the development of plasma treated biomaterials for hip implants

Pieter
Cools

Plasmatechnologie helpt revisies van  heupimplantaten vermijden

Met een bevolking die steeds ouder wordt en er een actievere levensstijl op nahoudt, neemt het aantal heupvervangingen jaar na jaar toe. In 2005 waren dit er 600 000 wereldwijd en tegen 2030 wordt een toename van maar liefst 174% verwacht. Mede door dit hoge aantal vervangingen, is dit een standaardingreep geworden. Maar ondanks  dat er op korte termijn relatief weinig problemen ondervonden worden, ziet men dat op lange termijn er al te vaak complicaties optreden die leiden tot 1 of meerdere nieuwe operaties. Met behulp van plasmatechnologie, is het doel van dit eindwerk om de levensduur van het heupimplantaat te verlengen door het prematuur lossen van botcement en heupimplantaat te verminderen en zo verdere ingrepen te vermijden.

De meeste mensen kennen plasma onder de vorm van bliksem, maar deze mix van ionen, radicalen en elektronen wordt op aarde vooral door de mens opgewekt. Aan de Universiteit Gent specialiseert de onderzoeksgroep Plasmatechnologie (Research Unit Plasma Technology – RUPT) zich in het gebruik van plasma bij atmosfeerdruk om oppervlakken allerhande te modificeren en in samenwerking met de onderzoeksgroep polymeren voor biomedische toepassingen (Polymer Chemistry and Biomaterials Research Group – PBM) werkt men op het afzetten van nieuwe coatings met unieke eigenschappen. Met deze relatief nieuwe technologie is het de bedoeling enerzijds om een reinigingsprocedure voor titanium heupimplantaten op te zetten en anderzijds om een polymeercoating af te zetten op het gereinigde titanium die zou dienen als hechtingslaag tussen het titaniumimplantaat en het botcement. De effectiviteit van deze modificaties wordt dan getoetst via trektesten. De resultaten van deze trektesten zijn een maatstaf voor de hechtingssterkte tussen het titaniumimplantaat en het botcement en dus onrechtstreeks een maatstaf voor de levensduur van het implantaat.

In het verleden was het reinigen van titanium implantaten tijdrovend. Organische solventen werden gebruikt en het eindresultaat was vaak van inferieure kwaliteit. De nieuw ontwikkelde plasmaprocedure laat toe om betere resultaten te verkrijgen, zonder schade voor het milieu omdat het gebruik van schadelijke solventen niet meer nodig is. Al na een plasmabehandeling van een halve minuut is een groot deel van de verontreiniging verdwenen, terwijl na 5 minuten de onderliggende titaniumlaag volledig blootgesteld is. Bij de klassieke chemische methodes duurde dit al gauw enkele uren. De verontreiniging werd bovendien niet altijd homogeen verwijderd en de onderliggende laag werd gecorrodeerd door de agressieve chemische producten. Bij het uitvoeren van trektesten om de hechting tussen het gereinigd titanium en het botcement na te gaan wordt een toename van 50% vastgesteld in vergelijking met niet-gereinigde stalen. Ook nam de reproduceerbaarheid toe met een factor 2. Dit alles samen wijst er op dat de kwaliteit van het implantaat substantieel is toegenomen. Verwacht wordt dan ook dat deze nieuwe methode in de toekomst zijn weg zal vinden in de operatiekamer.

Het tweede luik van het onderzoek draait rond het ontwikkelen, karakteriseren en optimaliseren van een PMMA (polymethylmethacrylaat) coating die voor een verdere hechting moet zorgen tussen het implantaat en het PMMA botcement. PMMA staat vooral bekend als de bouwsteen van plexiglas, maar het is een veelzijdig materiaal dat vaak gebruikt wordt voor biomedische toepassingen, omdat het menselijk immuunsysteem het niet als lichaamsvreemd beschouwd. Plasma-coaten, in tegenstelling tot traditionele manieren van coaten, levert verschillende voordelen op. Ten eerste heeft men een uitmuntende controle over de dikte en atomaire samenstelling van de coating. Ten tweede, is er een uitstekende hechting aan bijna alle oppervlakken. Ten derde, het is een snel en goedkoop uit te voeren proces met een groen karakter doordat er met onverdund startmateriaal gewerkt kan worden.

In de eerste fase van het onderzoek is het gelukt om een homogene coating af te zetten met de gewenste samenstelling en dikte. Door het spelen met invoerparameters zoals de behandelingstijd, het toevoerdebiet van de grondstof en het ontladingsvermogen van het plasma kan men nog verder gaan fine-tunen.

In een tweede fase van dit onderzoek is de coating onderworpen aan een stabiliteitstest die nagaat of deze stabiel zal blijven in het menselijk lichaam voor langere periodes. In een eerste bufferoplossing worden de condities nagebootst van gezond menselijk weefsel. Na 2 weken incubatie bij 37° Celsius (=lichaamstemperatuur), zijn er geen veranderingen vastgesteld en ziet de coating er uit zoals voor de incubatie. Aangenomen wordt dat er na 2 weken geen verdere veranderingen zullen optreden. Net na een operatie heeft het omliggend weefsel vaak last van infectie. Het is dan ook van belang dat de coating stabiel is in die eerste cruciale weken. Incubatie voor 2 weken in een tweede bufferoplossing met verhoogde pH waarden, typisch voorkomend bij een infectie,  resulteert eveneens in een onveranderde toestand van de coating.

In de derde en finale fase van het onderzoek wordt het titanium, ditmaal met coating, onderworpen aan een reeks trektesten om de mate van hechting tussen het behandelde implantaat en botcement na te gaan. De resultaten tonen een toename van 10% in hechtingsterkte en een toename in reproduceerbaarheid met een factor 2. Deze resultaten zijn beloftevol, maar verder onderzoek naar optimalisatie zal in de toekomst nog moeten uitgevoerd worden.

Het doel van dit eindwerk was nieuwe manieren te vinden om de levensduur van een titanium heupimplantaat te verlengen met behulp van plasmatechnologie. Met behulp van de nieuw ontwikkelde reinigingsmethode voor titanium en het plasmacoatingproces staat men vandaag al grote stap dichter in het verbeteren van de levensduur van een heupvervanging. De toename van 50% na de plasmareiniging is boven alle verwachtingen. De toename met 10% na plasmacoating is reeds een goede stap voorwaarts, maar vraagt nog verdere optimalisatie. Wanneer deze nieuwe voorbehandelingsmethodes hun weg zullen vinden naar de producenten van implantaten en de operatiekamers, zal dit onvermijdelijk resulteren in een toename van de levenskwaliteit voor duizenden mensen iedere dag opnieuw.

Bibliografie

1.         ETSlabs, FT-IR spectrometer scheme, 2012.

2.         Inc, S.A.M.H.S. John Charnley. 2012.

3.         Aveyard, R. and D.A. Haidon, An Introduction to the Principles of Surface Chemistry1973.

4.         JISFR. Joint implant surgery and research foundation. 2012; Available from: http://www.jisrf.org/orthopaedic_study_groups/bearing_materials_orthopaedics.htm.

5.         De Geyter, N., Plasma modification of polymer surfaces in the subatmospheric pressure range, in applied physics2008, ghent. p. 271.

6.         Stryker, Total Hip replacement, http://ctorth.com/dr-munting/total-hip-replacement.html, Editor 2011: Cape Town sports and orthopedics clinic.

7.         Center, M.I., Zirconia Implants, http://www.missionimplantcenter.com/zirconia-implants/, Editor 2012: http://www.missionimplantcenter.com/zirconia-implants/.

8.         Santavirta, R.L.a.S.S., potential of coatings in total hip replacement. clinical orthopeadics and related research, 2005(430): p. 72-79.

9.         Lippincott Williams & Wilkins, I., Symposium: History of Orthopaedics in North America]. Clinical Orthopaedics and Related Research, 2000.

10.       Stryker, Total hip joint 4, Totalhipjoint4.jpg, Editor 2012, Kayalorthopedics.

11.       Poltronieri, P., et al., Characterization of Kunitz-type inhibitor B1 performance using protein chips and AFM. Sensors and Actuators B: Chemical, 2012. 168(0): p. 231-237.

12.       Bahraminasab, M., et al., Aseptic loosening of femoral components – A review of current and future trends in materials used. Materials & Design, 2012. 42(0): p. 459-470.

13.       Péré, E., et al., Low-temperature reaction of trialkoxysilanes on silica gel: a mild and controlled method for modifying silica surfaces. Journal of Colloid and Interface Science, 2005. 281(2): p. 410-416.

