Identificatie en functionele studie van effectormoleculen in Meloidogyne graminicola

Britt
Merlaen

Nematoden zijn er in veel maten en gewichten. M. graminicola, die bestudeerd werd in deze masterthesis, ziet er onder de microscoop uit als een doorzichtig wormpje, maar is met het blote oog amper waar te nemen. Deze nematode is een parasiet: hij vestigt zich in planten en leeft van de voedingsstoffen die hij in zijn gastheer vindt. Is de gastheer een landbouwgewas, dan is dit synoniem voor minder opbrengst. Daarbij komt nog dat de nematode zijn gastheer verwondt. Een plant waarin nematoden huizen is een zieke plant. Het spreekt voor zich dat men nematoden op de velden liever kwijt dan rijk is. Ze worden dan ook fel bestreden met pesticiden. Het ontwikkelen van nieuwe en betere pesticiden is één methode om de nematoden in de akkerbouw de baas te kunnen. Een andere manier is het ontwikkelen van resistente planten. Welke methode men ook verkiest, voor men kan beginnen met het ontwikkelen van pesticiden of resistente planten moet men eerst weten hoe de nematode een plant binnendringt en hoe ze erin slaagt te overleven in de plant. Specifieker: men moet te weten komen welke eiwitten de nematode nodig heeft om de plant te infecteren en erin te overleven. Eens één of meerdere van deze cruciale eiwitten – ook effectors genoemd – bekend zijn, kan men hierop inspelen om de nematode te saboteren.

Het vinden van deze effectors is een proces van lange adem. De resultaten van veel verschillende soorten experimenten moeten in elkaar gepuzzeld worden voor men voldoende aanwijzingen verzameld heeft. Deze masterscriptie had als doel bij te dragen tot het vinden van effectoreiwitten in de nematode M. graminicola, die voornamelijk in de rijstteelt voor grote opbrengstverliezen zorgt.

In een nematode zitten tienduizenden verschillende eiwitten; men kan ze onmogelijk één voor één onderzoeken. Daarom werd in de eerste plaats een selectie gemaakt van eiwitten die over de passende eigenschappen beschikken. Bijvoorbeeld weet men dat veel effectors door de nematode in de plant worden gespoten; eigenschappen die passen bij dit gegeven dienden als criteria voor de selectie. M.b.v. software werden eiwitten uit de nematode geselecteerd die aan de meeste criteria voldeden.

Verschillende eiwitten uit de selectie werden vervolgens aan allerlei experimenten onderworpen. Van één eiwit kwam ik te weten dat ze wordt gemaakt in de klieren van de nematode. In die klieren worden bijna alle eiwitten gemaakt die de nematode in de plantencellen spuit. Dat is dus een sterke aanwijzing dat het eiwit in kwestie inderdaad een effector is. Voor een aantal andere eiwitten heb ik in kaart gebracht wanneer de nematode ze het meest aanmaakt. Eiwitten die worden aangemaakt op het moment van de infectie van de plant, zullen waarschijnlijk enkel op dat moment nodig zijn. Eiwitten die pas worden aangemaakt op het moment dat de nematode zich voortplant, zullen hoogstwaarschijnlijk daarbij een rol spelen.  Zo werden een aantal vermoedens geformuleerd over de functie van enkele eiwitten uit de selectie. Daarnaast heb ik in een ander experiment ook nog vastgesteld dat nematoden die meer van een bepaald eiwit maakten dan gewoonlijk, daardoor beter de rijstplantjes konden infecteren. Statistisch kon dit helaas niet worden gestaafd.

Er zal nog veel tijd en onderzoek geïnvesteerd moeten worden om beetje bij beetje meer informatie bloot te leggen. Als alle verzamelde aanwijzingen later in elkaar gepast kunnen worden en de effectors bekend zijn, kan het echte werk beginnen: de nematoden verjagen uit de rijstvelden!

