immunology (Baltimore, Md. : 1950), 182(1), 466-76. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2846782&tool=…

Nadanaka, S., Yoshida, H., & Mori, K. (2006). Reduction of disulfide bridges in the lumenal domain of ATF6 in response to glucose starvation. Cell structure and function, 31(2), 127-34. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17130669

Ni, M., Zhang, Y., & Lee, A. S. (2011). Beyond the endoplasmic reticulum: atypical GRP78 in cell viability, signalling and therapeutic targeting. The Biochemical journal, 434(2), 181-8. doi:10.1042/BJ20101569

Nishitoh, H. (2012). CHOP is a multifunctional transcription factor in the ER stress response. Journal of biochemistry, 151(3), 217-9. doi:10.1093/jb/mvr143

Okamura, K., Kimata, Y., Higashio, H., Tsuru, A., & Kohno, K. (2000). Dissociation of Kar2p/BiP from an ER sensory molecule, Ire1p, triggers the unfolded protein response in yeast. Biochemical and biophysical research communications, 279(2), 445-50. doi:10.1006/bbrc.2000.3987

Ozcan, L., & Tabas, I. (2012). Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annual review of medicine, 63, 317-28. Annual Reviews. doi:10.1146/annurev-med-043010-144749

Park, H.-R., Tomida, A., Sato, S., Tsukumo, Y., Yun, J., Yamori, T., Hayakawa, Y., et al. (2004). Effect on tumor cells of blocking survival response to glucose deprivation. Journal of the National Cancer Institute, 96(17), 1300-10. doi:10.1093/jnci/djh243

Park, I.-J., Kim, M.-J., Park, O. J., Choe, W., Kang, I., Kim, S.-S., & Ha, J. (2012). Cryptotanshinone induces ER stress-mediated apoptosis in HepG2 and MCF7 cells. Apoptosis : an international journal on programmed cell death, 17(3), 248-57. Springer Netherlands. doi:10.1007/s10495-011-0680-3

Paumi, C. M., Ledford, B. G., Smitherman, P. K., Townsend, A. J., & Morrow, C. S. (2001). Role of multidrug resistance protein 1 (MRP1) and glutathione S-transferase A1-1 in alkylating agent resistance. Kinetics of glutathione conjugate formation and efflux govern differential cellular sensitivity to chlorambucil versus melphalan toxicity. The Journal of biological chemistry, 276(11), 7952-6. doi:10.1074/jbc.M009400200

Pfaffenbach, K. T., Pong, M., Morgan, T. E., Wang, H., Ott, K., Zhou, B., Longo, V. D., et al. (2012). GRP78/BiP is a novel downstream target of IGF-1 receptor mediated signaling. Journal of cellular physiology. doi:10.1002/jcp.24090

Pincus, D., Chevalier, M. W., Aragón, T., van Anken, E., Vidal, S. E., El-Samad, H., & Walter, P. (2010). BiP binding to the ER-stress sensor Ire1 tunes the homeostatic behavior of the unfolded protein response. PLoS biology, 8(7), e1000415. Public Library of Science. doi:10.1371/journal.pbio.1000415

Puthalakath, H., O’Reilly, L. A., Gunn, P., Lee, L., Kelly, P. N., Huntington, N. D., Hughes, P. D., et al. (2007). ER stress triggers apoptosis by activating BH3-only protein Bim. Cell, 129(7), 1337-49. doi:10.1016/j.cell.2007.04.027

Pyrko, P., Schönthal, A. H., Hofman, F. M., Chen, T. C., & Lee, A. S. (2007). The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas. Cancer research, 67(20), 9809-16. doi:10.1158/0008-5472.CAN-07-0625

Qi, Y., Chen, X., Chan, C.-yan, Li, D., Yuan, C., Yu, F., Lin, M. C., et al. (2008). Two-dimensional differential gel electrophoresis/analysis of diethylnitrosamine induced rat hepatocellular carcinoma. International journal of cancer. Journal international du cancer, 122(12), 2682-8. doi:10.1002/ijc.23464

Rao, R. V., Peel, A., Logvinova, A., del Rio, G., Hermel, E., Yokota, T., Goldsmith, P. C., et al. (2002). Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS letters, 514(2-3), 122-8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11943137

Romero, A., Caldés, T., Díaz-Rubio, E., & Martín, M. (2012). Topoisomerase 2 alpha: a real predictor of anthracycline efficacy? Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico, 14(3), 163-8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22374418

Ron, D., & Walter, P. (2007). Signal integration in the endoplasmic reticulum unfolded protein response. Nature reviews. Molecular cell biology, 8(7), 519-29. doi:10.1038/nrm2199

Rosengren, V., Johansson, H., Lehtiö, J., Fransson, L., Sjöholm, A., & Ortsäter, H. (2011). Thapsigargin down-regulates protein levels of GRP78/BiP in INS-1E cells. Journal of cellular biochemistry. doi:10.1002/jcb.24032

Sato, Y., Nadanaka, S., Okada, T., Okawa, K., & Mori, K. (2011). Luminal domain of ATF6 alone is sufficient for sensing endoplasmic reticulum stress and subsequent transport to the Golgi apparatus. Cell structure and function, 36(1), 35-47. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21150130

Scorrano, L., Oakes, S. A., Opferman, J. T., Cheng, E. H., Sorcinelli, M. D., Pozzan, T., & Korsmeyer, S. J. (2003). BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science (New York, N.Y.), 300(5616), 135-9. doi:10.1126/science.1081208

Sereš, M., Cholujová, D., Bubenčíkova, T., Breier, A., & Sulová, Z. (2011). Tunicamycin depresses p-glycoprotein glycosylation without an effect on its membrane localization and drug efflux activity in l1210 cells. International journal of molecular sciences, 12(11), 7772-84. doi:10.3390/ijms12117772

Shen, J., Chen, X., Hendershot, L., & Prywes, R. (2002). ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Developmental cell, 3(1), 99-111. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12110171

Shinya, S., Kadokura, H., Imagawa, Y., Inoue, M., Yanagitani, K., & Kohno, K. (2011). Reconstitution and characterization of the unconventional splicing of XBP1u mRNA in vitro. Nucleic acids research, 39(12), 5245-54. doi:10.1093/nar/gkr132

Shuda, M. (2003). Activation of the ATF6, XBP1 and grp78 genes in human hepatocellular carcinoma: a possible involvement of the ER stress pathway in hepatocarcinogenesis. Journal of Hepatology, 38(5), 605-614. doi:10.1016/S0168-8278(03)00029-1

Singal, A. G., & Marrero, J. A. (2010). Recent advances in the treatment of hepatocellular carcinoma. CURRENT OPINION IN GASTROENTEROLOGY, 26(3), 189-195. LIPPINCOTT WILLIAMS & WILKINS. doi:10.1097/MOG.0b013e3283383ca5   Published: MAY 2010

Stockwell, S. R., Platt, G., Barrie, S. E., Zoumpoulidou, G., Te Poele, R. H., Aherne, G. W., Wilson, S. C., et al. (2012). Mechanism-based screen for G1/S checkpoint activators identifies a selective activator of EIF2AK3/PERK signalling. PloS one, 7(1), e28568. doi:10.1371/journal.pone.0028568

Stolz, A., & Wolf, D. H. (2010). Endoplasmic reticulum associated protein degradation: a chaperone assisted journey to hell. Biochimica et biophysica acta, 1803(6), 694-705. doi:10.1016/j.bbamcr.2010.02.005

Sun, Z., Zhao, Z., Li, G., Dong, S., Huang, Z., Ye, L., Liang, H., et al. (2010). Relevance of two genes in the multidrug resistance of hepatocellular carcinoma: in vivo and clinical studies. Tumori, 96(1), 90-6. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20437864

Szegezdi, E., Logue, S. E., Gorman, A. M., & Samali, A. (2006). Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO reports, 7(9), 880-5. doi:10.1038/sj.embor.7400779

Tagliavacca, L., Caretti, A., Bianciardi, P., & Samaja, M. (2012). In vivo up-regulation of the unfolded protein response after hypoxia. Biochimica et biophysica acta. doi:10.1016/j.bbagen.2012.02.016

Takeuchi, Y. (2002). Expression of P-glycoprotein in rat hepatocarcinogenesis by diethylnitrosamine and the modulation by anticancer drugs. Hepatology Research, 22(2), 107-118. doi:10.1016/S1386-6346(01)00126-7

Tan, Y., Dourdin, N., Wu, C., De Veyra, T., Elce, J. S., & Greer, P. A. (2006). Ubiquitous calpains promote caspase-12 and JNK activation during endoplasmic reticulum stress-induced apoptosis. The Journal of biological chemistry, 281(23), 16016-24. doi:10.1074/jbc.M601299200

Teske, B. F., Wek, S. A., Bunpo, P., Cundiff, J. K., McClintick, J. N., Anthony, T. G., & Wek, R. C. (2011). The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress. Molecular biology of the cell, 22(22), 4390-405. doi:10.1091/mbc.E11-06-0510

Thompson, M. R., Xu, D., & Williams, B. R. G. (2009). ATF3 transcription factor and its emerging roles in immunity and cancer. Journal of molecular medicine (Berlin, Germany), 87(11), 1053-60. doi:10.1007/s00109-009-0520-x

Tian, Q., Zhang, J., Chan, S. Y., Tan, T. M. C., Duan, W., Huang, M., Zhu, Y.-Z., et al. (2006). Topotecan is a substrate for multidrug resistance associated protein 4. Current drug metabolism, 7(1), 105-18. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16454695

Tirosh, B., Iwakoshi, N. N., Glimcher, L. H., & Ploegh, H. L. (2006). Rapid turnover of unspliced Xbp-1 as a factor that modulates the unfolded protein response. The Journal of biological chemistry, 281(9), 5852-60. doi:10.1074/jbc.M509061200

Upton, J.-P., Austgen, K., Nishino, M., Coakley, K. M., Hagen, A., Han, D., Papa, F. R., et al. (2008). Caspase-2 cleavage of BID is a critical apoptotic signal downstream of endoplasmic reticulum stress. Molecular and cellular biology, 28(12), 3943-51. doi:10.1128/MCB.00013-08

Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M., & Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-biological interactions, 160(1), 1-40. doi:10.1016/j.cbi.2005.12.009

Van Vlierberghe H, Borbath I, Delwaide J, Henrion J, Michielsen P, V. C. B. H. working group; B. steering committee. (2004). BASL guidelines for the surveillance, diagnosis and treatment of hepatocellular carcinoma. Acta Gastroenterol Belg, 67(1), 14-25. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15149081

Vander Borght, S., Komuta, M., Libbrecht, L., Katoonizadeh, A., Aerts, R., Dymarkowski, S., Verslype, C., et al. (2008). Expression of multidrug resistance-associated protein 1 in hepatocellular carcinoma is associated with a more aggressive tumour phenotype and may reflect a progenitor cell origin. Liver international : official journal of the International Association for the Study of the Liver, 28(10), 1370-80. doi:10.1111/j.1478-3231.2008.01889.x

Wang, M., Wey, S., Zhang, Y., Ye, R., & Lee, A. S. (2009). Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxidants & redox signaling, 11(9), 2307-16. doi:10.1089/ARS.2009.2485

Wang, X., Olberding, K. E., White, C., & Li, C. (2011). Bcl-2 proteins regulate ER membrane permeability to luminal proteins during ER stress-induced apoptosis. Cell death and differentiation, 18(1), 38-47. Nature Publishing Group. doi:10.1038/cdd.2010.68

Weston, R. T., & Puthalakath, H. (2010). Endoplasmic reticulum stress and BCL-2 family members. Advances in experimental medicine and biology, 687, 65-77. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20919638

Wong, N., Yeo, W., Wong, W.-L., Wong, N. L.-Y., Chan, K. Y.-Y., Mo, F. K.-F., Koh, J., et al. (2009). TOP2A overexpression in hepatocellular carcinoma correlates with early age onset, shorter patients survival and chemoresistance. International journal of cancer. Journal international du cancer, 124(3), 644-52. doi:10.1002/ijc.23968

Xu, Y., Yu, H., Qin, H., Kang, J., Yu, C., Zhong, J., Su, J., et al. (2012). Inhibition of autophagy enhances cisplatin cytotoxicity through endoplasmic reticulum stress in human cervical cancer cells. Cancer letters, 314(2), 232-43. doi:10.1016/j.canlet.2011.09.034

Yoneda, T., Imaizumi, K., Oono, K., Yui, D., Gomi, F., Katayama, T., & Tohyama, M. (2001). Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. The Journal of biological chemistry, 276(17), 13935-40. doi:10.1074/jbc.M010677200

Yoo, S.-A., You, S., Yoon, H.-J., Kim, D.-H., Kim, H.-S., Lee, K., Ahn, J. H., et al. (2012). A novel pathogenic role of the ER chaperone GRP78/BiP in rheumatoid arthritis. The Journal of experimental medicine, jem.20111783-. doi:10.1084/jem.20111783

Yoshida, H., Oku, M., Suzuki, M., & Mori, K. (2006). pXBP1(U) encoded in XBP1 pre-mRNA negatively regulates unfolded protein response activator pXBP1(S) in mammalian ER stress response. The Journal of cell biology, 172(4), 565-75. doi:10.1083/jcb.200508145

Yoshida, H., Uemura, A., & Mori, K. (2009). pXBP1(U), a negative regulator of the unfolded protein response activator pXBP1(S), targets ATF6 but not ATF4 in proteasome-mediated degradation. Cell structure and function, 34(1), 1-10. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19122331

Zhang, L., Lopez, H., George, N. M., Liu, X., Pang, X., & Luo, X. (2011). Selective involvement of BH3-only proteins and differential targets of Noxa in diverse apoptotic pathways. Cell death and differentiation, 18(5), 864-73. NIH Public Access. doi:10.1038/cdd.2010.152

Zhang, Z., Yin, J., Zhang, C., Liang, N., Bai, N., Chang, A., Liu, Y., et al. (2012). Activating transcription factor 4 increases chemotherapeutics resistance of human hepatocellular carcinoma. Cancer biology & therapy, 13(6). Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22338651

Zinszner, H., Kuroda, M., Wang, X., Batchvarova, N., Lightfoot, R. T., Remotti, H., Stevens, J. L., et al. (1998). CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes & development, 12(7), 982-95. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=316680&tool=p…

Zong, W.-X., Li, C., Hatzivassiliou, G., Lindsten, T., Yu, Q.-C., Yuan, J., & Thompson, C. B. (2003). Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. The Journal of cell biology, 162(1), 59-69. doi:10.1083/jcb.200302084

Universiteit of Hogeschool
Geneeskunde - Inwendige ziekten
Publicatiejaar
2012
Share this on: