multimodale beeldvorming voor de visualisatie en kwantificatie van longfibrose en pulmonaire cryptococcose in de muis

Jennifer Poelmans
Longaandoeningen in de kijker: de rol van beeldvorming in het onderzoek naar longfibrose en cryptococcose.Wereldwijd lijden miljoenen mensen aan een chronische longziekte. Het is vaak moeilijk om te achterhalen waarom een patiënt ziek is geworden en hoe de ziekte zich verder zal ontwikkelen. Omdat er nog weinig geweten is, bestaan er voor veel van deze longziektes nog steeds geen goede behandelingen. Tot op vandaag sterven dan ook zeer veel patiënten als gevolg van een longziekte.

multimodale beeldvorming voor de visualisatie en kwantificatie van longfibrose en pulmonaire cryptococcose in de muis

Longaandoeningen in de kijker: de rol van beeldvorming in het onderzoek naar longfibrose en cryptococcose.

Wereldwijd lijden miljoenen mensen aan een chronische longziekte. Het is vaak moeilijk om te achterhalen waarom een patiënt ziek is geworden en hoe de ziekte zich verder zal ontwikkelen. Omdat er nog weinig geweten is, bestaan er voor veel van deze longziektes nog steeds geen goede behandelingen. Tot op vandaag sterven dan ook zeer veel patiënten als gevolg van een longziekte. Onderzoek op proefdieren is van wezenlijk belang om een beter inzicht te krijgen in het ontstaan en verloop van longaandoeningen. Deze kennis draagt bij in de zoektocht naar nieuwe en betere therapieën. In dit onderzoek wordt microscopie op weefselcoupes als standaardtechniek  gebruikt om een kijkje te nemen in de long. Microscopie geeft een goed beeld van de cellen die een rol spelen in het ziekteproces, maar het geeft een beperkt inzicht in het dynamische ziekteverloop of de respons op therapie.  Beeldvorming van de longen in levende muizen zou hiervoor een oplossing kunnen bieden en dat is precies wat we met deze studie wilden bereiken: beeldvorming als nieuwe techniek om het longonderzoek vooruit te helpen.

Longfibrose, astma en longkanker zijn slechts enkele voorbeelden van levensbedreigende longziektes die voorkomen in de mens. In deze studie hebben we de nadruk gelegd op het ontwikkelen van beeldvormingmethoden voor twee specifieke longaandoeningen: longfibrose en cryptococcose. Bij longfibrose wordt een grote hoeveelheid littekenweefsel (fibrose) gevormd in de longen als gevolg van zware ontstekingen. Daardoor krijgen patiënten last van droge hoest en kortademigheid. Roken of virale longinfecties kunnen deze ziekte uitlokken, maar er zijn ook veel gevallen waar men er niet in slaagt om de oorzaak te achterhalen. Daarnaast heeft men ook onvoldoende inzicht in het onderliggende mechanisme van deze ziekte. Dit alles maakt het moeilijk om patiënten op een doeltreffende manier te behandelen. De huidige behandelingen zijn dan ook voornamelijk gericht op het verlichten van de symptomen. Een longtransplantatie is de enige hoop op genezing, maar enkel patiënten waarbij de symptomatische therapie niet aanslaat, komen hiervoor in aanmerking. Diepgaand onderzoek naar de ontwikkeling van fibrose in de longen van proefdieren is dus noodzakelijk om betere therapieën te vinden voor het behandelen van deze longziekte. Men hoopt zo geneesmiddelen te vinden die de ontwikkeling van fibrose kunnen stopzetten of, in het ideale geval, kunnen terugdraaien.