Bibliografie

[1] W. Decraemer and D.J. Hunt. Structure and classification. In Plant Nematology (eds R.N. Perry andM. Moens), pages 3–32. CABI, 2006.[2] S.A. Hogenhout, R.A.L. Van der Hoorn, R. Terauchi, and S. Kamoun. Emerging Concepts in EffectorBiology of Plant-Associated Organisms. Molecular Plant-Microbe Interactions, 22(2):115–122,2009.[3] G. Huang, R. Allen, E.L. Davis, T.J. Baum, and R.S. Hussey. Engineering broad root-knot resistance intransgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene.Proceedings of the National Academy of Sciences of the United States of America, 103(39):14302–14306, 2006.[4] A. Haegeman, L. Bauters, T. Kyndt, M.M. Rahman, and G. Gheysen. Identification of candidate effectorgenes in the transcriptome of the rice root knot nematode Meloidogyne graminicola. MolecularPlant Pathology, 14(4):379–390, 2013.[5] IRRI International Rice Research Institute. Rice Knowledge Bank - Rice and water. http://www.knowledgebank.irri.org/ewatermgt/courses/course1/modules/mod… (gelezen 14 februari2013).[6] IRRI International Rice Research Institute. Rice basics. http://www.irri.org/index.php?option=comk2&view=item&layout=item&id=908… (gelezen 14 februari 2013).[7] IRRI International Rice Research Institute. Rice Knowledge Bank - Crop Health - Fungal diseases ofrice. http://www.knowledgebank.irri.org/ipm/fungal-diseases-of-rice.html (gelezen 17 februari 2013).[8] IRRI International Rice Research Institute. Rice Knowledge Bank - Crop Health - Insects. http://www.knowledgebank.irri.org/ipm/insects-crop-health-2736.html (gelezen 17 februari 2013).[9] IRRI International Rice Research Institute. Rice Knowledge Bank - Rice fact sheets - Armyworms.http://www.knowledgebank.irri.org/rkb/pest-management-fact-sheets/insec…(gelezen 17 februari 2013).[10] IRRI International Rice Research Institute. Rice Knowledge Bank - Rice Doctor - Bacterialleaf blight. http://www.knowledgebank.irri.org/RiceDoctor/information-sheets-mainmen… (gelezen 3 maart 2013).[11] G. Karssen and M. Moens. Root-knot nematodes. In Plant Nematology (eds R.N. Perry and M.Moens), pages 59–88. CABI, 2006.[12] nematoden.be. definitie - Meloidogyne. http://www.nematoden.be/nl/definitie/definitie-meloidogyne/(gelezen 23 februari 2013), 2013.[13] P. De Ley and M. L. Blaxter. Systematic position and phylogeny. In The Biology of Nematodes, D.L.Lee, ed., London: Taylor and Francis, pp. 1-30.[14] T. Hewezi and T. Baum. Manipulation of plant cells by cyst and root-knot nematode effectors. MolecularPlant-Microbe Interactions, 2012.[15] E.L. Davis, R.S. Hussey, T.J. Baum, J. Bakker, and A. Schots. Nematode parasitism genes. Annualreview of Phytopathology, 38:365–396, 2000.[16] J.D. Eisenback. Coffee root-knot nematode Meloidogyne exigua. http://www.forestryimages.org/browse/detail.cfm?imgnum=1356037 (gelezen 14 februari 2013).[17] IRRI International Rice Research Institute. Rice Knowledge Bank - Rice Doctor - Nematodes(root knot). http://www.knowledgebank.irri.org/RiceDoctor/information-sheets-mainmen… (gelezen 14 februari2013).[18] J. Bridge, R.A. Plowright, and D. Peng. Nematode parasites of rice. In Plant Parasitic nematodes inSubtropical and Tropical Agriculture, 2nd edition (eds M. Luc, R.A Sikora, J. Bridge), pages 87–130.CABI, 2005.