14.       Gerstner, D.J.B., Biografia de Marius Smith - Petersen. Revista Colombiana de Ortopedia y Traumatologià, 2006. 20(4).

15.       bureau, U.S.C., World POPclock Projection, in daily2012 - 2013, US government: USA.

16.       Union, E., Eurostat, 2012, European Union.

17.       Kiefer, H., Current Trends in Total Hip Arthroplasty in Europe and Experiences with the Bicontact Hip System, in Treatment of Osteoarthritic Change in the Hip, M. Sofue and N. Endo, Editors. 2007, Springer Japan. p. 205-210.

18.       Corten, K., et al., Comparison of total hip arthroplasty performed with and without cement: a randomized trial. A concise follow-up, at twenty years, of previous reports. J Bone Joint Surg Am, 2011. 93(14): p. 1335-8.

19.       Chidambaram, R. and A.G. Cobb, Change in the age distribution of patients undergoing primary hip and knee replacements over 13 yers - an increase in the number of younger men having hip surgery. Journal of Bone & Joint Surgery, British Volume, 2009. 91-B(SUPP I): p. 152.

20.       Gomez, P.F., MD* and J.A. Morcuende, MD, PhD, Early Attempts at Hip Arthroplasty 1700s to 1950s. Iowa Orthopeadic Journal, 2005. 25(25): p. 25-29.

21.       Buddy D. Ratner (Editor), A.S.H.E., Frederick J. Schoen (Editor), Jack E. Lemons, Biomaterials Science: An Introduction to Materials in Medicine, Second Edition. 2nd ed2004: Elsevier academic press.

22.       Learmonth, I.D., C. Young, and C. Rorabeck, The operation of the century: total hip replacement. The Lancet, 2007. 370(9597): p. 1508-1519.

23.       August, A., C. Aldam, and P. Pynsent, The McKee-Farrar hip arthroplasty. A long-term study. Journal of Bone & Joint Surgery, British Volume, 1986. 68-B(4): p. 520-527.

24.       Gomez, P.F., MD* and J.A. Morcuende, MD, PhD, A Historical and Economic Perspective on Sir John Charnley, Chas F. Thackray Limited, and the Early Arthroplasty Industry. Iowa Orthopeadic Journal, 2005. 25(25): p. 30-37.

25.       Fu-Wen Shen, H.A.M., Ronald Salovey, cross-linking polyethlyne for low wear using radiation and thermal treatments. 2011.

26.       Inc., E.B., titanium processing, in Encyclopædia Britannica Inc.2012: Britannica.com.

27.       Forati Rad, H., A. Amadeh, and H. Moradi, Wear assessment of plasma nitrided AISI H11 steel. Materials & Design, 2011. 32(5): p. 2635-2643.

28.       Jacobs, J.J., et al., Cobalt and chromium concentrations in patients with metal on metal total hip replacements. Clin Orthop Relat Res, 1996(329 Suppl): p. S256-63.

29.       Buly, R.L., et al., Titanium wear debris in failed cemented total hip arthroplasty: An analysis of 71 cases. The Journal of Arthroplasty, 1992. 7(3): p. 315-323.

30.       Darel E. Hodgson, S.M.A., Inc., Ming H. Wu, Memry Technologies, and Robert J. Biermann, Harrison Alloys, Inc., Shape Memory Alloys. 2003.

31.       Inc., E.B., Industrial ceramics, in Encyclopædia Britannica Inc.2012: Britannica.com.

32.       Boutin, P., [Alumina and its use in surgery of the hip. (Experimental study)]. Presse Med, 1971. 79(14): p. 639-40.

33.       Heimke, G., S. Leyen, and G. Willmann, Knee arthoplasty: recently developed ceramics offer new solutions. Biomaterials, 2002. 23(7): p. 1539-51.

34.       Boutin, P., et al., The use of dense alumina-alumina ceramic combination in total hip replacement. J Biomed Mater Res, 1988. 22(12): p. 1203-32.

35.       Hannouche, D., et al., Fractures of ceramic bearings: history and present status. Clin Orthop Relat Res, 2003(417): p. 19-26.

36.       D’Antonio, J.A. and K. Sutton, Ceramic Materials as Bearing Surfaces for Total Hip Arthroplasty. Journal of the American Academy of Orthopaedic Surgeons, 2009. 17(2): p. 63-68.

37.       Clarke, I.C., et al., Current status of zirconia used in total hip implants. J Bone Joint Surg Am, 2003. 85-A Suppl 4: p. 73-84.

38.       Chevalier, J., What future for zirconia as a biomaterial? Biomaterials, 2006. 27(4): p. 535-543.

39.       Olofsson, J., et al., Evaluation of silicon nitride as a wear resistant and resorbable alternative for total hip joint replacement. Biomatter, 2012. 2(2): p. 94-102.

40.       Ulrich, S., et al., Total hip arthroplasties: What are the reasons for revision? International Orthopaedics, 2008. 32(5): p. 597-604.

41.       Sundfeldt, M., et al., Aseptic loosening, not only a question of wear: A review of different theories. Acta Orthopaedica, 2006. 77(2): p. 177-197.

42.       Wooley, P.H. and E.M. Schwarz, Aseptic loosening. Gene Ther, 2004. 11(4): p. 402-407.

43.       Stother, M.H.S.R.W.I.G., Some factors affecting the strenght of the cement-metal interface. J Bone Joint Surg Am, 1989.

44.       Morent, R., et al., Non-thermal plasma treatment of textiles. Surface and Coatings Technology, 2008. 202(14): p. 3427-3449.

45.       De Geyter, N., Influence of dielectric barrier discharge atmosphere on polylactic acid (PLA) surface modification. Surface and Coatings Technology, 2013. 214(0): p. 69-76.

46.       De Geyter, N., et al., Plasma modification of polylactic acid in a medium pressure DBD. Surface and Coatings Technology, 2010. 204(20): p. 3272-3279.

47.       Jacobs, T., et al., Plasma treatment of polycaprolactone at medium pressure. Surface and Coatings Technology, 2011. 205, Supplement 2(0): p. S543-S547.

48.       Jacobs, T., et al., Plasma modification of PET foils with different crystallinity. Surface and Coatings Technology, 2011. 205, Supplement 2(0): p. S511-S515.

49.       Morent, R., et al., Deposition of HMDSO-based coatings on PET substrates using an atmospheric pressure dielectric barrier discharge. Progress in Organic Coatings, 2009. 64(2–3): p. 304-310.

50.       Tourrette, A., et al., Incorporation of poly(N-isopropylacrylamide)/chitosan microgel onto plasma functionalized cotton fibre surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009. 352(1–3): p. 126-135.

51.       Subbiah, T., et al., Electrospinning of nanofibers. Journal of Applied Polymer Science, 2005. 96(2): p. 557-569.

52.       Agarwal, S., A. Greiner, and J.H. Wendorff, Functional Materials by Electrospinning of polymers. Progress in Polymer Science, 2013(0).

53.       Charernsriwilaiwat, N., et al., Preparation and characterization of chitosan-hydroxybenzotriazole/polyvinyl alcohol blend nanofibers by the electrospinning technique. Carbohydrate Polymers, 2010. 81(3): p. 675-680.

54.       Chronakis, I.S., Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—A review. Journal of Materials Processing Technology, 2005. 167(2–3): p. 283-293.

55.       Fashandi, H. and M. Karimi, Pore formation in polystyrene fiber by superimposing temperature and relative humidity of electrospinning atmosphere. Polymer, 2012. 53(25): p. 5832-5849.

56.       Frenot, A. and I.S. Chronakis, Polymer nanofibers assembled by electrospinning. Current Opinion in Colloid & Interface Science, 2003. 8(1): p. 64-75.

57.       Huang, Z.-M., et al., Electrospinning and mechanical characterization of gelatin nanofibers. Polymer, 2004. 45(15): p. 5361-5368.

58.       Karchin, A., et al., Melt electrospinning of biodegradable polyurethane scaffolds. Acta Biomaterialia, 2011. 7(9): p. 3277-3284.

59.       Liu, J., et al., Electrospinning in compressed carbon dioxide: Hollow or open-cell fiber formation with a single nozzle configuration. The Journal of Supercritical Fluids, 2010. 53(1–3): p. 142-150.

60.       Morra, M. and C. Cassinelli, Evaluation of surface contamination of titanium dental implants by LV-SEM: Comparison with XPS measurements. Surface and Interface Analysis, 1997. 25(13): p. 983-988.

61.       Castilho, G.A.A., M.D. Martins, and W.A.A. Macedo, Surface characterization of titanium based dental implants. Brazilian Journal of Physics, 2006. 36(3B): p. 1004-1008.