De tweede longaandoening waar we dieper op in zullen gaan is cryptococcose, een infectieziekte veroorzaakt door cryptococcen. Dit is een schimmel die overal ter wereld voorkomt in de bodem. Mensen kunnen geïnfecteerd worden door het inademen van deze cellen. Gezonde personen zullen hier vrijwel niets van merken omdat het immuunsysteem ons beschermt tegen infectie. Dit is niet het geval voor personen met een verzwakt immuunsysteem, zoals AIDS-patiënten, waar zulke longinfecties vaak uitmonden in een levensbedreigende infectie die zelfs kan uitbreiden naar de hersenvliezen. Verscheidene antischimmel-geneesmiddelen zijn beschikbaar voor deze patiënten, maar toch blijft het aantal sterftegevallen door infecties met cryptococcen hoog. Daarnaast weet men nog steeds niet hoe zulke longinfecties zich nu precies ontwikkelen. Ook is het nog steeds niet begrepen hoe de cryptococcen nu precies vanuit de longen in de hersenen geraken. Om een antwoord te vinden op deze vragen, is het noodzakelijk om deze infectieziekte nader te onderzoeken in proefdieren.

In het onderzoek naar longaandoeningen worden proefdieren, zoals muizen, gebruikt. Longfibrose of long-cryptococcose wordt nagebootst in muizen, waarna de ziekteontwikkeling nader onderzocht kan worden met standaard technieken, zoals microscopie. Hiervoor moeten echter meerdere dieren op verschillende tijdspunten opgeofferd worden, wat veel tijd kost. Ook is het onmogelijk om het ziekteverloop en de efficiëntie van een experimentele behandeling op lange termijn op te volgen in eenzelfde dier. Daarom zijn we nagegaan of de ontwikkeling van longaandoeningen, zoals longfibrose en cryptococcose, in individuele muizen opgevolgd kan worden met beeldvorming zonder ze op te hoeven offeren. Onder beeldvorming verstaan we welgekende technieken zoals magnetische resonantiebeeldvorming (MRI) en computertomografie (CT). Deze technieken hebben we eerst moeten optimaliseren voor longbeeldvorming in muizen. Hierdoor kunnen de longen onderzocht worden zonder het dier op te hoeven offeren. Dezelfde dieren kunnen dus meermaals onderzocht worden binnen een bepaalde periode, waardoor de ziekteontwikkeling nauwgezet opgevolgd kan worden op individueel niveau. CT maakt natuurlijk wel gebruik van X-stralen, die bij herhaaldelijk blootstelling schade kunnen veroorzaken aan biologisch weefsel. Dit is een nadeel in vergelijking met MRI, want deze techniek is niet gebaseerd op X-stralen. We konden op basis van aanvullende experimenten echter uitsluiten dat in deze studie het longweefsel van de muizen beschadigd werd door meermaals te scannen met CT.

We zijn erin geslaagd om de ontwikkeling van longfibrose op een efficiëntere manier op te volgen met CT en MRI. De aangetaste gebieden in de longen konden duidelijk in beeld gebracht worden met beide technieken. Daarnaast konden we uit de beelden verschillende parameters, zoals de hoeveelheid lucht en de signaalintensiteit in de longen, berekenen. Deze parameters geven een nauwkeurige inschatting van de hoeveelheid ontsteking of fibrose aanwezig in de longen. Zo wordt het mogelijk om een globaal idee te krijgen over de uitgebreidheid van het letsel. Ook zijn we erin geslaagd om met MRI en CT de ontwikkeling van cryptococcose in de muislong nauwgezet op te volgen (figuur 1 en 2). Met beeldvorming kan deze infectieziekte in beeld gebracht worden, lang voor het verschijnen van enige symptomen. Dit kan ons een idee geven van tijdspunten in het ziekteverloop die de moeite waard zijn om in detail te gaan onderzoeken met microscopische technieken. Een voorbeeld van een interessant tijdspunt is het moment waarop de cryptococcen zich vanuit de longen naar de hersenen verspreiden.

We kunnen hieruit besluiten dat beeldvormingtechnieken, zoals MRI en CT, gebruikt kunnen worden om longziektes over langere periodes op te volgen in individuele dieren. Met het ontwikkelen en optimaliseren van beeldvormingmethoden hoeven er veel minder dieren opgeofferd te worden. Daarnaast willen we een bijdrage leveren in het onderzoek naar het ontstaan en de ontwikkeling van zulke ziektes. Dit onderzoek is essentieel in de zoektocht naar nieuwe therapieën voor het behandelen van longaandoeningen waarvoor tot op heden nog geen doeltreffende behandeling bestaat.

 

 

 

 

Bibliografie

1. American Thoracic Society. Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment. Am J Respir Care Med. 2000;161(1):646-64.

2. Aberle DR, Gamsu G, Ray CS. High-resolution CT of benign asbestos-related diseases: clinical and radiographic correlation. AJR Am J Roentgenol. 1988 Nov;151(5):883-91.

3. Ziesche R, Hofbauer E, Wittmann K, Petkov V, Block LH. A preliminary study of long-term treatment with interferon gamma-1b and low-dose prednisolone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 1999 Oct 21;341(17):1264-9.

4. Moeller A, Ask K, Warburton D, Gauldie J, Kolb M. The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int J Biochem Cell Biol. 2008;40(3):362-82.

5. Lee HJ, Goo JM, Kim NR, Kim MA, Chung DH, Son KR, et al. Semiquantitative measurement of murine bleomycin-induced lung fibrosis in in vivo and postmortem conditions using microcomputed tomography: correlation with pathologic scores--initial results. Invest Radiol. 2008 Jun;43(6):453-60.

6. Smith JA, Kauffman CA. Pulmonary fungal infections. Respirology. 2012 Aug;17(6):913-26.

7. Shi M, Li SS, Zheng C, Jones GJ, Kim KS, Zhou H, et al. Real-time imaging of trapping and urease-dependent transmigration of Cryptococcus neoformans in mouse brain. J Clin Invest. 2010 May;120(5):1683-93.

8. Chretien F, Lortholary O, Kansau I, Neuville S, Gray F, Dromer F. Pathogenesis of cerebral Cryptococcus neoformans infection after fungemia. J Infect Dis. 2002 Aug 15;186(4):522-30.

9. Charlier C, Nielsen K, Daou S, Brigitte M, Chretien F, Dromer F. Evidence of a role for monocytes in dissemination and brain invasion by Cryptococcus neoformans. Infect Immun. 2009 Jan;77(1):120-7.

10. Ritman EL. Small-animal CT - Its Difference from, and Impact on, Clinical CT. Nucl Instrum Methods Phys Res A. 2007 Oct 1;580(2):968-70.

11. Johnson KA. Imaging techniques for small animal imaging models of pulmonary disease: micro-CT. Toxicol Pathol. 2007 Jan;35(1):59-64.

12. Ford NL, Thornton MM, Holdsworth DW. Fundamental image quality limits for microcomputed tomography in small animals. Med Phys. 2003 Nov;30(11):2869-77.

13. De Langhe E, Vande Velde G, Hostens J, Himmelreich U, Nemery B, Luyten FP, et al. Quantification of lung fibrosis and emphysema in mice using automated micro-computed tomography. PLoS ONE. 2012;7(8):e43123.

14. Foster WK, Ford NL. Investigating the effect of longitudinal micro-CT imaging on tumour growth in mice. Phys Med Biol. 2011 Jan;56(2):315-26.

15. Cavanaugh D, Travis EL, Price RE, Gladish G, White RA, Wang M, et al. Quantification of bleomycin-induced murine lung damage in vivo with micro-computed tomography. Acad Radiol. 2006 Dec;13(12):1505-12.

16. Martiniova L, Schimel D, Lai EW, Limpuangthip A, Kvetnansky R, Pacak K. In vivo micro-CT imaging of liver lesions in small animal models. Methods. 2010 Jan;50(1):20-5.

17. Willekens I, Buls N, Lahoutte T, Baeyens L, Vanhove C, Caveliers V, et al. Evaluation of the radiation dose in micro-CT with optimization of the scan protocol. Contrast Media Mol Imaging. 2010 Jul-Aug;5(4):201-7.

18. Harris P, Heath D. The human pulmonary circulation: Its form and function in health and disease. 3 ed. Edinburgh and New York: Churchill Livingstone; 1986.

19. Wild JM, Marshall H, Bock M, Schad LR, Jakob PM, Puderbach M, et al. MRI of the lung (1/3): methods. Insights into imaging. 2012 Aug;3(4):345-53.

