Impact van structurele kenmerken op het antioxidant en prebiotisch potentieel van (arabino)xylanoligosachariden

Heleen
Olaerts

Welke structurele kenmerken bepalen het gezondheidsprofiel van dieetvezel in tarwe ?

Een goede darmflora kan bijdragen tot de gezondheid van de mens. De laatste jaren is er veel onderzoek gevoerd naar manieren om deze darmflora te sturen. Lactobacillen en bifidobacteriën worden als gunstig voor de gastheer worden beschouwd. Toename van deze bacteriën of het verhogen van hun activiteit in de dikke darm kan gerealiseerd worden door opname van bepaalde voedingscomponenten, zoals prebiotica, die selectief de groei/activiteit van deze bacteriën stimuleren. Prebiotica zijn niet verteerbaar door de mens, maar worden pas in de dikke darm gefermenteerd door de gunstige bacteriën. Recent werd aangetoond dat arabinoxylan-oligosachariden (AXOS) zulke prebiotische eigenschappen vertonen. AXOS kunnen aangemaakt worden door enzymatische afbraak van arabinoxylan, dat een belangrijke dieetvezelcomponenten is in tarwe. Deze AXOS kunnen variëren in ketenlengte en in substitutiegraad met arabinose. Indien deze componenten slechts weinig arabinose in hun structuur hebben, worden ze ook wel xylo-oligosachariden (XOS) genoemd. Bovendien kunnen ze ook variëren in de mate waarin ferulinezuur (FA), een gekend antioxidant, aanwezig is in zijn structuur. Een antioxidant is in staat om schadelijke vrije radicalen te vangen ter vorming van een stabiliserend FA afgeleid radicaal. Na botsing van een ander radicaal kan het radicaal-ketenmechanisme beëindigd worden. Omwille van dit mechanisme zou FA een bescherming kunnen bieden tegen verschillende aandoeningen zoals kanker, diabetis en ziekte van Alzheimer en tegen schadelijke effecten van UV-licht.

De invloed van sommige structurele parameters was reeds uitgebreid onderzocht. Echter de impact van FA op de prebiotische eigenschappen en de mogelijke antioxidanteigenschappen van AXOS was nog niet onderzocht. Tevens was de invloed van de ketenlengte op de fermentatie van XOS nog niet bestudeerd.

Om het eerste onderzoeksdoel in deze studie te realiseren werd gebruik gemaakt van zes AXOS stalen, met een gelijkaardige suikerstructuur maar variërend in het voorkomen van FA. De AXOS waren arm of rijk aan FA, waarbij FA zowel vrij, gebonden of aan elkaar verknoopt voorkwam.  Bovendien werden ook twee XOS stalen met verschillende ketenlengte gebruikt voor de studie van de invloed van de ketenlengte op de prebiotische eigenschappen van XOS.

Meting van de antioxidantcapaciteit van deze AXOS toonde aan dat FA de belangrijkste factor was die de antioxidanteigenschappen van AXOS bepaalde, waarbij ook de vorm waar in het voorkwam een grote invloed had. FA gebonden aan arabinose had nog steeds goede antioxidanteigenschappen, maar deze was wel minder krachtig dan bij vrij FA. Verknoping van FA verlaagde antioxidantcapaciteit nog sterker.

De prebiotische eigenschappen van XOS en AXOS werden bestudeerd met behulp van in vitro fermentatie. Binnen het geteste bereik in ketenlengte werd er geen verschil vastgesteld tussen de fermentatie van kleine en grote XOS. AXOS arm aan FA werden het snelst gefermenteerd en hierdoor werden er sneller gunstige korte keten vetzuren gevormd. Deze korte keten vetzuren hebben belangrijke fysiologische functies in het lichaam en zouden bescherming kunnen bieden tegen darmkanker. Tijdens fermentatie van AXOS zorgden zowel vrij als gebonden FA voor een vertraging van de fermentatie. Een tragere AXOS fermentatie is daarom niet nadelig, aangezien de fermentatie dan verder in de dikke darm zal plaatsvinden, waardoor de gunstige effecten zich ook daar kunnen afspelen. Tenslotte daalde gedurende de fermentatie de antioxidantcapaciteit van de AXOS in de fermentatievloeistof door verdere metabolisatie van vrij FA.

Deze studie toonde aan dat AXOS prebiotische en antioxidanteigenschappen combineren en dat deze eigenschappen afhankelijk zijn van het gehalte en de vorm van FA in AXOS.

AXOS kunnen in toegepast worden in een brede waaier aan levensmiddelen. Hierbij worden graangebaseerde toepassing (brood, pasta, biscuits, …) geprefereerd aangezien de productie van AXOS kan plaatsvinden tijdens de verwerking van het graan tot het eindproduct.

Bibliografie

LITERATUURLIJST

AACC (2003). Approved methods of the American Association of Cereal Chemists. St. Paul, Minnesota. American Association of Cereal Chemists. 1200 p.

               

Adam, A., Crespy, V., Levrat-Verny, M.-A., Leenhardt, F., Leuillet, M., Demigné, C. & Rémésy, C. (2002). The bioavailability of ferulic acid Is governed primarily by the food matrix rather than its metabolism in intestine and liver in rats. The Journal of Nutrition 132 (7): 1962-1968.

               

Akpinar, O., Erdogan, K. & Bostanci, S. (2009). Enzymatic production of xylooligosaccharide from selected agricultural wastes. Food and Bioproducts Processing 87 (2): 145-151.

               

Amaretti, A., Bernardi, T., Leonardi, A., Raimondi, S., Zanoni, S. & Rossi, M. (2013). Fermentation of xylo-oligosaccharides by Bifidobacterium adolescentis DSMZ 18350: kinetics, metabolism, and bèta-xylosidase activities. Applied Microbiology and Biotechnology 97 (7): 3109-3117.

               

Amrein, T. M., Gränicher, P., Arrigoni, E. & Amado, R. (2003). In vitro digestibility and colonic fermentability of aleurone isolated from wheat bran. LWT - Food Science and Technology 36 (4): 451-460.