[19] G. Gheysen and M.G. Mitchum. How nematodes manipulate plant development pathways for infection.Current opinion in Plant Biology, 14(4):415–421, 2011.[20] The American Phytopathological Society. Root-knot nematode. http://www.apsnet.org/edcenter/intropp/lessons/Nematodes/Pages/Rootknot… (gelezen 17 februari 2013), 2013.[21] Monsanto Company. Nematodes in cotton. http://www.aganytime.com/Cotton/Pages/Article.aspx?name=Nematodes-in-Co… (gelezen 16 februari 2013), 2012.[22] J. Padgham. Management of the rice root-knot nematode (Meloidogyne graminicola) . http://mulch.mannlib.cornell.edu/rootknot/index.html (gelezen 17 september 2012).[23] CABI. Plantwise - rice root knot nematode (Meloidogyne graminicola). http://www.plantwise.org/?dsid=33243&page=4270&site=234 (gelezen 14 februari 2013).[24] S.J. Turner and J.A. Rowe. Cyst nematodes. In Plant Nematology (eds R.N. Perry and M. Moens),pages 91–122. CABI, 2006.[25] M.G.K. Jones and H.L. Payne. Early stages of nematode-induced giant-cell formation in roots ofImpatiens balsamina. Journal of Nematology, 10(1):70–84, 1978.[26] W. Grunewald, G. van Noorden, G. van Isterdael, T. Beeckman, G. Gheysen, and U. Mathesius. Manipulationof Auxin Transport in Plant Roots during Rhizobium Symbiosis and Nematode Parasitism.Plant Cell, 21(9):2553–2562, 2009.[27] L.W. Duncan and M. Moens. Migratory endoparasitic nematodes. In Plant Nematology (eds R.N.Perry and M. Moens), pages 123–152. CABI, 2006.[28] K. Lambert and S. Bekal. Introduction to Plant-Parasitic Nematodes. http://www.apsnet.org/edcenter/intropp/PathogenGroups/Pages/IntroNemato… (gelezen 24 februari 2013), 2002.[29] A. Haegeman, S. Mantelin, J.T. Jones, and G. Gheysen. Functional roles of effectors of plant-parasiticnematodes. Gene, 492(1):19–31, 2012.[30] J.D.G. Jones and J.L. Dangl. The plant immune system. Nature, 444(7117):323–329, 2006.[31] J.P. Semblat, M.N. Rosso, R.S. Hussey, P. Abad, and P. Castagnone-Sereno. Molecular cloning of acDNA encoding an amphid-secreted putative avirulence protein from the root-knot nematode Meloidogyneincognita. Molecular Plant-Microbe Interactions, 14(1):72–79, 2001.[32] C.A. Gleason, Q.L. Liu, and V.M. Williamson. Silencing a candidate nematode effector gene correspondingto the tomato resistance gene Mi-1 leads to acquisition of virulence. Molecular Plant-MicrobeInteractions, 21(5):576–585, 2008.[33] Y. Spiegel and M.A. McClure. The surface-coat of plant-parasitic nematodes - chemical-composition,origin and biological role - a review. Journal of Nematology, 27(2):127–134, 1995.[34] A. Goverse, J. Biesheuvel, G.J. Wijers, F.J. Gommers, J. Bakker, A. Schots, and J. Helder. In plantamonitoring of the activity of two constitutive promoters, CaMV 35S and TR2’, in developing feedingcells induced by Globodera rostochiensis using green fluorescent protein in combination with confocallaser scanning microscopy. Physiological and Molecular Plant Pathology, 52(4):275–284, 1998.[35] P.E. Urwin, S.G. Moller, C.J. Lilley, M.J. McPherson, and H.J. Atkinson. Continual green-fluorescentprotein monitoring of cauliflower mosaic virus 35S promoter activity in nematode-induced feedingcells in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 10(3):394–400, 1997.