20. McFadden RG, Carr TJ, Wood TE. Proton magnetic resonance imaging to stage activity of interstitial lung disease. Chest. 1987 Jul;92(1):31-9. 49

21. Beckmann N, Tigani B, Mazzoni L, Fozard JR. MRI of lung parenchyma in rats and mice using a gradient-echo sequence. NMR Biomed. 2001 Aug;14(5):297-306.

22. Cutillo AG, Chan PH, Ailion DC, Watanabe S, Rao NV, Hansen CB, et al. Characterization of bleomycin lung injury by nuclear magnetic resonance: correlation between NMR relaxation times and lung water and collagen content. Magn Reson Med. 2002 Feb;47(2):246-56.

23. Kersjes W, Hildebrandt G, Cagil H, Schunk K, von Zitzewitz H, Schild H. Differentiation of alveolitis and pulmonary fibrosis in rabbits with magnetic resonance imaging after intrabronchial administration of bleomycin. Invest Radiol. 1999 Jan;34(1):13-21.

24. Boone JM, Velazquez O, Cherry SR. Small-animal X-ray dose from micro-CT. Mol Imaging. 2004 Jul;3(3):149-58.

25. Kennel SJ, Davis IA, Branning J, Pan H, Kabalka GW, Paulus MJ. High resolution computed tomography and MRI for monitoring lung tumor growth in mice undergoing radioimmunotherapy: correlation with histology. Med Phys. 2000 May;27(5):1101-7.

26. Babin AL, Cannet C, Gerard C, Saint-Mezard P, Page CP, Sparrer H, et al. Bleomycin-induced lung injury in mice investigated by MRI: model assessment for target analysis. Magn Reson Med. 2012 Feb;67(2):499-509.

27. Helm PA, Caravan P, French BA, Jacques V, Shen L, Xu Y, et al. Postinfarction myocardial scarring in mice: molecular MR imaging with use of a collagen-targeting contrast agent. Radiology. 2008 Jun;247(3):788-96.

28. van Echteld CJ, Beckmann N. A view on imaging in drug research and development for respiratory diseases. J Pharmacol Exp Ther. 2011 May;337(2):335-49.

29. Rodt T, von Falck C, Dettmer S, Halter R, Maus R, Ask K, et al. Micro-computed tomography of pulmonary fibrosis in mice induced by adenoviral gene transfer of biologically active transforming growth factor-beta1. Respir Res. 2010;11:181.

30. Ford NL, Nikolov HN, Norley CJ, Thornton MM, Foster PJ, Drangova M, et al. Prospective respiratory-gated micro-CT of free breathing rodents. Med Phys. 2005 Sep;32(9):2888-98.

31. Cavanaugh D, Johnson E, Price RE, Kurie J, Travis EL, Cody DD. In vivo respiratory-gated micro-CT imaging in small-animal oncology models. Mol Imaging. 2004 Jan;3(1):55-62.

32. Zurek M, Bessaad A, Cieslar K, Cremillieux Y. Validation of simple and robust protocols for high-resolution lung proton MRI in mice. Magn Reson Med. 2010 Aug;64(2):401-7.

33. Robson MD, Gatehouse PD, Bydder M, Bydder GM. Magnetic resonance: an introduction to ultrashort TE (UTE) imaging. J Comput Assist Tomogr. 2003 Nov-Dec;27(6):825-46.

34. Plathow C, Li M, Gong P, Zieher H, Kiessling F, Peschke P, et al. Computed tomography monitoring of radiation-induced lung fibrosis in mice. Invest Radiol. 2004 Oct;39(10):600-9.

35. Ritman EL. Micro-computed tomography-current status and developments. Annu Rev Biomed Eng. 2004;6:185-208.

36. McNitt-Gray MF. AAPM/RSNA Physics Tutorial for Residents: Topics in CT. Radiation dose in CT. Radiographics. 2002 Nov-Dec;22(6):1541-53.

37. Carlson SK, Classic KL, Bender CE, Russell SJ. Small animal absorbed radiation dose from serial micro-computed tomography imaging. Mol Imaging Biol. 2007 Mar-Apr;9(2):78-82.

38. Winkelmann CT, Figueroa SD, Rold TL, Volkert WA, Hoffman TJ. Microimaging characterization of a B16-F10 melanoma metastasis mouse model. Mol Imaging. 2006 Apr-Jun;5(2):105-14.

39. Daibes S, Hoffman TJ, Miller W. Assessment of radiation exposure to laboratory animals during micro-CT imaging. Mol Imaging. 2004;3(3):245.

40. Hu J, Haworth ST, Molthen RC, Dawson CA. Dynamic small animal lung imaging via a postacquisition respiratory gating technique using micro-cone beam computed tomography. Acad Radiol. 2004 Sep;11(9):961-70.

41. Kersemans V, Thompson J, Cornelissen B, Woodcock M, Allen PD, Buls N, et al. Micro-CT for anatomic referencing in PET and SPECT: radiation dose, biologic damage, and image quality. J Nucl Med. 2011 Nov;52(11):1827-33. 50

42. Katzenstein ALA, Myers JL. Idiopathic Pulmonary Fibrosis: Clinical Relevance of Pathological Classification. Am J Respir Crit Care Med. 1998;157:1301-15.

43. Izumi S, Iikura M, Hirano S. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. N Engl J Med. 2012 Aug 30;367(9):870.

44. Vergnon JM, Vincent M, de The G, Mornex JF, Weynants P, Brune J. Cryptogenic fibrosing alveolitis and Epstein-Barr virus: an association? Lancet. 1984 Oct 6;2(8406):768-71.

45. Scadding JG. Diffuse pulmonary alveolar fibrosis. Thorax. 1974 May;29(3):271-81.

46. Keogh BA, Crystal RG. Clinical significance of pulmonary function tests. Pulmonary function testing in interstitial pulmonary disease. What does it tell us? Chest. 1980 Dec;78(6):856-65.

47. Mapel DW, Samet JM, Coultas DB. Corticosteroids and the treatment of idiopathic pulmonary fibrosis. Past, present, and future. Chest. 1996 Oct;110(4):1058-67.

48. Taniguchi H, Ebina M, Kondoh Y, Ogura T, Azuma A, Suga M, et al. Pirfenidone in idiopathic pulmonary fibrosis. Eur Respir J. 2010 Apr;35(4):821-9.

49. Orens JB, Estenne M, Arcasoy S, Conte JV, Corris P, Egan JJ, et al. International Guideline for the Selection of Lung Transplant Candidates: 2006 Update. J of Heart Lung Transplant. 2006;25(7):745-55.

50. Moore BB, Hogaboam CM. Murine models of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2008 Feb;294(2):L152-60.

51. Blum RH, Carter SK, Agre K. A clinical review of bleomycin--a new antineoplastic agent. Cancer. 1973 Apr;31(4):903-14.

52. Chaudhary NI, Schnapp A, Park JE. Pharmacologic differentiation of inflammation and fibrosis in the rat bleomycin model. Am J Respir Crit Care Med. 2006 Apr 1;173(7):769-76.

53. Chua F, Gauldie J, Laurent GJ. Pulmonary fibrosis: searching for model answers. Am J Respir Cell Mol Biol. 2005 Jul;33(1):9-13.

54. Lazenby AJ, Crouch EC, McDonald JA, Kuhn C, 3rd. Remodeling of the lung in bleomycin-induced pulmonary fibrosis in the rat. An immunohistochemical study of laminin, type IV collagen, and fibronectin. Am Rev Respir Dis. 1990 Jul;142(1):206-14.

55. Izbicki G, Segel MJ, Christensen TG, Conner MW, Breuer R. Time course of bleomycin-induced lung fibrosis. Int J Exp Pathol. 2002 Jun;83(3):111-9.

56. Adamson IYR, Bowden DH. The Pathogenesis of Bleomycin-Induced Pulmonary Fibrosis in Mice. Am J Pathol. 1974;77(2):185-202.