62.       Aronsson, B.O., J. Lausmaa, and B. Kasemo, Glow discharge plasma treatment for surface cleaning and modification of metallic biomaterials. Journal of Biomedical Materials Research, 1997. 35(1): p. 49-73.

63.       Rupp, F., et al., Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. Journal of Biomedical Materials Research Part A, 2006. 76A(2): p. 323-334.

64.       Kasemo, B. and J. Lausmaa, BIOMATERIAL AND IMPLANT SURFACES - ON THE ROLE OF CLEANLINESS, CONTAMINATION, AND PREPARATION PROCEDURES. Journal of Biomedical Materials Research-Applied Biomaterials, 1988. 22(A2): p. 145-158.

65.       Brunette, D.M., et al., Titanium in medicine: material science, surface science, engineering, biological responses and medical applications2001, Berlin: Springer-Verlag.

66.       Dubruel, P., et al., Comparative study of silanisation reactions for the biofunctionalisation of Ti-surfaces. Surface Science, 2006. 600(12): p. 2562-2571.

67.       Takeuchi, M., et al., Acid pretreatment of titanium implants. Biomaterials, 2003. 24(10): p. 1821-1827.

68.       Balachova, O.V., et al., CF4 plasma etching of materials used in microelectronics manufacturing. Microelectronics Journal, 2000. 31(3): p. 213-215.

69.       Fracassi, F., et al., Plasma assisted dry etching of cobalt silicide for microelectronics applications. Journal of the Electrochemical Society, 1996. 143(2): p. 701-707.

70.       Desmet, T., et al., Nonthermal Plasma Technology as a Versatile Strategy for Polymeric Biomaterials Surface Modification: A Review. Biomacromolecules, 2009. 10(9): p. 2351-2378.

71.       Wu, S.L., et al., Plasma-Modified Biomaterials for Self-Antimicrobial Applications. Acs Applied Materials & Interfaces, 2011. 3(8): p. 2851-2860.

72.       Lin, C.C., et al., Enhancement of biocompatibility on bioactive titanium surface by low-temperature plasma treatment. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2005. 44(12): p. 8590-8598.

73.       De Geyter, N., et al., Plasma modification of polylactic acid in a medium pressure DBD. Surface & Coatings Technology, 2010. 204(20): p. 3272-3279.

74.       Morent, R., et al., Plasma Surface Modification of Biodegradable Polymers: A Review. Plasma Processes and Polymers, 2011. 8(3): p. 171-190.

75.       Da Ponte, G., et al., Trends in surface engineering of biomaterials: atmospheric pressure plasma deposition of coatings for biomedical applications. European Physical Journal-Applied Physics, 2011. 56(2).

76.       Balazs, D.J., et al., Multi-Functional Nanocomposite Plasma Coatings - Enabling New Applications in Biomaterials. Plasma Processes and Polymers, 2007. 4: p. S380-S385.

77.       Wagner, H.E., et al., The barrier discharge: basic properties and applications to surface treatment. Vacuum, 2003. 71(3): p. 417-436.

78.       McCafferty, E. and J.P. Wightman, An X-ray photoelectron spectroscopy sputter profile study of the native air-formed oxide film on titanium. Applied Surface Science, 1999. 143(1-4): p. 92-100.

79.       Rossetti, F.F., I. Reviakine, and M. Textor, Characterization of titanium oxide films prepared by the template-stripping method. Langmuir, 2003. 19(24): p. 10116-10123.

80.       Fu, Y.Q., et al., XPS characterization of surface and interfacial structure of sputtered TiNi films on Si substrate. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2005. 403(1-2): p. 25-31.

81.       Lu, G., S.L. Bernasek, and J. Schwartz, Oxidation of a polycrystalline titanium surface by oxygen and water. Surface Science, 2000. 458(1-3): p. 80-90.

82.       Girolami, G.S., et al., ORGANOMETALLIC ROUTE TO THE CHEMICAL VAPOR-DEPOSITION OF TITANIUM CARBIDE FILMS AT EXCEPTIONALLY LOW-TEMPERATURES. Journal of the American Chemical Society, 1987. 109(5): p. 1579-1580.

83.       Briggs, D., Applications of XPS in Polymer Technology, in Practical Surface Analysis - Volume 1 - Auger and X-ray Photoelectron Spectroscopy, D. Briggs and M.P. Seah, Editors. 1990, John Wiley & Sons, Ltd: West Sussex - England. p. 437-483.

84.       Shi, F.F., Recent advances in polymer thin films prepared by plasma polymerization Synthesis, structural characterization, properties and applications. Surface and Coatings Technology, 1996. 82(1–2): p. 1-15.

85.       De Geyter, N., et al., Deposition of polymethyl methacrylate on polypropylene substrates using an atmospheric pressure dielectric barrier discharge. Progress in Organic Coatings, 2009. 64(2): p. 230-237.

86.       Kasih, T.P., S.-i. Kuroda, and H. Kubota, Poly(methyl methacrylate) Films Deposited via Non-Equilibrium Atmospheric Pressure Plasma Polymerization Using Argon as Working Gas. Plasma Processes and Polymers, 2007. 4(6): p. 648-653.

87.       Morent, R., et al., functional textiles for improved performance, protection and health. Woodhead publishing series in textiles, ed. N.a.S. Pan, G.2011: Woodhead publishing.

88.       Sublet, A., et al., Atmospheric and sub-atmospheric dielectric barrier discharges in helium and nitrogen. Plasma Sources Science and Technology, 2006. 15(4): p. 627.

89.       Kogelschatz, U., B. Eliasson, and W. Egli, Dielectric-barrier discharges. Principle and applications. Journal de Physique IV, 1997. 7(C4).

90.       Top, M., Development of plasma treated porous titanium scaffolds to treat critical bone defects, in organic chemistry and applied physics2012, ghent university: ghent.

91.       Scott W. Rosencrance, W.K.W., Nicholas Winograd, and David A. Shirley., polymethylmetacrylate by xps. surface science, 1993.

92.       Vashishth, D., et al., Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone, 2001. 28(2): p. 195-201.

93.       Su, C. and L. Anand, Plane strain indentation of a Zr-based metallic glass: Experiments and numerical simulation. Acta materialia, 2006. 54(1): p. 179-189.

94.       Matinlinna, J.P., et al., The effect of a 3-methacryloxypropyltrimethoxysilane and vinyltriisopropoxysilane blend and tris(3-trimethoxysilylpropyl)isocyanurate on the shear bond strength of composite resin to titanium metal. Dental Materials, 2004. 20(9): p. 804-813.

95.       Vanderleyden, E., P. Dubruel, and E. Schacht, bio-interactieve polymeren als deklagen voor poreuze botimplantaten, in Vakgroep Organische chemie2010, Ghent: Gent.

96.       McCafferty, E. and J.P. Wightman, Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method. Surface and Interface Analysis, 1998. 26(8): p. 549-564.

97.       Dickie, R., et al., Surface derivatization of hydroxyl functional acrylic copolymers for characterization by X-ray photoelectron spectroscopy. Analytical Chemistry, 1982. 54(12): p. 2045-2049.

98.       Chilkoti, A., B.D. Ratner, and D. Briggs, Plasma-deposited polymeric films prepared from carbonyl-containing volatile precursors: XPS chemical derivatization and static SIMS surface characterization. Chemistry of Materials, 1991. 3(1): p. 51-61.

99.       Holländer, A., et al., Distinguishing Surface OH and NHx Using TFAA Derivatization and XPS. Plasma Processes and Polymers, 2008. 5(4): p. 345-349.

100.    Inagaki, N., plasma surface modification and plasma polymerization1996: technomic publishing company inc.

101.    Gibson, C., et al., characterisation of organic thin films by atomic force microscopy-application of force versus distance analysis and other modes. Applied Surface Science, 1999(144-145): p. 618-622.

102.    Wei, Q., surface modification of textiles2009: Woodhead publishing in textiles. 337.

103.    Flewitt, P. and R.K. Wild, Physical methods for materials characterisation1994: Bristol and Philadelphia: institute of physics publishing.

104.    Crookes, W., On a fourth state of matter. Proceedings of the Royal Society of London, 1879. 30: p. 469-472.

105.    Tonks, L. and I. Langmuir, Oscillations in ionized gases. physical review, 1929. 33: p. 195.

106.    Eliasson, B. and U. Kogelschatz, Nonequilibrium Volume Plasma Chemical-Processing. IEEE Transactions on Plasma Science, 1991. 14(9): p. 1375-1384.

107.    Dubruel, P., Polymer materials2012, Ghent.

Universiteit of Hogeschool
Universiteit Gent
Thesis jaar
2013
Thema('s)