[36] E.L. Davis, R.S. Hussey, and T.J. Baum. Getting to the roots of parasitism by nematodes. Trends inParasitology, 20(3):134–141, 2004.[37] A.A. Elling, E.L. Davis, R.S. Hussey, and T.J. Baum. Active uptake of cyst nematode parasitismproteins into the plant cell nucleus. International journal for Parasitology, 37(11):1269–1279, 2007.[38] E.L. Davis, R.S. Hussey, M.G. Mitchum, and T.J. Baum. Parasitism proteins in nematode-plant interactions.Current opinion in Plant Biology, 11(4):360–366, 2008.[39] D.J. Cosgrove. Growth of the plant cell wall. Nature reviews Molecular Cell Biology, 6(11):850–861,2005.[40] P. Abad, J. Gouzy, J.-M. Aury, P. Castagnone-Sereno, E.G.J. Danchin, E. Deleury, L. Perfus-Barbeoch,V. Anthouard, F. Artiguenave, V.C. Blok, M.-C. Caillaud, P.M. Coutinho, C. Dasilva, F. De Luca,F. Deau, M. Esquibet, T. Flutre, J.V. Goldstone, N. Hamamouch, T. Hewezi, O. Jaillon, C. Jubin,P. Leonetti, M. Magliano, T.R. Maier, Ga.V. Markov, P. McVeigh, G. Pesole, J. Poulain, M. Robinson-Rechavi, E. Sallet, B. Segurens, D. Steinbach, T. Tytgat, E. Ugarte, C. van Ghelder, P. Veronico, T.J.Baum, M. Blaxter, T. Bleve-Zacheo, E.L. Davis, J.J. Ewbank, B. Favery, E. Grenier, B. Henrissat, J.T.Jones, V. Laudet, A.G. Maule, H. Quesneville, M.-N. Rosso, T. Schiex, G. Smant, J. Weissenbach,and P. Wincker. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita.Nature Biotechnology, 26(8):909–915, 2008.[41] G. Smant, J.P.W.G. Stokkermans, Y.T. Yan, J.M. de Boer, T.J. Baum, X.H. Wang, R.S. Hussey, F.J.Gommers, B. Henrissat, E.L. Davis, J. Helder, A. Schots, and J. Bakker. Endogenous cellulases in animals:Isolation of beta-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes.Proceedings of the National Academy of Sciences of the United States of America, 95(9):4906–4911,1998.[42] T. Hewezi, P. Howe, T.R. Maier, R.S. Hussey, M.G. Mitchum, E.L. Davis, and T.J. Baum. CelluloseBinding Protein from the Parasitic Nematode Heterodera schachtii Interacts with Arabidopsis PectinMethylesterase: Cooperative Cell Wall Modification during Parasitism. Plant Cell, 20(11):3080–3093, 2008.[43] L. Qin, U. Kudla, E.H.A. Roze, A. Goverse, H. Popeijus, J. Nieuwland, H. Overmars, J.T. Jones,A. Schots, G. Smant, J. Bakker, and J. Helder. Plant degradation: A nematode expansin acting onplants. Nature, 427(6969):30, 2004.[44] D.J. Cosgrove. Loosening of plant cell walls by expansins. Nature, 407(6802):321–326, 2000.[45] R.M.D.G. Carneiro, M.R.A. Almeida, and P. Queneherve. Enzyme phenotypes of Meloidogyne spp.populations. Nematology, 2(Part 6):645–654, 2000.[46] W.J. Postma, E.J. Slootweg, S. Rehman, A. Finkers-Tomczak, T.O.G. Tytgat, K. van Gelderen, J.L.Lozano-Torres, J. Roosien, R. Pomp, C. van Schaik, J. Bakker, A. Goverse, and G. Smant. The EffectorSPRYSEC-19 of Globodera rostochiensis Suppresses CC-NB-LRR-Mediated Disease Resistancein Plants. Plant Physiology, 160(2):944–954, 2012.[47] M. Jaouannet, M. Magliano, M.J. Arguel, M. Gourgues, E. Evangelisti, P. Abad, and M.N. Rosso. TheRoot-Knot Nematode Calreticulin Mi-CRT Is a Key Effector in Plant Defense Suppression. MolecularPlant-Microbe Interactions, 26(1):97–105, 2013.[48] E. Benkova, M. Michniewicz, M. Sauer, T. Teichmann, D. Seifertova, G. Jurgens, and J. Friml. Local,efflux-dependent auxin gradients as a common module for plant organ formation. Cell, 115(5):591–602, 2003.[49] P. Hutangura, U. Mathesius, M.G.K. Jones, and B.G. Rolfe. Auxin induction is a trigger for root gallformation caused by root-knot nematodes in white clover and is associated with the activation of theflavonoid pathway. Australian journal of Plant Physiology, 26(3):221–231, 1999.[50] E.A. Doyle and K.N. Lambert. Meloidogyne javanica chorismate mutase 1 alters plant cell development.Molecular Plant-Microbe Interactions, 16(2):123–131, 2003.[51] C. Lee, D. Chronis, C. Kenning, B. Peret, T. Hewezi, E.L. Davis, T.J. Baum, R. Hussey, M. Bennett,and M.G. Mitchum. The Novel Cyst Nematode Effector Protein 19C07 Interacts with the ArabidopsisAuxin Influx Transporter LAX3 to Control Feeding Site Development. Plant Physiology, 155(2):866–880, 2011.[52] G.Z. Huang, R.H. Dong, R. Allen, E.L. Davis, T.J. Baum, and R.S. Hussey. A root-knot nematodesecretory peptide functions as a ligand for a plant transcription factor. Molecular Plant-MicrobeInteractions, 19(5):463–470, 2006.[53] L.D. Pysh, J.W. Wysocka-Diller, C. Camilleri, D. Bouchez, and P.N. Benfey. The GRAS gene familyin Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKEgenes. Plant Journal, 18(1):111–119, 1999.[54] D.P. Lohar and D.M Bird. Lotus japonicus: A new model to study root-parasitic nematodes. Plantand Cell Physiology, 44(11):1176–1184, 2003.[55] M. Barcala, A. Garcia, J. Cabrera, S. Casson, K. Lindsey, B. Favery, G. Garcia-Casado, R. Solano,C. Fenoll, and C. Escobar. Early transcriptomic events in microdissected Arabidopsis nematodeinducedgiant cells. Plant Journal, 61(4):698–712, 2010.[56] J. De Meutter, T. Tytgat, E. Witters, G. Gheysen, H. Van Onckelen, and G. Gheysen. Identificationof cytokinins produced by the plant parasitic nematodes Heterodera schachtii and Meloidogyneincognita. Molecular Plant Pathology, 4(4):271–277, 2003.[57] J. De Meutter, T. Tytgat, E. Prinsen, G. Gheysen, H. Van Onckelen, and G. Gheysen. Production ofauxin and related compounds by the plant parasitic nematodes Heterodera schachtii and Meloidogyneincognita. Communications in Agricultural and Applied Biological Sciences, 70(1):51–60, 2005.[58] J. Parkinson and M. Blaxter. Expressed sequence tags: An overview. In J. Parkinson, editor, ExpressedSequence Tags (ESTs), volume 533 of Methods in Molecular Biology, pages 1–12. Humana Press,2009.[59] R.S. Hussey, G. Huang, and R. Allen. Microaspiration of esophageal gland cells and cdna libraryconstruction for identifying parasitism genes of plant-parasitic nematodes. In J.M. McDowell, editor,Plant Immunity, volume 712 of Methods in Molecular Biology, pages 89–107. Humana Press, 2011.[60] B.L. Gao, R. Allen, T. Maier, E.L. Davis, T.J. Baum, and R.S. Hussey. The parasitome of the phytonematodeHeterodera glycines. Molecular Plant-Microbe Interactions, 16(8):720–726, 2003.[61] G.Z. Huang, B.L. Gao, T. Maier, R. Allen, E.L. Davis, T.J. Baum, and R.S. Hussey. A profile of putativeparasitism genes expressed in the esophageal gland cells of the root-knot nematode Meloidogyneincognita. Molecular Plant-Microbe Interactions, 16(5):376–381, 2003.