57. Babin AL, Cannet C, Gerard C, Wyss D, Page CP, Beckmann N. Noninvasive assessment of bleomycin-induced lung injury and the effects of short-term glucocorticosteroid treatment in rats using MRI. J Magn Reson Imaging. 2011 Mar;33(3):603-14.

58. Conti G, Tambalo S, Villetti G, Catinella S, Carnini C, Bassani F, et al. Evaluation of lung inflammation induced by intratracheal administration of LPS in mice: comparison between MRI and histology. MAGMA. 2010 Apr;23(2):93-101.

59. Jacob RE, Amidan BG, Soelberg J, Minard KR. In vivo MRI of altered proton signal intensity and T2 relaxation in a bleomycin model of pulmonary inflammation and fibrosis. J Magn Reson Imaging. 2010 May;31(5):1091-9.

60. Karmouty-Quintana H, Cannet C, Zurbruegg S, Ble FX, Fozard JR, Page CP, et al. Bleomycin-induced lung injury assessed noninvasively and in spontaneously breathing rats by proton MRI. J Magn Reson Imaging. 2007 Oct;26(4):941-9.

61. Srivastava M, Steinwede K, Kiviranta R, Morko J, Hoymann HG, Langer F, et al. Overexpression of cathepsin K in mice decreases collagen deposition and lung resistance in response to bleomycin-induced pulmonary fibrosis. Respir Res. 2008;9:54.

62. Ashcroft T, Simpson JM, Timbrell V. Simple method of estimating severity of pulmonary fibrosis on a numerical scale. J Clin Pathol. 1988 Apr;41(4):467-70.

63. Sikic BI, Young DM, Mimnaugh EG, Gram TE. Quantification of bleomycin pulmonary toxicity in mice by changes in lung hydroxyproline content and morphometric histopathology. Cancer Res. 1978 Mar;38(3):787-92. 51

64. Shofer S, Badea C, Auerbach S, Schwartz DA, Johnson GA. A micro-computed tomography-based method for the measurement of pulmonary compliance in healthy and bleomycin-exposed mice. Exp Lung Res. 2007 Apr-May;33(3-4):169-83.

65. Mitchell TG, Perfect JR. Cryptococcosis in the era of AIDS--100 years after the discovery of Cryptococcus neoformans. Clin Microbiol Rev. 1995 Oct;8(4):515-48.

66. Liu TB, Perlin DS, Xue C. Molecular mechanisms of cryptococcal meningitis. Virulence. 2012 Mar-Apr;3(2):173-81.

67. Ellis DH, Pfeiffer TJ. Natural habitat of Cryptococcus neoformans var. gattii. J Clin Microbiol. 1990 Jul;28(7):1642-4.

68. Velagapudi R, Hsueh YP, Geunes-Boyer S, Wright JR, Heitman J. Spores as infectious propagules of Cryptococcus neoformans. Infect Immun. 2009 Oct;77(10):4345-55.

69. Pathmanathan R, Soo-Hoo Tuck S. Cryptococcosis in the University Hospital, Kuala Lumpur and review of published cases. Trans R Soc Trop Med Hyg. 1982;76(1):21-4.

70. Kidd SE, Hagen F, Tscharke RL, Huynh M, Bartlett KH, Fyfe M, et al. A rare genotype of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). Proc Natl Acad Sci U S A. 2004 Dec 7;101(49):17258-63.

71. Speed B, Dunt D. Clinical and host differences between infections with the two varieties of Cryptococcus neoformans. Clin Infect Dis. 1995 Jul;21(1):28-34.

72. Singh N, Dromer F, Perfect JR, Lortholary O. Cryptococcosis in solid organ transplant recipients: current state of the science. Clin Infect Dis. 2008 Nov 15;47(10):1321-7.

73. Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, Hamill RJ, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of america. Clin Infect Dis. 2010 Feb;50(3):291-322.

74. Charlier C, Dromer F, Leveque C, Chartier L, Cordoliani YS, Fontanet A, et al. Cryptococcal neuroradiological lesions correlate with severity during cryptococcal meningoencephalitis in HIV-positive patients in the HAART era. PLoS ONE. 2008;3(4):e1950.