               

Andreasen, M. F., Kroon, P. A., Williamson, G. & Garcia-Conesa, M.-T. (2001a). Esterase activity able to hydrolyze dietary antioxidant hydroxycinnamates is distributed along the intestine of mammals. Journal of Agricultural and Food Chemistry 49 (11): 5679-5684.

               

Andreasen, M. F., Kroon, P. A., Williamson, G. & Garcia-Conesa, M.-T. (2001b). Intestinal release and uptake of phenolic antioxidant diferulic acids. Free Radical Biology and Medicine 31 (3): 304-314.

               

Anson, N. M., Selinheimo, E., Havenaar, R., Aura, A.-M., Mattila, I., Lehtinen, P., Bast, A., Poutanen, K. & Haenen, G. R. M. M. (2009a). Bioprocessing of wheat bran improves in vitro bioaccessibility and colonic metabolism of phenolic compounds. Journal of Agricultural and Food Chemistry 57 (14): 6148-6155.

               

Anson, N. M., Van den berg, R., Havenaar, R., Bast, A. & Haenen, G. R. M. M. (2008). Ferulic acid from aleurone determines the antioxidant potency of wheat grain. Journal of Agricultural and Food Chemistry 56 (14): 5589-5594.

               

Anson, N. M., van den Berg, R., Havenaar, R., Bast, A. & Haenen, G. R. M. M. (2009b). Bioavailability of ferulic acid is determined by its bioaccessibility. Journal of Cereal Science 49 (2): 296-300.

               

Antoine, C., Peyron, S., Mabille, F., Lapierre, C., Bouchet, B., Abecassis, J. & Rouau, X. (2003). Individual contribution of grain outer layers and their cell wall structure to the mechanical properties of wheat bran. Journal of Agricultural and Food Chemistry 51 (7): 2026-2033.

               

Arts, M., Haenen, G. R. M. M., Wilms, L. C., Beetstra, S. A. J. N., Heijnen, C. G. M., Voss, H.-P. & Bast, A. (2002). Interactions between flavonoids and proteins: Effect on the total antioxidant capacity. Journal of Agricultural and Food Chemistry 50 (5): 1184-1187.

               

Aura, A.-M. (2008). Microbial metabolism of dietary phenolic compounds in the colon. Phytochemistry Reviews 7 (3): 407-429.

               

Aureli, P., Capurso, L., Castellazzi, A. M., Clerici, M., Giovannini, M., Morelli, L., Poli, A., Pregliasco, F., Salvini, F. & Zuccotti, G. V. (2011). Probiotics and health: an evidence-based review. Pharmacological Research 63 (5): 366-376.

               

Bakken, J. S. (2009). Fecal bacteriotherapy for recurrent Clostridium difficile infection. Anaerobe 15 (6): 285-289.

               

Barron, C., Surget, A. & Rouau, X. (2007). Relative amounts of tissues in mature wheat (Triticum aestivum L.) grain and their carbohydrate and phenolic acid composition. Journal of Cereal Science 45 (1): 88-96.

               

Benamrouche, S., Crônier, D., Debeire, P. & Chabbert, B. (2002). A chemical and histological study on the effect of (1-4)-bèta-endo-xylanase treatment on wheat bran. Journal of Cereal Science 36 (2): 253-260.

               

Biely, P. (1985). Microbial xylanolytic systems. Trends in Biotechnology 3 (11): 286-290.

               

Bingham, S., Pignatelli, B., Pollock, J., Ellul, A., Malaveille, C., Gross, G., Runswick, S., Cummings, J. & O'Neill, I. (1996). Does increased endogenous formation of N-nitroso compounds in the human colon explain the association between red meat and colon cancer? Carcinogenesis 17 (3): 515-523.

               

Boukari, I., O'Donohue, M., Rémond, C. & Chabbert, B. (2011). Probing a family GH11 endo-b-1,4-xylanase inhibition mechanism by phenolic compounds: Role of functional phenolic groups. Journal of Molecular Catalysis B: Enzymatic 72 (34): 130-138.

               

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 72 (1): 248-254.

               

Brillouet, J. M., Joseleau, J. P., Utille, J. P. & Lelievre, D. (1982). Isolation, purification and characterization of a complex heteroxylan from industrial wheat bran. Journal of Agricultural and Food Chemistry 30 (3): 488-495.

               

Broekaert, W. F., Courtin, C. M., Verbeke, K., Van de Wiele, T., Verstraete, W. & Delcour, J. A. (2011). Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosaccharides. Critical Reviews in Food Science and Nutrition 51 (2): 178-194.

               

Bunzel, M., Ralph, J., Funk, C. & Steinhart, H. (2003). Isolation and identification of a ferulic acid dehydrotrimer from saponified maize bran insoluble fiber. European Food Research and Technology 217 (2): 128-133.

               

Bunzel, M., Ralph, J., Funk, C. & Steinhart, H. (2005). Structural elucidation of new ferulic acid-containing phenolic dimers and trimers isolated from maize bran. Tetrahedron Letters 46 (35): 5845-5850.

               

Bunzel, M., Ralph, J., Marita, J. M., Hatfield, R. D. & Steinhart, H. (2001). Diferulates as structural components in soluble and insoluble cereal dietary fibre. Journal of the Science of Food and Agriculture 81 (7): 653-660.

               

Calmels, S., Ohshima, H., Vincent, P., Gounot, A.-M. & Bartsch, H. (1985). Screening of microorganisms for nitrosation catalysis at pH 7 and kinetic studies on nitrosamine formation from secondary amines by E. coli strains. Carcinogenesis 6 (6): 911-915.

Carpita, N. C. & Gibeaut, D. M. (1993). Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. The Plant Journal 3 (1): 1-30.

               

Chang, D., Wang, F., Zhao, Y.-S. & Pan, H.-Z. (2008). Evaluation of oxidative stress in colorectal cancer patients. Biomedical and Environmental Sciences 21 (4): 286-289.

               

Chassard, C., Goumy, V., Leclerc, M., Del'homme, C. & Bernalier-Donadille, A. (2007). Characterization of the xylan-degrading microbial community from human faeces. FEMS Microbiology Ecology 61 (1): 121-131.

               

Cherrington, C. A., Hinton, M., Pearson, G. R. & Chopra, I. (1991). Short-chain organic acids at pH 5.0 kill Escherichia coli and Salmonella spp. without causing membrane perturbation. Journal of Applied Microbiology 70 (2): 161-165.

               

Clemente, J. C., Ursell, L. K., Parfrey, L. W. & Knight, R. (2012). The impact of the gut microbiota on human health: an integrative view. Cell 148 (6): 1258-1270.

               

Cloetens, L., Broekaert, W. F., Delaedt, Y., Ollevier, F., Courtin, C. M., Delcour, J. A., Rutgeerts, P. & Verbeke, K. (2010). Tolerance of arabinoxylan-oligosaccharides and their prebiotic activity in healthy subjects: a randomised, placebo-controlled cross-over study. British Journal of Nutrition 103: 703-713.

               

Cloetens, L., De Preter, V., Swennen, K., Broekaert, W. F., Courtin, C. M., Delcour, J. A., Rutgeerts, P. & Verbeke, K. (2008). Dose-response effect of arabinoxylooligosaccharides on gastrointestinal motility and on colonic bacterial metabolism in healthy volunteers. Journal of the American College of Nutrition 27 (4): 512-518.

               

Codex Alimentarius Commision (2008). Report of the 30th session of the Codex Committee on nutrition and foods for special dietary uses. ALINORM 09/32/26, November 2008. Beschikbaar op <http://www.codexalimentarius.net/download/report/727/al32_03e.pdf&gt; [datum van opzoeking 02/11/2012].

               

Conly, J. M., Stein, K., Worobetz, L. & Rutledge-Harding, S. (1994). The contribution of vitamin K2 (menaquinones) produced by the intestinal microflora to human nutritional requirements for vitamin K. The American journal of gastroenterology 89 (6): 915-923.

               

Courtin, C. M. & Delcour, J. A. (2002). Arabinoxylans and endoxylanases in wheat flour bread-making. Journal of Cereal Science 35 (3): 225-243.

               

Courtin, C. M., Swennen, K., Verjans, P. & Delcour, J. A. (2009). Heat and pH stability of prebiotic arabinoxylooligosaccharides, xylooligosaccharides and fructooligosaccharides. Food Chemistry 112 (4): 831-837.

               

Courtin, C. M., Van den Broeck, H. & Delcour, J. A. (2000). Determination of reducing end sugar residues in oligo- and polysaccharides by gas-liquid chromatography. Journal of Chromatography A 866 (1): 97-104.

               

Crittenden, R., Karppinen, S., Ojanen, S., Tenkanen, M., Fagerström, R., Mättö, J., Saarela, M., Mattila-Sandholm, T. & Poutanen, K. (2002). In vitro fermentation of cereal dietary fibre carbohydrates by probiotic and intestinal bacteria. Journal of the Science of Food and Agriculture 82 (8): 781-789.

Cueva, C., Moreno-Arribas, M. V., Martin-Alvarez, P. J., Bills, G., Vicente, M. F., Basilio, A., Rivas, C. L., Requena, T., Rodriguez, J. M. & Bartolomé, B. (2010). Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Research in Microbiology 161 (5): 372-382.

               

Cummings, J. H. & Macfarlane, G. T. (1991). The control and consequences of bacterial fermentation in the human colon. Journal of Applied Microbiology 70 (6): 443-459.

               

Cummings, J. H., Pomare, E. W., Branch, W. J., Naylor, C. P. & Macfarlane, G. T. (1987). Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28 (10): 1221-1227.

               

Damen, B., Pollet, A., Dornez, E., Broekaert, W. F., Haesendonck, I. V., Trogh, I., Arnaut, F., Delcour, J. A. & Courtin, C. M. (2012). Xylanase-mediated in situ production of arabinoxylan oligosaccharides with prebiotic potential in whole meal breads and breads enriched with arabinoxylan rich materials. Food Chemistry 131 (1): 111-118.

               

Damen, B., Verspreet, J., Pollet, A., Broekaert, W. F., Delcour, J. A. & Courtin, C. M. (2011). Prebiotic effects and intestinal fermentation of cereal arabinoxylans and arabinoxylan oligosaccharides in rats depend strongly on their structural properties and joint presence. Molecular nutrition & food research 55: 1862-1874.

               

De Boever, P., Deplancke, B. & Verstraete, W. (2000). Fermentation by gut microbiota cultured in a simulator of the human intestinal microbial ecosystem is improved by supplementing a soygerm powder. The Journal of Nutrition 130 (10): 2599-2606.

               

Delcour, J. A. & Hoseney, R. C. (2010). Principles of cereal science and technology. American Association of Cereal Chemists Inc, Minnesota. 270p.

               

Dobberstein, D. & Bunzel, M. (2010). Separation and detection of cell wall-bound ferulic acid dehydrodimers and dehydrotrimers in cereals and other plant materials by reversed phase high-performance liquid chromatography with ultraviolet detection. Journal of Agricultural and Food Chemistry 58 (16): 8927-8935.

               

Dornez, E., Verjans, P., Broekaert, W. F., Cappuyns, A. M., Van Impe, J. F., Arnaut, F., Delcour, J. A. & Courtin, C. M. (2011). In situ production of prebiotic AXOS by hyperthermophilic xylanase B from Thermotoga maritima in high-quality bread. Cereal Chemistry 88 (2): 124-129.

               

EFSA (2010). Scientific Opinion on the substantiation of health claims related to wheat bran fibre and increase in faecal bulk (ID 3066), reduction in intestinal transit time (ID 828, 839, 3067, 4699) and contribution to the maintenance or achievement of a normal body weight (ID 829) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA Journal 8 (10).

               

EFSA (2011). Scientific Opinion on the substantiation of health claims related to arabinoxylan produced from wheat endosperm and reduction of post-prandial glycaemic responses (ID 830) pursuant to Article 13(1) of Regulation (EC) No 1924/2006 EFSA Journal 9 (6).

               

Englyst, H. N. & Cummings, J. H. (1985). Digestion of the polysaccharides of some cereal foods in the human small intestine. The American Journal of Clinical Nutrition 42 (5): 778-87.

               

Englyst, H. N., Hay, S. & Macfarlane, G. T. (1987). Polysaccharide breakdown by mixed populations of human faecal bacteria. FEMS Microbiology Letters 45 (3): 163-171.

               

Fanaro, S., Chierici, R., Guerrini, P. & Vigi, V. (2003). Intestinal microflora in early infancy: composition and development. Acta Pædiatrica 92: 48-55.

               

FAOSTAT database: archives 2010. Beschikbaar op <http://faostat.fao.org/&gt; [datum van opzoeking 27/10/12].

               

Fenton, T. W., Mueller, M. M. & Clandinin, D. R. (1978). Isomerization of some cinnamic acid derivatives. Journal of Chromatography 152: 517-522.

               

Fincher, G. B. & Stone, B. A. (1986). Cell walls and their components in cereal grain technology. Advances in cereal science and technology. Y. Pomeranz. St. Paul, American Association of Cereal Chemists Inc. 364p.

               

Fioramonti, J., Theodorou, V. & Bueno, L. (2003). Probiotics: what are they? What are their effects on gut physiology? Best Practice & Research Clinical Gastroenterology 17 (5): 711-724.

               

Fooks, L. J., Fuller, R. & Gibson, G. R. (1999). Prebiotics, probiotics and human gut microbiology. International Dairy Journal 9 (1): 53-61.

               

Fooks, L. J. & Gibson, G. R. (2002). Probiotics as modulators of the gut flora. British Journal of Nutrition 88 (SupplementS1): s39-s49.

               

François, I. E. J. A., Lescroart, O., Veraverbeke, W. S., Marzorati, M., Possemiers, S., Evenepoel, P., Hamer, H., Houben, E., Windey, K., Welling, G. W., Delcour, J. A., Courtin, C. M., Verbeke, K. & Broekaert, W. F. (2012). Effects of a wheat bran extract containing arabinoxylan oligosaccharides on gastrointestinal health parameters in healthy adult human volunteers: a double-blind, randomised, placebo-controlled, cross-over trial. British Journal of Nutrition FirstView 108 (12): 1-14.

               

Frankel, W. L., Zhang, W., Singh, A., Klurfeld, D. M., Don, S., Sakata, T., Modlin, I. & Rombeau, J. L. (1994). Mediation of the trophic effects of short-chain fatty acids on the rat jejunum and colon. Gastroenterology 106 (2): 375-380.

               

Fry, S. C. (1986). Cross-linking of matrix polymers in the growing cell-walls of angiosperms. Annual Review of Plant Physiology and Plant Molecular Biology 37: 165-186.

               

Fry, S. C., Willis, S. C. & Paterson, A. E. J. (2000). Intraprotoplasmic and wall-localised formation of arabinoxylan-bound diferulates and larger ferulate coupling-products in maize cell-suspension cultures. Planta 211 (5): 679-692.

               

Gallardo, C., Jiménez, L. & Garcia-Conesa, M. T. (2006). Hydroxycinnamic acid composition and in vitro antioxidant activity of selected grain fractions. Food Chemistry 99 (3): 455-463.

               

Gao, K., Xu, A., Krul, C., Venema, K., Liu, Y., Niu, Y., Lu, J., Bensoussan, L., Seeram, N. P. & Heber, D. (2006). Of the major phenolic acids formed during human microbial fermentation of tea, citrus, and soy flavonoid supplements, only 3, 4-dihydroxyphenylacetic acid has antiproliferative activity. The Journal of Nutrition 136 (1): 52-57.

               

Garcia-Conesa, M. T., Plumb, G. W., Kroon, P. A., Wallace, G. & Williamson, G. (1997). Antioxidant properties of ferulic acid dimers. Redox Report 3 (4): 239-244.

               

Garcia-Conesa, M. T., Wilson, I. D., Plump & Ralph, J. (1999). Antioxidant properties of 4, 4'-dihydroxy-3, 3'-dimethoxy-beta, beta'-bicinnamic acid (8-8-diferulic acid, non-cyclic form). Journal of science of food and agriculture 79 (3): 379-384.

               

Garrote, G., Domínguez, H. & Parajó, J. C. (2002). Autohydrolysis of corncob: study of non-isothermal operation for xylooligosaccharide production. Journal of Food Engineering 52 (3): 211-218.

               

Gibson, G. R., Beatty, E. R., Wang, X. & Cummings, J. H. (1995). Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108 (4): 975-982.

               

Gibson, G. R. & Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. The Journal of Nutrition: 1401-1412.

               

Glitsø, L. V., Gruppen, H., Schols, H. A., Højsgaard, S., Sandström, B. & Bach Knudsen, K. E. (1999). Degradation of rye arabinoxylans in the large intestine of pigs. Journal of the Science of Food and Agriculture 79 (7): 961-969.

               

Gomez-Ruiz, J. A., Leake, D. S. & Ames, J. M. (2007). In vitro antioxidant activity of coffee compounds and their metabolites. Journal of Agricultural and Food Chemistry 55 (17): 6962-6969.

               

Grabber, J. H., Hatfield, R. D. & Ralph, J. (1998). Diferulate cross-links impede the enzymatic degradation of non-lignified maize walls. Journal of the Science of Food and Agriculture 77 (2): 193-200.

               

Graf, E. (1992). Antioxidant potential of ferulic acid. Free Radical Biology and Medicine 13 (4): 435-448.

               

Grasten, S., Liukkonen, K.-H., Chrevatidis, A., El-Nezami, H., Poutanen, K. & Mykkanen, H. (2003). Effects of wheat pentosan and inulin on the metabolic activity of fecal microbiota and on bowel function in healthy humans. Nutrition Research 23 (11): 1503-1514.

               

Gronlund, M. M., Lehtonen, O. P., Eerola, E. & Kero, P. (1999). Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. Journal of pediatric gastroenterology and nutrition 28 (1): 19-25.

               

Grootaert, C., Delcour, J. A., Courtin, C. M., Broekaert, W. F., Verstraete, W. & Van de Wiele, T. (2007). Microbial metabolism and prebiotic potency of arabinoxylan oligosaccharides in the human intestine. Trends in Food Science & Technology 18 (2): 64-71.

               

Grootaert, C., Van den Abbeele, P., Marzorati, M., Broekaert, W. F., Courtin, C. M., Delcour, J. A., Verstraete, W. & Van de Wiele, T. (2009). Comparison of prebiotic effects of arabinoxylan oligosaccharides and inulin in a simulator of the human intestinal microbial ecosystem. FEMS Microbiology Ecology 69 (2): 231-242.

               

Guarner, F. & Malagelada, J.-R. (2003). Gut flora in health and disease. The Lancet 361 (9356): 512-519.

               

Hatfield, R. D., Ralph, J. & Grabber, J. H. (1999). Cell wall cross-linking by ferulates and diferulates in grasses. Journal of the Science of Food and Agriculture 79 (3): 403-407.

               

Hill, M. J. (1997). Intestinal flora and endogenous vitamin synthesis. European Journal of Cancer Prevention 6 (2): S43-S45.

Hoffmann, R. A., Leeflang, B. R., de Barse, M. M. J., Kamerling, J. P. & Vliegenthart, J. F. G. (1991). Characterisation by 1H-n.m.r. spectroscopy of oligosaccharides, derived from arabinoxylans of white endosperm of wheat, that contain the elements -4)[a-L-Araf-(1-3)]-b-D-Xylp-(1- or -4) [a-L-Araf-(1-2)][a-L-Araf-(1-3)]-b-D-Xylp-(1-. Carbohydrate Research 221 (1): 63-81.

               

Holloway, W. D., Tasman-Jones, C. & Bell, E. (1980). The hemicellulose component of dietary fiber. The American Journal of Clinical Nutrition 33 (2): 260-263.

               

Hopkins, M. J., Englyst, H. N., Macfarlane, S., Furrie, E., Macfarlane, G. T. & McBain, A. J. (2003). Degradation of cross-linked and non-cross-linked arabinoxylans by the intestinal microbiota in children. Applied and Environmental Microbiology 69 (11): 6354-6360.

               

Huang, D., Ou, B. & Prior, R. L. (2005). The Chemistry behind Antioxidant Capacity Assays. Journal of Agricultural and Food Chemistry 53 (6): 1841-1856.

               

Iiyama, K., Lam, T. & Stone, B. A. (1994). Covalent cross-links in the cell wall. Plant physiology 104 (2): 315-320.

               

Iiyama, K., Lam, T. B. T. & Stone, B. A. (1990). Phenolic acid bridges between polysaccharides and lignin in wheat internodes. Phytochemistry 29 (3): 733-737.

               

Ishii, T. (1997). Structure and functions of feruloylated polysaccharides. Plant Science 127 (2): 111-127.

               

Izydorczyk, M. S. & Biliaderis, C. G. (1995). Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohydrate Polymers 28 (1): 33-48.

               

Izydorczyk, M. S. & Biliaderis, C. G. (2006). Arabinoxylans: technologically and nutritionally functional plant polysaccharides. Functional food carbohydrates. C. G. Biliaderis and M. S. Izydorczyk. CRC Press. 249-290.

               

Izydorczyk, M. S. & Dexter, J. E. (2008). Barley b-glucans and arabinoxylans: molecular structure, physicochemical properties, and uses in food products - a review. Food Research International 41 (9): 850-868.

               

Jones, B. J. M., Higgins, B. & Silk, D. (1987). Glucose absorption from maltotriose and glucose oligomers in the human jejunum. Clin Sci 72 (4): 409-14.

               

Kabel, M. A., Carvalheiro, F., Garrote, G., Avgerinos, E., Koukios, E., Parajó, J. C., Gírio, F. M., Schols, H. A. & Voragen, A. G. J. (2002a). Hydrothermally treated xylan rich by-products yield different classes of xylo-oligosaccharides. Carbohydrate Polymers 50 (1): 47-56.

               

Kabel, M. A., Kortenoeven, L., Schols, H. A. & Voragen, A. G. J. (2002b). In vitro fermentability of differently substituted xylo-oligosaccharides. Journal of Agricultural and Food Chemistry 50 (21): 6205-6210.

               

Karppinen, S., Liukkonen, K., Aura, A.-M., Forssell, P. & Poutanen, K. (2000). In vitro fermentation of polysaccharides of rye, wheat and oat brans and inulin by human faecal bacteria. Journal of the Science of Food and Agriculture 80 (10): 1469-1476.

               

Katan, M. B. (2012). Why the European Food Safety Authority was right to reject health claims for probiotics. Beneficial Microbes 3 (2): 85-89.

Katapodis, P., Vardakou, M., Kalogeris, E., Kekos, D., Macris, B. J. & Christakopoulos, P. (2003). Enzymic production of a feruloylated oligosaccharide with antioxidant activity from wheat flour arabinoxylan. European Journal of Nutrition 42 (1): 55-60.

               

Kern, S. M., Bennett, R. N., Mellon, F. A., Kroon, P. A. & Garcia-Conesa, M.-T. (2003). Absorption of hydroxycinnamates in humans after high-bran cereal consumption. Journal of Agricultural and Food Chemistry 51 (20): 6050-6055.

               

Koo, M. W. L. & Cho, C. H. (2004). Pharmacological effects of green tea on the gastrointestinal system. European Journal of Pharmacology 500 (1): 177-185.

               

Kroon, P. A., Faulds, C. B., Ryden, P., Robertson, J. A. & Williamson, G. (1997). Release of covalently bound ferulic acid from fiber in the human colon. Journal of Agricultural and Food Chemistry 45 (3): 661-667.

               

Kuenzig, W., Chau, J., Norkus, E., Holowaschenko, H., Newmark, H., Mergens, W. & Conney, A. (1984). Caffeic and ferulic acid as blockers of nitrosamine formation. Carcinogenesis 5 (3): 309-313.

               

Kulkarni, N., Shendye, A. & Rao, M. (1999). Molecular and biotechnological aspects of xylanases. FEMS Microbiology Reviews 23 (4): 411-456.

               

Lagaert, S., Pollet, A., Delcour, J. A., Lavigne, R., Courtin, C. M. & Volckaert, G. (2010). Substrate specificity of three recombinant alfa-l-arabinofuranosidases from Bifidobacterium adolescentis and their divergent action on arabinoxylan and arabinoxylan oligosaccharides. Biochemical and biophysical research communications 402 (4): 644-650.

               

Lagaert, S., Pollet, A., Delcour, J. A., Lavigne, R., Courtin, C. M. & Volckaert, G. (2011). Characterization of two bèta-xylosidases from Bifidobacterium adolescentis and their contribution to the hydrolysis of prebiotic xylooligosaccharides. Applied Microbiology and Biotechnology 92 (6): 1179-1185.

               

Lee, H. C., Jenner, A. M., Low, C. S. & Lee, Y. K. (2006). Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Research in Microbiology 157 (9): 876-884.

               

Lempereur, I., Rouau, X. & Abecassis, J. (1997). Genetic and agronomic variation in arabinoxylan and ferulic acid contents of durum wheat (Triticum durum L.) grain and its milling fractions. Journal of Cereal Science 25 (2): 103-110.

               

Lequart, C., Nuzillard, J.-M., Kurek, B. & Debeire, P. (1999). Hydrolysis of wheat bran and straw by an endoxylanase: production and structural characterization of cinnamoyl-oligosaccharides. Carbohydrate Research 319 (14): 102-111.

               

Li, L., Shewry, P. R. & Ward, J. L. (2008). Phenolic acids in wheat varieties in the HEALTHGRAIN diversity screen. Journal of Agricultural and Food Chemistry 56 (21): 9732-9739.

               

Lilly, D. M. & Stillwell, R. H. (1965). Probiotics: growth-promoting factors produced by microorganisms. Science 147: 747-748.

               

Liyana-Pathirana, C. M. & Shahidi, F. (2006). Importance of insoluble-bound phenolics to antioxidant properties of wheat. Journal of Agricultural and Food Chemistry 54 (4): 1256-1264.

               

Long, S. S. & Swenson, R. M. (1977). Development of anaerobic fecal flora in healthy newborn infants. The Journal of Pediatrics 91 (2): 298-301.

               

Lopez, H. W., Levrat, M.-A., Guy, C., Messager, A., Demigné, C. & Rémésy, C. (1999). Effects of soluble corn bran arabinoxylans on cecal digestion, lipid metabolism, and mineral balance (Ca, Mg) in rats. The Journal of Nutritional Biochemistry 10 (9): 500-509.

               

Lu, Z. X., Walker, K. Z., Muir, J. G. & O'Dea, K. (2004). Arabinoxylan fibre improves metabolic control in people with Type II diabetes. European Journal of Clinical Nutrition 58 (4): 621-628.

               

Macfarlane, G. T., Cummings, J. H. & Allison, C. (1986). Protein degradation by human intestinal bacteria. Journal of General Microbiology 132 (6): 1647-1656.

               

Maes, C. & Delcour, J. A. (2002). Structural characterisation of water-extractable and water-unextractable arabinoxylans in wheat bran. Journal of Cereal Science 35 (3): 315-326.

               

Maes, C., Vangeneugden, B. & Delcour, J. A. (2004). Relative activity of two endoxylanases towards water-unextractable arabinoxylans in wheat bran. Journal of Cereal Science 39 (2): 181-186.

               

Manning, T. S. & Gibson, G. R. (2004). Prebiotics. Best Practice & Research in Clinical Gastroenterology 18 (2): 287-298.

               

Mares, D. & Stone, B. A. (1973). Studies on wheat endosperm I. Chemical composition and ultrastructure of the cell walls. Australian Journal of Biological Sciences 26 (4): 793-812.

               

Merkl, R., Hradkova, I., Filip, V. & Smidrkal, J. (2010). Antimicrobial and antioxidant properties of phenolic acids alkyl esters. Czech Journal of Food Science 28 (4): 275-279.

               

Minekus, M., Marteau, P., Havenaar, R. & Huis in't Veld, J. H. J. (1995). A multi-compartmental dynamic computer-controlled model simulating the stomach and small intestine. Alternatives to Laboratory Animals 23: 197-209.

               

Mitsuoka, T. (1996). Intestinal flora and human health. Asia Pacific Journal of Clinical Nutrition 5 (1): 2-9.

               

Molly, K., Vande Woestyne, M., De Smet, I. & Verstraete, W. (1994). Validation of the Simulator of the Human Intestinal Microbial Ecosystem (SHIME) reactor using microorganism-associated activities. Microbial Ecology in Health and Disease 7 (4): 191-200.

               

Moura, P., Barata, R., Carvalheiro, F., Girio, F., Loureiro-Dias, M. C. & Esteves, M. P. (2007). In vitro fermentation of xylo-oligosaccharides from corn cobs autohydrolysis by Bifidobacterium and Lactobacillus strains. LWT - Food Science and Technology 40 (6): 963-972.

               

Neish, A. S. (2009). Microbes in gastrointestinal health and disease. Gastroenterology 136 (1): 65-80.

               

Nicholson, J. K., Holmes, E. & Wilson, I. D. (2005). Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Micro 3 (5): 431-438.

               

Nordling, M. M., Glinghammar, B., Karlsson, P. C., Kok, T. M. C. M. d. & Rafter, J. J. (2003). Effects on cell proliferation, activator protein-1 and genotoxicity by fecal water from patients with colorectal adenomas. Scandinavian Journal of Gastroenterology 38 (5): 549-555.

               

O'Hara, A. M. & Shanahan, F. (2006). The gut flora as a forgotten organ. EMBO Rep 7 (7): 688-693.

               

Ogawa, K., Takeuchi, M. & Nakamura, N. (2005). Immunological effects of partially hydrolyzed arabinoxylan from corn husk in mice. Bioscience, Biotechnology, and Biochemistry 69 (1): 19-25.

               

Ohta, T., Semboku, N., Kuchii, A., Egashira, Y. & Sanada, H. (1997). Antioxidant activity of corn bran cell-wall fragments in the LDL oxidation system. Journal of Agricultural and Food Chemistry 45 (5): 1644-1648.

               

Ohta, T., Yamasaki, S., Egashira, Y. & Sanada, H. (1994). Antioxidative activity of corn bran hemicellulose fragments. Journal of Agricultural and Food Chemistry 42 (3): 653-656.

               

Ou, B., Hampsch-Woodill, M. & Prior, R. L. (2001). Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. Journal of Agricultural and Food Chemistry 49 (10): 4619-4626.

               

Ou, S., Jackson, G. M., Jiao, X., Chen, J., Wu, J. & Huang, X. (2007). Protection against oxidative stress in diabetic rats by wheat bran feruloyl oligosaccharides. J Agric Food Chem 55 (8): 3191-3195.

               

Parker, M. L., Ng, A. & Waldron, K. W. (2005). The phenolic acid and polysaccharide composition of cell walls of bran layers of mature wheat (Triticum aestivum L. cv. Avalon) grains. Journal of the Science of Food and Agriculture 85 (15): 2539-2547.

               

Perlin, A. S. (1951). Structure of the soluble pentosans of wheat flours. Cereal Chemistry Journal 28 282-393.

               

Pollet, A., Van Craeyveld, V., Van de Wiele, T., Verstraete, W., Delcour, J., A. & Courtin, C., M. (2012). In vitro fermentation of arabinoxylan oligosaccharides and low molecular mass arabinoxylans with different structural properties from wheat (Triticum aestivum L.) bran and psyllium (Plantago ovata Forsk) seed husk. Journal of Agricultural and Food Chemistry 60: 946-954.

               

Rakotoarivonina, H., Hermant, B., Monthe, N. & Rémond, C. (2012). The hemicellulolytic enzyme arsenal of Thermobacillus xylanilyticus depends on the composition of biomass used for growth. Microbial Cell Factories 2012 11 (159): 1-12.

               

Rao, R. & Muralikrishna, G. (2006). Water soluble feruloyl arabinoxylans from rice and ragi: changes upon malting and their consequence on antioxidant activity. Phytochemistry 67: 91-99.

               

Rohn, S., Rawel, H. M. & Kroll, J. (2002). Inhibitory effects of plant phenols on the activity of selected enzymes. Journal of Agricultural and Food Chemistry 50 (12): 3566-3571.

               

Rose, D. J. & Inglett, G. E. (2010). Two-stage hydrothermal processing of wheat (Triticum aestivum) bran for the production of feruloylated arabinoxylooligosaccharides. Journal of Agricultural and Food Chemistry 58 (10): 6427-6432.

               

Russell, W. R., Scobbie, L., Chesson, A., Richardson, A. J., Stewart, C. S., Duncan, S. H., Drew, J. E. & Duthie, G. G. (2008). Anti-inflammatory implications of the microbial transformation of dietary phenolic compounds. Nutrition and Cancer 60 (5): 636-642.

               

Sánchez-Maldonado, A. F., Schieber, A. & Gänzle, M. G. (2011). Structure–function relationships of the antibacterial activity of phenolic acids and their metabolism by lactic acid bacteria. Journal of Applied Microbiology 111 (5): 1176-1184.

Sanchez, J. I., Marzorati, M., Grootaert, C., Baran, M., Van Craeyveld, V., Courtin, C. M., Broekaert, W. F., Delcour, J. A., Verstraete, W. & Van de Wiele, T. (2009). Arabinoxylan-oligosaccharides (AXOS) affect the protein/carbohydrate fermentation balance and microbial population dynamics of the Simulator of Human Intestinal Microbial Ecosystem. Microbial Biotechnology 2 (1): 101-113.

               

Sandberg, A. S., Andersson, H., Hallgren, B., Hasselblad, K., Isaksson, B. & Hultbn, L. (1981). Experimental model for in vivo determination of dietary fibre and its effect on the absorption of nutrients in the small intestine. British Journal of Nutrition 45 (02): 283-294.

               

Saulnier, L., Sado, P., Branlard, G., Charmet, G. & Guillon, F. (2007). Wheat arabinoxylans: exploiting variation in amount and composition to develop enhanced varieties. Journal of Cereal Science 46 (3): 261-281.

               

Saura-Calixto, F. (2011). Dietary fiber as a carrier of dietary antioxidants: an essential physiological function. Journal of Agricultural and Food Chemistry 59 (1): 43-49.

               

Saura-Calixto, F., Serrano, J. & Goni, I. (2007). Intake and bioaccessibility of total polyphenols in a whole diet. Food Chemistry 101 (2): 492-501.

               

Scalbert, A., Monties, B., Lallemand, J.-Y., Guittet, E. & Rolando, C. (1985). Ether linkage between phenolic acids and lignin fractions from wheat straw. Phytochemistry 24 (6): 1359-1362.

               

Shibuya, N. & Iwasaki, T. (1985). Structural features of rice bran hemicellulose. Phytochemistry 24 (2): 285-289.

               

Sies, H. (1994). Strategies of antioxidant defense. EJB Reviews 1993. Springer Berlin Heidelberg. 1993: 101-107.

               

Smith, M. M. & Hartley, R. D. (1983). Occurrence and nature of ferulic acid substitution of cell-wall polysaccharides in graminaceous plants. Carbohydrate Research 118: 65-80.

               

Srinivasan, M., Sudheer, A. R. & Menon, V. P. (2007). Ferulic acid: therapeutic potential through its antioxidant property. Journal of Clinical Biochemistry and Nutrition 40 (2): 92-100.

               

Subba Rao, M. & Muralikrishna, G. (2002). Evaluation of the Antioxidant Properties of Free and Bound Phenolic Acids from Native and Malted Finger Millet (Ragi, Eleusine coracana Indaf-15). Journal of Agricultural and Food Chemistry 50 (4): 889-892.

               

Swennen, K., Courtin, C. M. & Delcour, J. A. (2006a). Non-digestible oligosaccharides with prebiotic properties. Critical Reviews in Food Science and Nutrition 46 (6): 459-471.

               

Swennen, K., Courtin, C. M., Lindemans, G. C. J. E. & Delcour, J. A. (2006b). Large-scale production and characterisation of wheat bran arabinoxylooligosaccharides. Journal of the Science of Food and Agriculture 86 (11): 1722-1731.

               

Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L. & Hawkins Byrne, D. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis 19 (6-7): 669-675.

               

Thompson-Chagoyán, O. C., Maldonado, J. & Gil, A. (2005). Aetiology of inflammatory bowel disease (IBD): Role of intestinal microbiota and gut-associated lymphoid tissue immune response. Clinical nutrition 24 (3): 339-352.

Turnbaugh, P. J., Ridaura, V. K., Faith, J. J., Rey, F. E., Knight, R. & Gordon, J. I. (2009). The effect of diet on the human gut microbiome: A metagenomic analysis in humanized gnotobiotic mice. Science Translational Medicine 1 (6): 6-14.

               

Van Craeyveld, V., Holopainen, U., Selinheimo, E., Poutanen, K., Delcour, J. A. & Courtin, C. M. (2009). Extensive dry ball milling of wheat and rye bran leads to in situ production of arabinoxylan oligosaccharides through nanoscale fragmentation. Journal of Agricultural and Food Chemistry 57 (18): 8467-8473.

               

Van Craeyveld, V., Swennen, K., Dornez, E., Van de Wiele, T., Marzorati, M., Verstraete, W., Delaedt, Y., Onagbesan, O., Decuypere, E., Buyse, J., De Ketelaere, B., Broekaert, W. F., Delcour, J. A. & Courtin, C. M. (2008). Structurally different wheat-derived arabinoxylooligosaccharides have different prebiotic and fermentation properties in rats. The Journal of Nutrition 138 (12): 2348-2355.

               

Van de Wiele, T., Boon, N., Possemiers, S., Jacobs, H. & Verstraete, W. (2004). Prebiotic effects of chicory inulin in the simulator of the human intestinal microbial ecosystem. FEMS Microbiology Ecology 51 (1): 143-153.

               

Van De Wiele, T., Boon, N., Possemiers, S., Jacobs, H. & Verstraete, W. (2007). Inulin-type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. Journal of Applied Microbiology 102 (2): 452-460.

               

van den Berg, R., Haenen, G. R. M. M., van den Berg, H. & Bast, A. (1999). Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chemistry 66 (4): 511-517.

               

Van Laere, K. M. J., Hartemink, R., Bosveld, M., Schols, H. A. & Voragen, A. G. J. (2000). Fermentation of plant cell wall derived polysaccharides and their vorresponding oligosaccharides by intestinal bacteria. Journal of Agricultural and Food Chemistry 48 (5): 1644-1652.

               

Van Loo, J. (2004). The specificity of the interaction with intestinal bacterial fermentation by prebiotics determines their physiological efficacy. Nutrition Research Reviews 17: 89-98.

               

Vardakou, M., Nueno Palop, C., Gasson, M., Narbad, A. & Christakopoulos, P. (2007). In vitro three-stage continuous fermentation of wheat arabinoxylan fractions and induction of hydrolase activity by the gut microflora. International Journal of Biological Macromolecules 41 (5): 584-589.

               

Veenashri, B. R. & Muralikrishna, G. (2011). In vitro anti-oxidant activity of xylo-oligosaccharides derived from cereal and millet brans - comparative study. Food Chemistry 126 (3): 1475-1481.

               

Venturi, M., Hambly, R. J., Glinghammar, B., Rafter, J. J. & Rowland, I. R. (1997). Genotoxic activity in human faecal water and the role of bile acids: a study using the alkaline comet assay. Carcinogenesis 18 (12): 2353-2359.

               

Visek, W. J. (1978). Diet and cell growth modulation by ammonia. The American Journal of Clinical Nutrition 31 (10): S216-S220.

               

Voragen, A. G. J. (1998). Technological aspects of functional food-related carbohydrates. Trends in Food Science & Technology 9 (89): 328-335.

               

Wang, J., Sun, B., Cao, Y., Song, H. & Tian, Y. (2008). Inhibitory effect of wheat bran feruloyl oligosaccharides on oxidative DNA damage in human lymphocytes. Food Chemistry 109 (1): 129-136.

Williamson, G., Plumb, G. W. & Garcia-Conesa, M. T. (1999). Glycosylation, esterification, and polymerization of flavonoids and hydroxycinnamates: effects on antioxidant properties. Plant Polyphenols 2. Springer. 483-494.

               

Wong, J. M., de Souza, R., Kendall, C. W., Emam, A. & Jenkins, D. J. (2006). Colonic health: fermentation and short chain fatty acids. Journal of Clinical Gastroenterology 40 (3): 235-243.

               

Wu, G. D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y.-Y., Keilbaugh, S. A., Bewtra, M., Knights, D., Walters, W. A., Knight, R., Sinha, R., Gilroy, E., Gupta, K., Baldassano, R., Nessel, L., Li, H., Bushman, F. D. & Lewis, J. D. (2011). Linking long-term dietary patterns with gut microbial enterotypes. Science 334 (6052): 105-108.

               

Yoshioka, H., Iseki, K. & Fujita, K. (1983). Development and differences of intestinal flora in the neonatal period in breast-fed and bottle-fed infants. Pediatrics 72 (3): 317-321.

               

Yuan, X., Wang, J. & Yao, H. (2005a). Antioxidant activity of feruloylated oligosaccharides from wheat bran. Food Chemistry 90 (4): 759-764.

               

Yuan, X., Wang, J. & Yao, H. (2005b). Feruloyl oligosaccharides stimulate the growth of Bifidobacterium bifidum. Anaerobe 11 (4): 225-229.

               

Zhao, Z. & Moghadasian, M. H. (2008). Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: a review. Food Chemistry 109 (4): 691-702.

               

 

 

Download scriptie (1.73 MB)
Universiteit of Hogeschool
KU Leuven
Thesis jaar
2013