[62] C.H. Opperman, D.M. Bird, V.M.Williamson, D.S. Rokhsar, M. Burke, J. Cohn, J. Cromer, S. Diener,J. Gajan, S. Graham, T.D. Houfek, Q. Liu, T. Mitros, J. Schaff, R. Schaffer, E. Scholl, B.R. Sosinski,V.P. Thomas, and E. Windham. Sequence and genetic map of Meloidogyne hapla: A compact nematodegenome for plant parasitism. Proceedings of the National Academy of Sciences of the UnitedStates of America , 105(39):14802–14807, 2008.[63] S. Bellafiore, Z. Shen, M.-N. Rosso, P. Abad, P. Shih, and S.P. Briggs. Direct Identification of theMeloidogyne incognita Secretome Reveals Proteins with Host Cell Reprogramming Potential. PLOSPathogens, 4(10), 2008.[64] S. Jaubert, T.N. Ledger, J.B. Laffaire, C. Piotte, P. Abad, and M.N. Rosso. Direct identification ofstylet secreted proteins from root-knot nematodes by a proteomic approach. Molecular and BiochemicalParasitology, 121(2):205–211, 2002.[65] M. Bakhetia, P.E. Urwin, and H.J. Atkinson. Characterisation by RNAi of pioneer genes expressedin the dorsal pharyngeal gland cell of Heterodera glycines and the effects of combinatorial RNAi.International journal for Parasitology, 38(13):1589–1597, 2008.[66] T. Hewezi, P.J. Howe, T.R. Maier, R.S. Hussey, M.G. Mitchum, E.L. Davis, and T.J. Baum. ArabidopsisSpermidine Synthase Is Targeted by an Effector Protein of the Cyst Nematode Heteroderaschachtii. Plant Physiology, 152(2):968–984, 2010.[67] B.C. Yadav, K. Veluthambi, and K Subramaniam. Host-generated double stranded RNA inducesRNAi in plant-parasitic nematodes and protects the host from infection. Molecular and BiochemicalParasitology, 148(2):219–222, 2006.[68] R.S. Hussey, E.L. Davis, and T.J. Baum. Cyst nematode resistant trangenic plants.http://patentscope.wipo.int/search/en/detail.jsf?docId=WO2007087153&rec… (gelezen 4 maart 2013), 2007.[69] Promega Corporation. Technical manual: pGEMR -T and pGEMR -T Easy Vector Systems, 2010.[70] Swiss Institute of Bioinformatics. Expasy translate tool. http://web.expasy.org/translate/ (gelezen 24april 2013).[71] National Center for Biotechnology Information. Standard protein blast. http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&BLAST PROGRAMS=blastp&PAGE TYPE=BlastSearch&SHOWDEFAULTS=on&BLAST SPEC=&LINK LOC=blasttab&LAST PAGE=blastn (gelezen 23 april2013).[72] National Center for Biotechnology Information. . (gelezen 23 april 2013).[73] Inra Paca Plant-Nematode interaction team. Meloidogyne incognita resources - Blast. http://meloidogyne.toulouse.inra.fr/blast/blast.html (gelezen 23 april 2013).[74] W.A. Kibbe and R.H. Lurie. Oligonucleotide Properties Calculator. http://www.basic.northwestern.edu/biotools/oligocalc.html (gelezen 22 maart 2013).[75] National Center for Biotechnology Information. Standard nucleotide blast. http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastnn&BLAST PROGRAMS=megaBlastn&PAGE TYPE=BlastSearchn&SHOWn DEFAULTS=onn&LINKn LOC=blasthome (gelezen 22 maart 2013).[76] Institute for theoretical chemistry. RNA fold Webserver. http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi (gelezen 22 maart 2013).[77] Life Technologies Corporation. Silencer RsiRNA Construction Kit - Large Scale Synthesis and Purificationof siRNAs, 2010.[78] Invitrogen. The Gateway RCloning System - How to generate an entry clone. https://www.google.be/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CD8… E21KUJDpzA&bvm=bv.45512109,d.ZWU (gelezen 20 april 2013).[79] Invitrogen. pDONRTM221 / pDONRTM/Zeo . http://tools.invitrogen.com/content/sfs/vectors/pdonr221 pdonrzeo map.pdf (gelezen 5 april 2013).[80] Invitrogen. pDESTTM32. http://tools.invitrogen.com/content/sfs/vectors/pdest32 map.pdf (gelezen 5april 2013).[81] Invitrogen. pDESTTM22. http://tools.invitrogen.com/content/sfs/vectors/pdest22 map.pdf (gelezen 24april 2013).[82] K. Mansour, D. Inz´e, and A. Depicker. GATEWAYTMvectors for Agrobacterium-mediated plant transformation.Trends in Plant Science, 7(5):193–195, 2002.[83] J.H. McDonald. Handbook of Biological Statistics, pages 70–75. Sparky House Publishing, Baltimore,Maryland, 2 edition, 2009.[84] Plant Systems Biology VIB UGent. pMBb7Fm21GW-UBIL. http://gateway.psb.ugent.be/vector/show/pMBb7Fm21GW-UBIL/search/index/o… (gelezen 21 maart 2013).[85] M. Jaouannet, L. Perfus-Barbeoch, E. Deleury, M. Magliano, G. Engler, P. Vieira, E.G.J. Danchin,M.D. Rocha, P. Coquillard, P. Abad, and M.-N. Rosso. A root-knot nematode-secreted protein isinjected into giant cells and targeted to the nuclei. New Phytologist, 194(4):924–931, 2012.[86] E. Roze, B. Hanse, M. Mitreva, B. Vanholme, J. Bakker, and G. Smant. Mining the secretome of theroot-knot nematode Meloidogyne chitwoodi for candidate parasitism genes. Molecular Plant Pathology,9(1):1–10, 2008.[87] S. Rehman, W. Postma, T. Tytgat, P. Prins, L. Qin, H. Overmars, J. Vossen, L.-N. Spiridon, A.-J. Petrescu, A. Goverse, J. Bakker, and G. Smant. A Secreted SPRY Domain-Containing Protein(SPRYSEC) from the Plant-Parasitic Nematode Globodera rostochiensis Interacts with a CC-NB-LRRProtein from a Susceptible Tomato. Molecular Plant-Microbe Interactions, 22(3):330–340, 2009.[88] J. Padgham. Using siRNA for gene silencing is a rapidly evolving tool in molecularbiology. http://www.invitrogen.com/site/us/en/home/References/Ambion-Tech-Suppor… (gelezen 16 mei 2013).[89] A. Reynolds, D. Leake, Q. Boese, S. Scaringe, A. Khvorova, andW.S.Marshall. Rational sirna designfor rna interference. Nature Biotechnology, 22(3):326 – 330, 2004.[90] J.J. Dalzell, P. McVeigh, N.D. Warnock, M. Mitreva, D.McK Bird, P. Abad, C.C. Fleming, T.A. Day,A. Mousley, N.J. Marks, and A.G. Maule. RNAi Effector Diversity in Nematodes. PLOS NeglectedTropical Diseases, 5(6), 2011.[91] C. Britton, B. Samarasinghe, and D.P. Knox. Ups and downs of RNA interference in parasitic nematodes.Experimental Parasitology, 132(1, SI):56–61, 2012.[92] P.E. Urwin, C.J. Lilley, and H.J. Atkinson. Ingestion of double-stranded RNA by preparasitic juvenilecyst nematodes leads to RNA interference. Molecular Plant-Microbe Interactions, 15(8):747–752,2002.[93] B. Xue, N. Hamamouch, C. Li, G. Huang, R.S. Hussey, T.J. Baum, and E.L. Davis. The 8D05Parasitism Gene of Meloidogyne incognita Is Required for Successful Infection of Host Roots. Phytopathology,103(2):175–181, 2013.[94] M.N. Rosso, M.P. Dubrana, N. Cimbolini, S. Jaubert, and P. Abad. Application of RNA interferenceto root-knot nematode genes encoding esophageal gland proteins. Molecular Plant-Microbe Interactions,18(7):615–620, 2005.[95] J. Shingles, C.J. Lilley, H.J. Atkinson, and P.E. Urwin. Meloidogyne incognita: Molecular and biochemicalcharacterisation of a cathepsin L cysteine proteinase and the effect on parasitism followingRNAi. Experimental Parasitology, 115(2):114–120, 2007.[96] J.J. Dalzell, S. McMaster, M.J. Johnston, R. Kerr, C.C. Fleming, and A.G. Maule. Non-nematodederiveddouble-stranded RNAs induce profound phenotypic changes in Meloidogyne incognita andGlobodera pallida infective juveniles. International journal for Parasitology, 39(13):1503–1516,2009.[97] J.J. Dalzell, S. McMaster, C.C. Fleming, and A.G. Maule. Short interfering RNA-mediated genesilencing in Globodera pallida and Meloidogyne incognita infective stage juveniles. Internationaljournal for Parasitology, 40(1):91–100, 2010.[98] M.-J. Arguel, M. Jaouannet, M. Magliano, P. Abad, and M.-N. Rosso. sirnas trigger efficient silencingof a parasitism gene in plant parasitic root-knot nematodes. Genes, 3(3):391–408, 2012.[99] Z. Issa, W.N. Grant, S. Stasiuk, and C.B. Shoemaker. Development of methods for RNA interferencein the sheep gastrointestinal parasite, Trichostrongylus colubriformis. International journal forParasitology, 35(9):935–940, 2005.[100] M. Lendner, M. Doligalska, R. Lucius, and S. Hartmann. Attempts to establish RNA interferencein the parasitic nematode Heligmosomoides polygyrus. Molecular and Biochemical Parasitology,161(1):21–31, 2008.[101] N. Patel, N. Hamamouch, C. Li, T. Hewezi, R.S. Hussey, T.J. Baum, M.G. Mitchum, and E.L. Davis.A nematode effector protein similar to annexins in host plants. Journal of Experimental Botany,61(1):235–248, 2010.[102] W. Van Criekinge and R. Beyaert. Yeast two-hybrid: State of the art. Biological Procedures Online,2(1):1–38, 1999.[103] Sigma-Aldrich Co. Pulldown. http://www.sigmaaldrich.com/life-science/proteomics/proteomics-products… (gelezen 31 mei 2013).[104] N. Ithal, J. Recknor, D. Nettleton, L. Hearne, T. Maier, T.J. Baum, and M.G. Mitchum. Parallelgenome-wide expression profiling of host and pathogen during soybean cyst nematode infection ofsoybean. Molecular Plant-Microbe Interactions, 20(3):293–305, 2007.[105] F. De Luca, M. Di Vito, E. Fanelli, A. Reyes, N. Greco, and C. De Giorgi. Characterization of theheat shock protein 90 gene in the plant parasitic nematode Meloidogyne artiellia and its expression asrelated to different developmental stages and temperature. Gene, 440(1-2):16–22, 2009.[106] P. Thorpe, V. Blok, L. Pylypenko, P. Urwin, and J.T. Jones. Functional Analysis of a Potato CystNematode (Globodera pallida) Effector Protein. http://www.hutton.ac.uk/webfm send/426 (gelezen19 mei 2013).[107] C.M. Agu. Soybean susceptibility to Meloidogyne javanica and Rhizoctonia solani in selected ultisolsof south eastern Nigeria. Journal of Sustainable Agriculture, 20(3):101–110, 2002.[108] Center for biological sequence analysis Technical University of Denmark DTU. SingalP 4.1 Server.http://www.cbs.dtu.dk/services/SignalP/ (gelezen 31 maart 2013).[109] Invitrogen. pDESTTM22. http://tools.invitrogen.com/content/sfs/vectors/pdest22 mcs.pdf (gelezen 24april 2013).[110] Invitrogen. pDESTTM32. http://tools.invitrogen.com/content/sfs/vectors/pdest32 mcs.pdf (gelezen 24april 2013).

 

Download scriptie (9.46 MB)
Universiteit of Hogeschool
Universiteit Gent
Thesis jaar
2013