75. Carroll SF, Guillot L, Qureshi ST. Mammalian model hosts of cryptococcal infection. Comp Med. 2007 Feb;57(1):9-17.

76. Ngamskulrungroj P, Chang Y, Sionov E, Kwon-Chung KJ. The primary target organ of Cryptococcus gattii is different from that of Cryptococcus neoformans in a murine model. mBio. 2012;3(3).

77. Chang YC, Stins MF, McCaffery MJ, Miller GF, Pare DR, Dam T, et al. Cryptococcal yeast cells invade the central nervous system via transcellular penetration of the blood-brain barrier. Infect Immun. 2004 Sep;72(9):4985-95.

78. Jong A, Wu CH, Shackleford GM, Kwon-Chung KJ, Chang YC, Chen HM, et al. Involvement of human CD44 during Cryptococcus neoformans infection of brain microvascular endothelial cells. Cell Microbiol. 2008 Jun;10(6):1313-26.

79. Minami M, Sobue S, Ichihara M, Hasegawa T. Analysis of the pathological lesions of the lung in a mouse model of cutaneous infection with Streptococcus pyogenes. Pathol Int. 2012 Feb;62(2):99-104.

80. Lopera D, Naranjo T, Hidalgo JM, de Oliveira Pascarelli BM, Patino JH, Lenzi HL, et al. Pulmonary abnormalities in mice with paracoccidioidomycosis: a sequential study comparing high resolution computed tomography and pathologic findings. PLoS Negl Trop Dis. 2010;4(6):e726.

81. Tournebize R, Doan BT, Dillies MA, Maurin S, Beloeil JC, Sansonetti PJ. Magnetic resonance imaging of Klebsiella pneumoniae-induced pneumonia in mice. Cell Microbiol. 2006 Jan;8(1):33-43.

82. Marzola P, Lanzoni A, Nicolato E, Di Modugno V, Cristofori P, Osculati F, et al. (1)H MRI of pneumococcal pneumonia in a murine model. J Magn Reson Imaging. 2005 Jul;22(1):170-4.

83. Wang W, Nguyen NM, Agapov E, Holtzman MJ, Woods JC. Monitoring in vivo changes in lung microstructure with (3)He MRI in Sendai virus-infected mice. J Appl Physiol. 2012 May;112(9):1593-9.

84. Podoleanu AG. Optical coherence tomography. Br J Radiol. 2005 Nov;78(935):976-88. 52

85. Perchant A, Goualher GL, Genet M, Viellerobe B, Berier K. An integrated fibered confocal microscopy system for in vivo and in situ fluorescence imaging - applications to endoscopy in small animal imaging. Biomedical Imaging: Nano to Macro. 2004;292-5.

86. Laemmel E, Genet M, Le Goualher G, Perchant A, Le Gargasson JF, Vicaut E. Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation. A comparison with intravital microscopy. J Vasc Res. 2004 Sep-Oct;41(5):400-11.

87. Thiberville L, Moreno-Swirc S, Vercauteren T, Peltier E, Cave C, Bourg Heckly G. In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy. Am J Respir Crit Care Med. 2007 Jan 1;175(1):22-31.

88. Fuchs FS, Zirlik S, Hildner K, Schubert J, Vieth M, Neurath MF. Confocal laser endomicroscopy for diagnosing lung cancer in vivo. Eur Respir J. 2012, in press.

89. Neumann H, Vieth M, Atreya R, Grauer M, Siebler J, Bernatik T, et al. Assessment of Crohn's disease activity by confocal laser endomicroscopy. Inflamm Bowel Dis. 2012 Dec;18(12):2261-9.

90. Kiesslich R, Goetz M, Burg J, Stolte M, Siegel E, Maeurer MJ, et al. Diagnosing Helicobacter pylori in vivo by confocal laser endoscopy. Gastroenterology. 2005 Jun;128(7):2119-23.

91. Mitra S, Dolan K, Foster TH, Wellington M. Imaging morphogenesis of Candida albicans during infection in a live animal. J Biomed Opt. 2010 Jan-Feb;15(1):010504.

92. Morisse H, Heyman L, Salaun M, Favennec L, Picquenot JM, Bohn P, et al. In vivo and in situ imaging of experimental invasive pulmonary aspergillosis using fibered confocal fluorescence microscopy. Med Mycol. 2012 May;50(4):386-95.

93. Lorenz JN. A practical guide to evaluating cardiovascular, renal, and pulmonary function in mice. Am J Physiol Regul Integr Comp Physiol. 2002 Jun;282(6):R1565-82.

94. De Vleeschauwer SI, Rinaldi M, De Vooght V, Vanoirbeek JA, Vanaudenaerde BM, Verbeken EK, et al. Repeated invasive lung function measurements in intubated mice: an approach for longitudinal lung research. Lab Anim. 2011 Apr;45(2):81-9.

95. Fernandez-Rodriguez S, Ford WR, Broadley KJ, Kidd EJ. Establishing the phenotype in novel acute and chronic murine models of allergic asthma. Int Immunopharmacol. 2008 May;8(5):756-63.

96. Goldman DL, Davis J, Bommarito F, Shao X, Casadevall A. Enhanced allergic inflammation and airway responsiveness in rats with chronic Cryptococcus neoformans infection: potential role for fungal pulmonary infection in the pathogenesis of asthma. J Infect Dis. 2006 Apr;193(8):1178-86.

97. Hardy RD, Jafri HS, Olsen K, Hatfield J, Iglehart J, Rogers BB, et al. Mycoplasma pneumoniae induces chronic respiratory infection, airway hyperreactivity, and pulmonary inflammation: a murine model of infection-associated chronic reactive airway disease. Infect Immun. 2002 Feb;70(2):649-54.

98. Jain AV, Zhang Y, Fields WB, McNamara DA, Choe MY, Chen GH, et al. Th2 but not Th1 immune bias results in altered lung functions in a murine model of pulmonary Cryptococcus neoformans infection. Infect Immun. 2009 Dec;77(12):5389-99.

99. Voelz K, Johnston SA, Rutherford JC, May RC. Automated analysis of cryptococcal macrophage parasitism using GFP-tagged cryptococci. PLoS ONE. 2010;5(12):e15968.

100. Vanoirbeek JA, Rinaldi M, De Vooght V, Haenen S, Bobic S, Gayan-Ramirez G, et al. Noninvasive and invasive pulmonary function in mouse models of obstructive and restrictive respiratory diseases. Am J Respir Cell Mol Biol. 2010 Jan;42(1):96-104.

101. Woessner JJ. The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys. 1961 May;93:440-7.

102. Takubo Y, Guerassimov A, Ghezzo H, Triantafillopoulos A, Bates JH, Hoidal JR, et al. Alpha1-antitrypsin determines the pattern of emphysema and function in tobacco smoke-exposed mice: parallels with human disease. Am J Respir Crit Care Med. 2002 Dec 15;166(12):1596-603.

103. Detombe SA, Dunmore-Buyze J, Petrov IE, Drangova M. X-ray dose delivered during a longitudinal micro-CT study has no adverse effect on cardiac and pulmonary tissue in C57BL/6 mice. Acta Radiol. 2013 Feb, in press.

104. Holmes JE, Bydder GM. MR imaging with ultrashort TE (UTE) pulse sequences: Basic principles. Radiography. 2005;11:163-74. 53

 

105. Bianchi A, Lux F, Tillement O, Cremillieux Y. Contrast enhanced lung MRI in mice using ultra-short echo time radial imaging and intratracheally administrated Gd-DOTA-based nanoparticles. Magn Reson Med. 2012 Dec, in press.

106. Ask K, Labiris R, Farkas L, Moeller A, Froese A, Farncombe T, et al. Comparison between conventional and "clinical" assessment of experimental lun

Universiteit of Hogeschool
Biomedische wetenschappen
Publicatiejaar
2013
Kernwoorden
Share this on: