Bacterial analysis of polluted air in Antwerp and surroundings

Wenke Smets
Persbericht

Bacterial analysis of polluted air in Antwerp and surroundings

De bacteriële vingerafdruk van luchtvervuiling

Bacteriën zijn onzichtbaar voor het blote oog, maar de effecten van hun acties zijn dat allerminst. Deze microscopische organismen staan namelijk in voor verschillende processen die voor ons van enorme betekenis zijn, zoals de productie van voedsel en medicijnen (bijvoorbeeld kaas en insuline), de afbraak van vervuilende stoffen in de bodem, het verbeteren van ons verteringssysteem en het recycleren van dode planten en dieren tot nieuwe voedingsstoffen. Bacteriën doen aanzienlijk veel meer en bovendien ontbreekt nog een onbekende hoeveelheid kennis hierover. Ze zijn dus belangrijker dan we in de eerste plaats van dergelijke superkleine ‘diertjes’ zouden denken.

De bacteriën vormen een domein van het leven waaronder zeer diverse soorten met allerlei functies worden thuisgebracht. Voor bijna elke omgeving op aarde zijn bacteriesoorten geëvolueerd die er kunnen leven. Bijgevolg spelen ze een rol in een zeer gevarieerd scala van processen – hierboven al aangehaald – en zijn ze praktisch overal terug te vinden. Ze werden reeds uitgebreid onderzocht in bijvoorbeeld zeeën en oceanen, voeding, drinkwater, de bodem en het menselijk verteringsstelsel. De lucht als bacteriële omgeving werd echter lange tijd over het hoofd gezien. Ondanks ons intiem contact met de atmosfeer, zijn er maar weinig studies naar de bacteriën die er voorkomen. Dat onderzoekers de bacteriën van het luchtruim zo lang genegeerd hebben is het gevolg van het –ondertussen achterhaalde – idee dat bacteriën slechts passieve berijders zijn van de luchtstromingen, dat hun ‘luchtstadium’ slechts een deel van de levenscyclus is, bedoeld om zich te verspreiden, zoals ziekteverwekkers dat vaak doen. Verspreiden doen ze zeker, maar er is meer. Recente studies tonen aan dat luchtbacteriën ook actief zijn. Dit wil zeggen dat ze aangepast zijn aan het leven in de atmosfeer, waar temperaturen variëren, waar UV straling niet ongewoon is en waar tegenwoordig ook vervuiling terug te vinden is. Het zijn deze aanpassingen die een sleutelrol vervulden in de verkennende studie van luchtbacteriën in Antwerpen.

Stalen van de lucht werden genomen in de Antwerpse haven (gekenmerkt door industrie) in de stad (waar de verkeersconcentratie het hoogst is) en in de gemeente Kapellen (waar meer groen te vinden is). De luchtbacteriën werden vervolgens gecultiveerd op een voedingsbodem. Dit wil zeggen dat een aantal onzichtbare bacteriën elk de kans krijgen om zich te vermeerderen en uit te groeien tot een zichtbare kolonie. Het bleek een bijzonder bont stel te zijn. De kleuren ontstonden door de aanwezigheid van pigment in de bacteriën, wat aangaf hoe de bacteriën in de atmosfeer zich beschermen tegen een overdosis UV. Deze verschillende, nieuwe pigmenten zijn niet alleen nuttig voor de bacteriën zelf, maar misschien ook voor ons. Recent werd door Noorse onderzoekers een fjordbacterie gevonden waarvan het pigment werd geïntegreerd in een zonnecrème die bescherming biedt tegen kankerverwekkende UV golflengten. Verder leken de luchtbacteriën ook goed tegen de koude te kunnen. De bacteriën groeiden nog steeds bij 4°C. Dit is eveneens een ongewone eigenschap die in de biotechnologie wel wat interesse zal wekken: processen die bij lage temperaturen moeten plaatsvinden hebben nood aan enzymes die bij deze lage temperaturen actief zijn.

Een ander experiment werd opgezet om de luchtbacteriën te testen op hun metaalresistentie. Zware metalen zijn reeds toxisch bij relatief lage concentraties. De onderzoekshypothese stelt dat een grotere hoeveelheid van een bepaald metaal in de lucht een selectiedruk oplegt aan de bacteriën, waardoor metaalresistente bacteriën betere overlevingskansen hebben. Bijgevolg zal er op dergelijke locaties een hogere metaalresistentie voorkomen. Dus hoe beter de luchtbacteriën tegen een zeker metaal kunnen, hoe meer er van dat metaal in de lucht aanwezig is. De resultaten van het experiment waren een indicatie voor de bevestiging van deze hypothese. Het principe kan ook van toepassing zijn voor andere vervuilende stoffen.

Luchtvervuiling is een veelzijdig probleem omdat er diverse stoffen zijn die verschillende gezondheidsproblemen teweeg brengen. Het is daarom niet eenvoudig, noch goedkoop om alle verschillende stoffen op te meten. De aanwezige bacteriesoorten in een bepaalde regio geven dus een indicatie van het soort luchtvervuiling dat in deze regio te vinden is. Wanneer uitgebreider onderzoek wordt gedaan om te bepalen welke bacteriesoorten wijzen op welke graad van luchtvervuiling, dan zal in de toekomst een ‘bacteriële vingerafdruk’ ter plaatse volstaan om een gedetailleerd beeld te krijgen van de lokale luchtvervuiling. Een dergelijk systeem waarbij de graad van vervuiling wordt bepaald door observatie van de aanwezige levensvormen heet biomonitoring. Het voordeel van deze techniek is dat ze de graad van vervuiling weergeeft in functie van haar effect op biologische systemen en dat is waar het uiteindelijk om draait.

Hoe nuttig is deze bacteriële vingerafdruk van luchtvervuiling dan wel? Vervuiling meten is een ding, luchtkwaliteit verbeteren iets heel anders. Wanneer analyses worden uitgevoerd op verschillende plaatsen, kunnen de meest vervuilde gebieden in kaart worden gebracht. Stel, bijvoorbeeld, dat een hoog metaalgehalte de lucht boven de haven teistert. Door metingen te gaan doen bij de bedrijven met verschillende activiteiten, kan bepaald worden of bijvoorbeeld de petrochemische installaties verantwoordelijk zijn voor een belangrijk deel van de metaaluitstoot of de plaatselijke afvalverwerking – of beide. De wetgeving kan op deze informatie inspelen en een specifieke zuiveringstechnieken verplichten voor de meest vervuilende activiteiten. Het is nu juist deze gerichtheid die het mogelijk maakt het wereldwijde vervuilingprobleem effectief aan te pakken.

Bibliografie

 “Coriolis® Principle.” Bertin Technologies. Accessed 27 May 2013. http://www.coriolis-airsampler.com/coriolis-validation.aspx.

“Coriolis® Validation.” Bertin Technologies. Accessed 6 Januari 2013. http://www.coriolis-airsampler.com/coriolis-validation.aspx.

“Material Safety Data Sheet, Dimethyl sulfoxide MSDS.” ScienceLab.com, Chemicals & Laboratory equipment. Last update 21 May 2013. http://www.sciencelab.com/msds.php?msdsId=9927347.

 

Ahmed, M.F., Schulz, J., Hartung, J. (2013) Air samplings in a Campylobacter jejuni positive laying hen flock. Annals of Agricultural and Environmental Medicine 20: 16-20.

Ahmed, N., Fasim, F., Arif, M., Jamil, N. (2000) Inducible tolerance to heavy metals in air borne bacteria. Pakistan Journal of Biological Sciences 3: 2232-2237.

Albrecht, A., Witzenberger, R., Bernzen, U., Jäckel, U. (2007) Detection of airborne microbes in a composting facility by cultivation based and cultivation-independent methods. Annals of Agricultural and Environmental Medicine 14: 81-85.

Aller, J.Y., Kuznetsova, M.R., Jahns, C.J., Kemp, P.F. (2005) The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols. Journal of Aerosol Science 36: 801–812.

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J. (1990) Basic local alignment search tool. Journal of Molecular  Biology 215: 403-410.

Amann, R.I., Ludwig, W., Schleifer, K. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews 59: 143-169.

Amato, P., Parazols, M., Sancelme, M., Laj, P., Mailhot, G., Delort, A. (2007a) Microorganisms isolated from the water phase of tropospheric coulds at the Puy de Dôme: major groups and growth abilities at low temperatures. FEMS Microbiology Ecology 59: 242-254.

Amato, P.,Parazols, M., Sancelme, M., Mailhot, G., Laj, P., Delort, A (2007b) An important oceanic source of micro-organisms for cloud water at Puy de Dôme (France). Atmospheric Environment 41: 8253-8263.

Bär, M.; von Hardenberg, J., Meron, E., Provenzale, A. (2002) Modelling the survival of bacteria in drylands: the advantage of being dormant. Proceedings of the Royal Society 269: 937-942.

Bauer, H., Kasper-Giebl, A., Löflund, M., Giebl, H., Hitzenberger, R., Zibuschka, F., Puxbaum, H. (2002) The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols. Atmospheric Research 64: 109-119.

Beattie, G.A., Lindow, S.E. (1999) Bacterial colonization of leaves: a spectrum of strategies. The American Phytopathological Society 89: 353-359.

Bowers, R.M., McCubbin, I.B., Hallar, A.G., Fierer, N. (2012) Seasonal variability in airborne bacterial communities at a high-elevation site. Atmospheric Environment 50: 41-49.

Bowers, R.M., McLetchie, S., Knight, R., Fierer, N. (2011a) Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. Multidisciplinary Journal of Microbial Ecology 5: 601-612.

Bowers, R.M., Sullivan, A.P., Costello, E.K., Collet, J.L., Knight, R., Fierer, N. (2011b) Sources of bacteria in outdoor air across cities in the Midwestern United States. Applied and Environmental Microbiology 77: 6350-6356.

Brauer, M., Hoek, G., van Vliet, P., Meliefste, K., Fischer, P., Gehring, U., Heinrich, J., Cyrys, J., Bellander, T., Lewne, M., Brunekreef, B. (2003) Estimating long-term average particulate air pollution concentrations: application of traffic indicators and geographic information systems. Epidemiology 14: 228-239.

Brodie, E.L., DeSantis, T.Z., Parker, J.P.M., Zubietta, I.X., Piceno, Y.M., Andersen, G.L. (2007) Urban aerosols harbour diverse and dynamic bacterial populations. Proceedings of the National Academy of Sciences of the United States of America 104: 299-304.

Brouwers, I., De Boeck, I., Oerlemans, E., Van Peel, B. (2012) Projectwerk – Bachelor Bio-ingenieurswetenschappen. Studie van de ontstekingscapaciteit van fijn stof en de rol van endotoxines in de omgeving van Antwerpen.

Burrows, S.M., Butler, T., Jöckel, P., Tost, H., Kerkweg, A., Pöschl, U., Lawrence, M.G. (2009b) Bacteria in the global atmosphere – part 2: modeling of emissions and transport between different ecosystems. Atmospheric Chemistry and Physics 9: 9281-9297.

Burrows, S.M., Elbert, W., Lawrence, M.G., Pöschl, U. (2009a) Bacteria in the global atmosphere – part 1: Review and synthesis of literature data for different ecosystems. Atmospheric Chemistry and Physics 9: 10777-10827.

Cappelletty, D.P. (1998) Microbiology of bacterial respiratory infections. Pediatric Infectious Disease Journal; 17: S55-S61.

Carvalho, E., Sindt, C., Verdier, A., Galan, C., O’Donoghue, L., Parks, S., Thibaudon, M. (2008) Performance of the Coriolis air sampler, a high-volume aerosol-collection system for quantification of airborne spores and pollen grains. Aerobiologia 24: 191-201.

Cavicchioli, R., Charlton, T., Ertan, H., Omar, S.M., Siddiqui, K.S., Williams, T.J. (2011) Biotechnological uses of enzymes from psychrophiles. Microbial Biotechnology 4: 449-460.

Chi, M.C., Li, C.S. (2007) Fluorochrome in monitoring atmospheric bioaerosols and correlations with meteorological factors and air pollutants. Aerosol Science and Technology 41: 672-678.

Christner, B.C., Morris, C.E., Foreman, C.M., Cai, R., Sands, D.C. (2008) Ubiquity of biological ice nucleators in snowfall. Science 319: 1214.

Chuang, J.C., Callahan, P.J., Lyu, C.W. Wilson, N.K. (1999) Polycyclic aromatic hydrocarbon exposures of children in low-income families. Journal of Exposure Analysis and Environmental Epidemiology 9: 85-98.

Després, V.R., Huffman, J.A., Burrows, S.M., Hoose, C., Safatov, A.S., Buryak, G., Fröhlich-Nowoisky, J., Elbert, W., Andreae, M.O., Pöschl, U., Jaenicke, R. (2012) Primary biological aerosol particles in the atmosphere: a review. Tellus B, 64, 15598.

Dewi Puspita, I., Kamagata, Y., Tanaka, M., Asano, K., Nakatsu, C.H. (2012) Are uncultivated bacteria really uncultivable? Microbes and Environments 27: 356-366.

Díaz-Raviña, M., Bååth, E. (1996) Development of metal tolerance in soil bacterial communities exposed to experimentally increased metal levels. Applied and Environmental Microbiology 62: 2970-2977.

Dimmick, R.L., Wolochow, H., Chatigny, M.A. (1979) Evidence for more than one division of bacteria within airborne particles. Applied and Environmental Microbiology 38: 642-643.

Dockery, D.W., Pope, C.A., Xu, X., Spengler, J.D., Ware, J.H., Fay, M.E., Ferris, B.G., Speizer, F.E. (1993) An association between air pollution and mortality in six U.S. cities. The New England Journal of Medicine 329: 1753-1759.

Drummond, A.J., Ashton, B., Buxton, S., Cheung, M., Cooper, A., Duran, C., Field, M., Heled, J., Kearse, M., Markowitz, S., Moir, R., Stones-Havas, S., Sturrock, S., Thierer, T., Wilson, A. (2011) Geneious v5.4, Available from http://www.geneious.com/

Durand, K.T.H., Muilenberg, M.L., Burge, H.A., Seixas, N.S. (2002) Effect of sampling time on the culturablility of airborne fungi and bacteria sampled by filtration. The Annals of Occupational Hygiene 46: 113-118.

Dybwad, M., Granum, P.E., Bruheim, P., Blatny, J.M. (2012) Characterization of airborne bacteria at an underground subway station. Applied and Environmental Microbiology 78: 1917-1929.

Eduard, W.,  Heederik, D., Duchaine, C., Green, B.J. (2012) Bioaerosol exposure assessment in the workplace: the past, present and recent advances. Journal of Environmental Monitoring 14: 334-339.

Fahlgren, C., Hagström, Å., Nilsson, D., Zweifel, U.L. (2010) Annual variations in the diversity, viability and origin of airborne bacteria. Applied and Environmental Microbiology 76: 3015-3025.

Fang, Z., Ouyang, Z., Hu, L., Wang, X., Miao, H. (2004) Progresses of airborne microbial communities in urban ecosystem. Acta Ecologica Sinica 24: 315-322; Not seen ref. according to Fang et al., 2007.

Fang, Z., Ouyang, Z., Zheng, H., Wang, X., Hu, L. (2007) Culturable airborne bacteria in outdoor environments in Beijing, China. Microbial Ecology 54: 487-496.

Favet, J., Lapanje, A., Giongo, A., Kennedy, S., Aung, Y., Cattaneo, A., Davis-Richardson, A.G., Brown, C.T., Kort, R., Brumsack, H., Schnetger, B., Chappell, A., Kroijenga, J., Beck, A., Schibbert, K., Mohamed, A.H., Kirchner, T., Dorr de Quadros, P., Triplett, E.W., Broutghton, W.J., Gorbushina, A.A. (2013) Microbial hitchhikers on intercontinental dust: catching a lift in Chad. The ISME Journal 7: 850-867.

Fierer, N., Liu, Z., Rodríguez-Hernández, M., Knight, R., Henn, M., Hernandez, M.T. (2008) Short-term temporal variability in airborne bacterial and fungal populations. Applied and Environmental Microbiology 74: 200-207.

Framton, M.W. (2006) Inflammation and airborne particles. Clinics in Occupational and Environmental Medicine, 5: 797-815.

Franzetti, A., Gandolfi, I., Gaspari, E., Ambrosini, R., Bestetti, G. (2011) Seasonal variability of bacteria in fine and coarse urban air particulate matter. Applied Microbiology and Biotechnology 90: 745-753.

Gangneux, J.P., Robert-Gangneux, F., Gicquel, G., Tanquerel, J.J., Chevrier, S., Poisson, M., Aupée, M., Guiguen, C. (2006) Bacterial and fungal counts in hospital air: comparative yields for 4 sieve impactor air samplers with 2 culture media. Infection Control and Hospital Epidemiology 27: 1405-1408.

Giongo, A., Favet, J., Lapanje, A., Gano, K.A., Kennedy, S., Davis-Richardson, A.G., Brown, C., Beck, A., Farmerie, W.G., Catteneo, A., Crabb, D.B., Aung, Y., Kort, R., Brumsack, H., Schnetger, B., Broughton, W.J., Gorbushina, A.A., Triplett, E.W. (2013) Microbial hitchhikers on the intercontinental dust: high-throughput sequencing to catalogue microbes in small sand samples. Aerobiologia 29: 71-84.

Grammatika, M., Zimmerman, W.B. (2001) Microhydrodynamics of flotation processes in the sea surface layer. Dynamics of Atmosphere and Oceans 34: 327-348.

Griffiths, R.I., Whiteley, A.S., O’Donnell, A.G., Bailey, M.J. (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Applied and Environmental Microbiology 66: 5488-5491.

Guérin-Danan, C., Andrieux, C., Szlyit, O. (1999) Storage of intestinal bacteria in samples frozen with glycerol. Microbial Ecology in Health and Disease 11: 180-182.

Guerreiro, C., de Leeuw, F., Foltescu, V, Schilling, J., van Aardenne, J., Lükewille, A., Adams, M. (2012) Air quality in Europe – 2012 report. European Environment Agency ISSN 1725-9177.

Gupta, R.S., Lorenzini, E. (2007) Phylogeny and molecular signatures (conserved proteins and indels) that are specific for the Bacteroidetes and Chlorobi species. Evolutionary Biology 7: 71.

Hajibabaei, M., Shokralla, S., Zhou, X., Singer, G.A.C, Baird, D.J. (2011) Environmental barcoding: a next-generation sequencing approach for biomonitoring applications using river benthos. PLoS ONE 6: e17497

Han, Y., Li, L., Liu,J., Zhang, M. (2012) Microbial structure and chemical components of aerosols caused by rotating brushes in a wastewater treatment plant. Environmental Science and Pollution Research 19: 4097-4108.

Héry, M., Nazaret, S., Jaffré, T., Normand, P., Navarro, E. (2003) Adaptation to nickel spiking of bacterial communities in neocaledonian soils. Environmental Microbiology 5: 3-12.

Hubálek, Z. (2003) Protectants used in the cryopreservation of microorganisms. Cryobiology 46: 205-229.

Hyvärinen, A.M., Martikainen, P.J., Nevalainen, A.I. (1991) Suitability of poor medium in counting total viable airborne bacteria. Grana 30: 414-417.

Jaenicke, R. (2005) Abundance of cellular material and proteins in the atmosphere. Science 308: 73.

Ji, G., Silver, S. (1995) Bacterial resistance mechanisms for heavy metals of environmental concern. Journal of Industrial Microbiology 14: 61-75.

Jones, A.M., Harrison, R.M. (2004) The effects of meteorological factors on atmospheric bioaerosol concentrations-a review. Science of The Total Environment 326: 151-180.

Juhasz, A.L., Naidu, R. (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. International Biodeterioration & Biodegradation 45: 57-88.

Kardel, F., Wuyts, K., Babanezhad, M., Wuytack, T., Adriaenssens, S., Samson, R. (2012) Tree leaf wettability as passive bio-indicator of urban habitat quality. Environmental and Experimental Botany 75: 277-285.

Kim, S., Jang, Y., Hamada, M., Tamura, T., Ahn, J., Weon, H., Suzuki, K., Kwon, S. (2013) Angustibacter aerolatus sp. nov., isolated from air. International Journal of Systematic and Evolutionary Microbiology 63: 610-615.

Kirkpatrick, G.L. (1996). The common cold. Primary Care: Clinics in Office Practice 23: 657-675.

Kowalchuk, G.A., Bodeier, P.L.E., Heilig, G.H.J., Stephen, J.R., Laanbroek, H.J. (1998) Community analysis of ammonia-oxidising bacteria, in relation to oxygen availability in soils and root-oxygenated sediments, using PCR, DGGE and oligonucleotide probe hybridisation. FEMS Microbiology Ecology 27: 339-350.

Kuske, C. (2006) Current and emerging technologies of the study of bacteria in the outdoor air. Current Opinion in Biotechnology 17: 291-296.

Ladhani, S., Neely, F., Heath, P.T., Nazareth, B., Roberts, R., Slack, M.P.E., McVernon, J., Ramsay, M.E. (2009) Recommendations for the prevention of secondary Haemophilus influenzae type b (Hib) disease. Journal of Infection 58: 3-14.

Lange, J.L., Thorne, P.S., Lynch, N. (1997) Application of flow cytometry and fluorescent in situ hybridization for assessment of exposures to airborne bacteria. Applied and Environmental Microbiology 63: 1557–1563.

Langer, V., Hartmann, G., Niessner, R., Seidel, M. (2012) Rapid quantification of bioaerosols containing L. pneumophila by Coriolis®µ air sampler and chemiluminescence antibody microarrays. Journal of Aerosol Science 48: 46-55.

Lecours, P.B., Veillette, M., Marsolais, D., Duchaine, C. (2012) Characterization of bioaerosols from dairy barns: reconstructing the puzzle of occupational respiratory diseases using molecular approaches. Applied and Environmental Microbiology doi: 10.1128/​AEM.07661-11.

Li, C.S., Hao, M.L., Lin, H.W., Chang, C.W., Wang, C.S. (1999) Evaluation of microbial samplers for bacterial microorganisms. Aerosol Science and Technology 30: 100-108.

Liebers, V., Bruning, T., Raulf-Heimsoth, M. (2006) Occupational endotoxin-exposure and possible health effects on humans. American Journal of Industrial Medicine 49: 474–491.

Liebers, V., Raulf-Heimsoth, M. and Bruning, T. (2008) Health effects due to endotoxin inhalation. Archives of toxicology 82: 203–210.

Lighthart, B. (1997) The ecology of bacteria in the alfresco atmosphere. FEMS Microbiology Ecology 23: 263-274.

Lighthart, B. (2000) Mini-review of the concentration variations found in the alfresco atmospheric bacterial populations. Aerobiologia 16: 7-16.

Lighthart, B., Shaffer, B.T. (1995) Airborne bacteria in the atmospheric surface layer: temporal distribution above a grass seed field. Applied and Environmental Microbiology 61: 1492-1496.

Lin, X., Reponen, T., Willeke, K., Wang, Z., Grinshpun, S.A., Trunov, M. (2000) Survival of airborne microorganisms during swirling aerosol collection. Aerosol Science and Technology 32: 184-196.

Lin, X., Reponen, T.A., Willeke, K., Grinsphun, S.A., Foarde, K.K., Ensor, D.S (1999) Long-term sampling of airborne bacteria and fungi into a non-evaporating liquid. Atmosheric Environment 33: 4291-4298.

Lin, X., Willeke, K., Ulevicius, V., Grinsphun, S.A. (1997) Effect of sampling time on the collection of all-glass impingers. American Industrial Hygiene Association Journal 58: 480-488.

Lindemann, J., Constantinidou, H.A., Barchet, W.R., Upper, C.D. (1982) Plants as sources of airborne bacteria, including ice nucleation-active bacteria. Applied and Environmental Microbiology 44: 1059-1063.

Ludlam, H.A., Nwachukwu, B., Noble, W.C., Swan, A.V., Philips, I. (1989) The preservation of micro-organisms in biological spcimens stored at -70°C. Journal of Applied Microbiology 67: 417-423.

Mabeza, G.F., Macfarlane, J. (2003) Pulmonary actinomycosis. European Respiratory Journal 21: 545-551.

Maron, P.A., Lejon, D.P.H., Carvalho, E., Bizet, K., Lemanceau, P., Ranjard, L., Mougel, C. (2005) Assessing genetic structure and diversity of airborne bacterial communities by DNA fingerprinting and 16S rDNA clone library. Atmospheric Environment 39: 3687-3695.

Martínez, A., Crespo, D., Fernández, J.Á, Aboal, J.R., Carballeira, A. (2012) Selection of flight feathers from Buteo buteo and Accipiter gentilis for use in biomonitoring heavy metal contamination. Science of The Total Environment 425: 254-261.

Martinez, K., Rao, C., Burton, N. (2004) Exposure assessment and analysis for biological agents. Grana 43: 193-208.

Martin-Laurent, F., Philippot, L., Hallet, S., Chaussod, R., Germon, J.C., Soulas, G., Catroux, G. (2001) DNA extraction from soils: old bias for new microbial diversity analysis methods. Applied and Environmental Microbiology 67: 2254-2259.

Marzorati, M., Wittebolle, L., Boon, N., Daffonchio, D., Verstraete, W. (2008) How to get more out of molecular fingerprints: practical tools for microbial ecology. Environmental Microbiology 10: 1571-1581.

Matheson, C.D., Gurne, C., Esau, N., Lehto, R. (2010) Assessing PCR inhibition from humic substances. The Open Enzyme Inhibition Journal 3: 38-45.

May, K.R., Harper, G.J. (1957) The efficiency of various liquid impinger samplers in bacterial aerosols. British Journal of Industrial Medicine 14: 287-297.

Meyer, C., Gilbert, D., Gaudry, A., Franchi, M., Nguyen-Viet, H., Fabure, J., Bernard, N. (2010) Relationship of atmospheric pollution characterized by gas (NO2) and particles (PM10) to microbial communities living in bryophytes at three differently polluted sites (rural, urban, and industrial). Microbial Ecology 59:324-334.

Mishra, M., Goel, R. (1999) Development of a cold resistant mutant of plant growth promoting Pseudomonas fluorescens and its functional characterization. Journal of Biotechnology 75: 71-75.

Möhler, O., DeMott, P.J., Vali, G., Levin, Z. (2007) Microbiology and atmospheric processes: the role of biological particles in cloud physics. Biogeosciences 4: 2559-2591.

Monchy, S., Benotmane, M.A., Janssen, P., Vallaeys, T., Taghavi, S., van der Lelie, D., Mergeay, M. (2007) Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals. Journal of Bacteriology 189: 7417-7425.

Morath, S., Stadelmaier, A., Geyer, A., Schmidt, R.R., Hartung, T. (2002) Synthetic lipoteichoic acid from Staphylococcus aureus is a potent stimulus of cytokine release. The Journal of  Experimental Medicine 195: 1635-1640.

Möritz, M., Peters, H., Nipko, B., Rüden, H. (2001) Capability of air filters to retain airborne bacteria and molds in heating, ventilating and air-conditioning (HVAC) systems. International Journal of Hygiene and Environmental Health 203: 401-409.

Morris, C.E., Sands, D.C., Bardin, M., Jaenicke, R., Vogel, B., Leyronas, C., Ariya, P.A., Psenner, R. (2008) Microbiology and atmospheric processes: an upcoming era of research on bio-meteorology. Biogeosciences Discussions 5: 191-212.

Muilenberg, M.L., Burge, H.A. (1994) Filter cassette sampling for bacterial and fungal aerosols. Health implications of fungi in indoor environments 75-89.

Müller, A.K., Rasmussen, L.D., Sørensen, S.J. (2001) Adaptation of the bacterial community to mercury contamination. FEMS Microbiology Letters 204: 49-53.

Muyzer, G., De Waal, E.C., Uitterlinden, A.G. (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Envirionmental Microbiology 59: 695-700.

Nguyen, T.M.N., Ilef, D., Jarraud, S., Rouil, L., Campese, C., Che, D., Haeghebaert, S., Ganiayre, F., Marcel, F., Etienne, J., Desenclos, J. (2006) A community-wide outbreak of Legionnaires Disease linked to industrial cooling towers – How far can contaminated aerosols spread? The Journal of Infectious Diseases 193: 102-111.

Nicas, M., Nazaroff, W.W., Hubbard, A. (2005) Toward understanding the risk of secondary airborne infection: emission of respirable pathogens. Journal of Occupational and Environmental Hygiene 2: 143-154.

Nies, D.H. (1999) Microbial heavy-metal resistance. Applied Microbiology and Biotechnology 51: 730-750.

Norramit, P., Cheevoporn, V., Itoh, N., Tanaka, K. (2005) Characterization and carcinogenic risk assessment of polycyclic aromatic hydrocarbons in the respirable fraction of airborne particles in the Bangkok metropolitan area. Journal of Health Science 51: 437-446.

Nuzhat, A., Fasim, F., Arif, M., Jamil, N. (2000) Inducible tolerance to heavy metals in air borne bacteria. Pakistan Journal of Biological Sciences 3: 2232-2237.

Onyenwoke, R.U., Brill, J.A., Farahi, K., Wiegel, J. (2004) Sporulation genes in members of the low G+C Gram-type-positive phylogenetic branch (Firmicutes). Archives of Microbiology 182: 182-192.

Pasteur, L. (1860) Expériences relatives aux generations dites spontanées. Comptes randus hebdomadaires des séances de l’Acad’emie des sciences, 50: 303-307.

Peccia, J., Hernandez, M. (2006) Incorporating polymerase chain reaction-based identification, population characterization, and quantification of microorganisms into aerosol science: A review. Atmospheric Environment 40: 3941-3961.

Pedersen, J.C. (1992) Natamycin as a fungicide in agar media. Applied and Environmental Microbiology 58: 1064-1066.

Pepys, J., Jenkins, P.A., Festenstein, G.N., Gregory, P.H., Lacey, M.E., Skinner, F.A. (1990) Farmer’s lung: thermophilic actinomycetes as a source of “farmer’s lung hay” antigen. 1963. Allergy Proceedings 11: 101-102.

Pereira, F., Kerkar, S., Krishnan, K.P. (2013) Bacterial response to dynamic metal concentrations in the surface sediments of a solar saltern (Goa, India). Environmetal Monitoring and Assessment 185: 3625-3636.

Pillai, S.D., Ricke, S.C. (2002) Bioaerosols from municipal and animal wastes: background and contemporary issues. Canadian Journal of Microbiology 48: 681-696.

Polymenakou, P.N. (2012)  Atmosphere: A source of pathogenic or beneficial microbes? Atmosphere: 87-102.

Pope, C.A., Dockery, D.W., Spengler, J.D., Raizenne, M.E. (1991) Respiratory health and PM10 pollution: a daily time series analysis. American Journal of Respiratory and Critical Care Medicine 144: 668-674.

Pósfai, M., Li, J., Anderson, J.R., Buseck, P.R. (2003) Aerosol bacteria over the southern ocean during ACE-1. Atmospheric Research 66: 231-240.

Prakash, O., Nimonkar, Y., Shouche, Y.S. (2013) Practice and prospects of microbial preservation. FEMS Microbiology Letters 339: 1-9.

Prates, A., de Oliveira, J.A., Abecia, L., Fondevila, M. (2010) Effects of preservation procedures of rumen inoculums on in vitro microbial diversity and fermentation. Animal Feed Science and Technology 155: 186-193.

Radosevich, J.L., Wilson, W.J., Shinn, J.H., DeSantis, T.Z., Andersen, G.L. (2002) Development of a high-volume aerosol collection system for the identification of air-borne micro-organisms. Letters in Applied Microbiology 34: 162-167.

Ravva, S.V., Hernlem, B.J., Sarreal, C.Z., Mandrell, R.E. (2012) Bacterial communities in urban aerosols collected with wetted-wall cyclonic samplers and seasonal fluctuations of live and culturable airborne bacteria. Journal of Environmental Monitoring 14: 473-481.

Reasoner, D.J., Geldreich, E.E. (1984) A new medium for the enumeration and subculture of bacteria from potable water.

Redford, A.J., Fierer, N. (2009) Bacterial succession on the leaf surface: a novel system for studying successional dynamics. Microbial Ecology 58: 189-198.

Rietschel, E.T., Kirikae, T., Schade, F.U., Mamat, U., Schmidt, G., Loppnow, H., Ulmer, A.J., Zähringer, U., Seydel, U., Di Padova, F. (1994) Bacterial endotoxin: molecular relationships of structure to activity and function. The FASEB Journal 8: 217–225.

Rinsoz, T., Duquenne, P., Greff-Mirguet, G., Oppliger, A. (2008) Application of real-time PCR for total airborne bacterial assessment: comparison with epifluorescence microscopy and culture-dependent methods. Atmospheric Environment 42: 6767-6774.

Roose-Amsaleg, C.L., Garnier-Sillam, E., Harry, M. (2001) Extraction and purification of microbial DNA from soil and sediment samples. Aplied Soil Ecology 18: 47-60.

Roth, J.R. (2011) The joys and terrors of fast adaptation: new findings elucidate antibiotic resistance and natural selection. Molecular Microbiology 79: 279-282.

Rothschild, L.J., Mancinelli, R.L. (2001) Life in extreme environments. Nature: 1092-1101.

Russell, M.P., Goldsmith, J.A., Philips, I. (1984) Some factors affecting the efficiency of settle plates. Journal of Hospital Infection 5: 189-199.

Rylander, R., Jacobs, R.R. (1997) Endotoxins in the environment – a criteria document. International Journal of Occupational and Environmental Health 3: S1-S48

Sattler, B., Puxbaum, H., Psenner, R. (2001) Bacterial growth in supercooled cloud droplets. Geophysical Research Letters 28: 239-242.

Schenker, M.B., Christiani, D., Cormier, Y., Dimich-Ward, H., Doekes, G., Dosman, J., Douwes, J., Dowling, K., Enarson, D., Green, F., Heederik, D., Husman, K. (1998) American Thoracic Society: respiratory health hazards in agriculture. American Journal of Respiratory and Critical Care Medicine 158: S1-S76.

Schins, R.P.F., Lightbody, J.H., Borm, P.J.A., Shi, T., Donaldson, K., Stone, V. (2004) Inflammatory effects of coarse and fine particulate matter in relation to chemical and biological constituents. Toxicology and Applied Pharmacology 195: 1-11.

Schröder, N.W.J., Morath, S., Alexander, C., Hamann, L., Hartung, T., Zähringer, U., Göbel, U.B., Weber, J.R., Schumann, R.R. (2003) Lipoteichoic acid (LTA) of Streptococcus pneumonia and Staphylococcus aureus activates immune cells via toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. The Journal of Biological chemistry 278: 15587-15594.

Schwartz, D.A. (2001) Does inhalation of endotoxin cause asthma? American Journal of Respiratory and Critical Care Medicine 163: 305-306.

Shaffer, B.T., Lighthart, B. (1997) Survey of culturable airborne bacteria at four diverse locations in Oregon: urban, rural, forest and coastal. Microbial Ecology 34: 167-177.

Shinn, E.A., Smith, G.W., Prospero, J.M., Betzer, P., Hayes, M.L., Garrison, V., Barber, R.T. (2000) African dust and the demise of Caribbean coral reefs. Geophysical Research Letters 27: 3029-3032.

Simon, C., Daniel, R. (2011) Metagenomic analyses: Past and future trends. Applied and Environmetnal Microbiology 77: 1153-1161.

Smith, A.M., Bidochka, M.J. (1998) Bacterial fitness and plasmid loss: the importance of culture conditions and plasmid size. Canadian Journal of Microbiology 44: 351-355.

Smith, D.H. (1967) R factors mediate resistance to mercury, nickel, and cobalt. Science 156: 1114-1116.

Sogin, M.L., Morrison, H.G., Huber, J.A., Welch, D.M., Huse, S.M., Neal, P.R., Arrieta, J.M., Herndl, G.J. (2006) Proceedings of the National Academy of Sciences of the United States of America 103: 12115-12120.

Sonne, C., Letcher, R.J., Ø Bechshøft, T., Rigét, F.F., Muir, D.C.G., Leifsson, P.S., Born, E.W., Hyldstrup, L., Basu, N., Kirkegaard, M., Dietz, R. (2012) Two decades of biomonitoring polar bear health in Greenland: a review. Acta Veterinaria Scandinavica 54: S15.

Stepanauskas, R., Glenn, T.C., Jagoe, C.H., Tuckfield, R.C., Lindell, A.H., McArthur, J.V. (2005) Elevated microbial tolerance to metals and antibiotics in metal-contaminated industrial environments. Environmental Science & Technology 39: 3671-3678.

Stetzenbach, L.D., Buttner, M.P., Cruz, P. (2004) Detection and enumeration of airborne biocontaminants. Current Opinion in Biotechnology 15: 170-174.

Suzuki, M.T., Giovannoni, S.J. (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Applied and Environmental Microbiology 62: 625-630.

Tager, I.B., Lurmann, F.W., Haight, T., Alcorn, S., Penfold, B., Hammond, S.K. (2010) Temporal and spatial patterns of ambient endotoxin concentrations in Fresno, California. Environmental Health Perspectives 118: 1490-1496.

Takahashi, H., Keim, P., Kaufmann, A.F., Keys, C., Smith, K.L., Taniguchi, K., Inouye, S., Kurata, T. (2004) Bacillus antracis bioterrorism incident, Kameido, Tokyo, 1993. Emerging Infectious Diseases 10: 117-120.

Terzano, C., Stefano, F.D., Conti, V., Graziani, E., Petroianni, A. (2010) Air pollution ultrafine particles: toxicity beyond the lung. European Review for Medical and Pharmacological Sciences 14: 809-821.

Terzieva, S., Donnelly, J., Ulevicius, V., Grinshpun, S.A., Willeke, K., Stelma, G.N., Brenner, K.P. (1996) Comparison of methods for detection and enumeration of airborne microorganisms collected by liquid impingement. Applied and Environmental Microbiology 62: 2264-2272.

Tong, Y., Lighthart, B. (1997) Solar radiation is shown to select for pigmented bacteria in the ambient outdoor atmosphere. Photochemistry and Photobiology 65: 103–106.

Tong, Y., Lighthart, B. (2000) The annual bacterial particle concentration and size distribution in the ambient atmosphere in a rural area of the Willamette Valley, Oregon. Aerosol Science and Technology 32: 393-403.

Tringe, S.G., Zhang, T., Liu, X., Yu, Y., Lee, W.H., Yap, J., Yao, F., Suan, S.T., Ing, S.K., Haynes, M., Rohwer, F., Wei, C.L., Tan, P., Bristow, J., Rubin, E.M., Ruan, Y. (2008) The airborne metagenome in an indoor urban environment. PLoS ONE 3: e1862.

Vaïtilingom, M., Amato, P., Sancelme, M., Laj, P., Leriche, M., Delort, A. (2010) Contribution of microbial activity to carbon chemistry in clouds. Applied and Environmental Microbiology 76: 23-29.

Vakhlu, J., Ambardar, S., Johri, B.N. (2012) A relief road to novel microbial genes and genomes. In T. Satyanarayana, B.N. Johri (Eds.) Microorganisms in sustainable agriculture and biotechnology (pp. 263-294). The Netherlands: Springer.

Vassilev, N., Eichler-Löbermann, B., Vassileva, M. (2012) Stress-tolerant P-solubilizing microorganisms. Applied Microbiology and Biotechnology 95: 851-859.

Waksman, S.A., Verdoorn, F. (Ed.) (1950) The actinomycetes: their nature, occurenc, activities and importance. Chronica Botanica Company, U.S.A., pp. 1-3, pp. 149-154.

Wang, W., Ma, Y., Ma, X., Wu, F., Ma, X., An, L., Feng, H. (2012) Diversity and seasonal dynamics of airborne bacteria in the Mogao Grottoes, Dunhuang, China. Aerobiologia 28: 27-38.

Weisburg, W.G., Barns, S.M., Pelletier, D.A., Lane, D.J. (1991) 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology 173: 697-703.

Willeke, K., Lin, X., Grinshpun, S.A. (1998) Improved aerosol collection by combined impaction and centrifugal motion. Aerosol Science and Technology 28: 439-456.

Wilson, S.C., Jones, K.C. (1993) Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environmental Pollution 81: 229-249.

Woese, C.R. (1987) Bacterial evolution. Microbiological reviews 51: 221-271.

Womack, A.M., Bohannan, B.J.M., Green, J.L. (2010) Biodiversity and biogeography of the atmosphere. Philosophical Transactions of the Royal Society 365: 3645-3653.

Woolf, D.K. (1997) Bubbles and their role in gas exchange. The Sea Surface and Global Change 10: 173-205.

 

Universiteit of Hogeschool
Bio-ingenieurswetenschappen: cel- en genbiotechnologie
Publicatiejaar
2013
Kernwoorden
Share this on: