CRYOPRESERVATION OF LIPOASPIRATE MATERIAL FOR FUTURE PURPOSES

Sam
Brondeel
  • Phillip
    Blondeel
  • Filip
    Stillaert
  • Hilde
    Beele

Vettransplantatie de toekomst in plastische chirurgie ?

Liposuctie is wereldwijd één van de meest uitgevoerde cosmetische ingrepen. Vanwege deze populariteit zijn de mogelijkheden met het verwijderde vet enorm uitgediept. Vandaag de dag worden er meer en meer transplantaties met eigen vetweefsel, of lipofilling, uitgevoerd. Naast de mogelijkheid voor esthetische doeleinden, biedt het ook de mogelijkheid om defecten veroorzaakt door kanker, trauma, aangeboren afwijkingen en radiotherapie te behandelen. Vetweefsel (foto 1) is meestal het weefsel waar vele mensen een hekel aan hebben: op bepaalde plaatsen is het te veel aanwezig, andere net te weinig. Maar is het wel terecht dat dit weefsel zo gehaat wordt? Recente ontwikkelingen tonen immers aan dat vetweefsel wel eens het weefsel van de toekomst zou kunnen zijn.

De hele organisatie van het vetweefsel uitleggen zou ons te ver leiden, maar vetweefsel bestaat dus vooral uit cellen gevuld met vetdruppels en andere cellen die zorgen voor de opbouw van een ‘skelet’ waarin de vetcellen vastzitten. Nog een belangrijke component in het vetweefsel zijn de stamcellen waarbij één gram vetweefsel ongeveer 5000 stamcellen bevat.

De transplantatie van vet is niet iets heel recentelijk. Als we de literatuur bekijken zien we dat vrije vettransplantatie al decennia lang  gebeurde, maar met slechte resultaten. In 1983 was Gustav Adolf Neuber de eerste om vet te transplanteren en dit bij een 20 jaar oude man met een inzakking in het gezicht. Deze vulde hij met blokjes vet, afgenomen van de arm. De eerste borstreconstructie met eigen vetweefsel gebeurde door Czerny in 1895. Later probeerden verschillende chirurgen hun eigen techniek, maar de resultaten waren steeds slecht. Ook moest het vet steeds weggenomen worden met een chirurgische incisie. Een grote stap vooruit was de uitvinding van de liposuctie door de dokters Fischer. Hierbij moet er dus geen chirurgische incisie gemaakt worden om vet weg te nemen en volstaat het met een kleine incisie voor de canule, vet weg te nemen. Maar de echte revelatie kwam pas op gang toen Dr. Illouz in 1986 het idee kreeg om het afgenomen vet via liposuctie ook terug in te spuiten. Hierdoor werd een revolutie gestart waarbij chirurgen vet gingen gebruiken om bijvoorbeeld een borst te reconstrueren.

De eerste stap in het lipofillingproces is de afname van vetweefsel. Dit gebeurt met de standaard Coleman liposuctie techniek. Nadat de gewenste hoeveelheid vet is afgenomen wordt dit vetweefsel gecentrifugeerd. Hierdoor ontstaan er drie lagen. De bovenste laag is een olieachtige substantie die ontstaat door geruptureerde vetcellen. De middelste laag is het effectieve lipoaspiraat dat gebruikt wordt tijdens de lipofilling. De derde laag bevat allerlei bloedcellen en celafval (foto 2&3).

De indicaties om gebruik te maken van lipofilling kunnen zowel esthetisch als reconstructief van aard zijn. We gebruiken het vooral voor weke delen defecten. Deze defecten kunnen veroorzaakt zijn door veroudering, trauma, misvormingen, chirurgie, enz… Eigen of autoloog vetweefsel is een ideale filler net omdat het lichaamseigen is, op deze manier worden afstotingsverschijnselen al vermeden. Iedereen heeft vetweefsel dus is het altijd aanwezig, het heeft bovendien een populatie van stamcellen die verantwoordelijk worden gesteld voor allerlei voordelen. Mogelijks zijn zij verantwoordelijk voor grote huidverbetering op plaatsen waar er lipofilling is gebeurd, vooral op vlak van elasticiteit en huidherstel. Hoewel er ongerustheid was  omtrent de vertraging van borstkankerdiagnose of het in het gedrang brengen van de radiografie, werd er nog altijd geen wetenschappelijk bewijs gevonden dat lipofilling zorgt voor een verhoogde kans  op borstkankerherval. Qua nadelen bespreken we de necrotische cysten en fibrosis maar het grootste nadeel is de resorptie van het vetweefsel. Na het inspuiten zien we een onvoorspelbare resorptie van het vetweefsel, welke 40 tot 60% kan bedragen. Hierdoor is er dus een noodzaak om het proces meermaals te herhalen, bijgevolg moet de patiënt steeds opnieuw een liposuctie ondergaan (foto 4&5). Ondanks de lage mortaliteit en morbiditeit, ontstaat er onvermijdelijk een stijging als dit meerdere keren na elkaar moet gebeuren. Om dit te vermijden zouden we vetweefsel kunnen invriezen. Op deze manier zou één liposuctieprocedure voldoende zijn,  het vet dat niet werd ingespoten wordt dan ingevroren en terug ontdooit wanneer het nodig zou zijn. Maar is vetweefsel invriesbaar ?

Cryopreservatie is een proces waarbij gehele weefsels worden bewaard via een invriesprocedure. Deze procedure is eigenlijk de temperatuur zodanig verlagen dat de metabole activiteit wordt gestopt. Dit lijkt heel artificieel, maar wordt ook gedaan door dieren in de natuur. Deze dieren noemen we ‘extremofielen’ en zijn immuun voor bepaalde extreme omstandigheden. Tardigrades vervangen hun intern water met het suiker ‘trehalose’, op deze manier gebeurt er geen kristallisatie wat dan weer het celmembraan zou beschadigen. Deze capaciteit doet hen overleven in temperaturen net boven het absolute nulpunt wat -273,15°C bedraagt.  Het invriezen van bepaalde menselijke weefsels gebeurt al decennialang, maar vanwege de heterogene opbouw van vetweefsel is dit voor vet vrij moeilijk. Bovendien werd er in het verleden geen echte indicatie gezien om vetweefsel in te vriezen.

Uit de literatuur is gebleken dat dit mogelijk zou zijn, maar er zijn verschillende technieken beschreven. In mijn masterproef werden eerst de meest succesvolle methodes uit de literatuur gefilterd en nadien aangevuld met de ervaring van werknemers van de weefselbank in het UZ Gent. Op deze manier werd er een protocol opgesteld dat gemakkelijk te hanteren is en bovendien haalbaar is. Het is een mooie eerste stap naar verder onderzoek, maar het is natuurlijk louter een theoretische benadering.

Hoewel het zo lijkt  is deze procedure niet gelimiteerd tot plastische chirurgie alleen. We zien in recente ontwikkelingen dat patiënten met sclerodermie zouden geholpen zijn met lipofilling en dan vooral in de handen. Dit vooral ten verdienste van de stamcellen in het lipoaspiraat. Ook deze patiënten zouden baat hebben bij het  invriezen van vetweefsel. Op deze manier zou er ambulant steeds vet kunnen worden ingespoten. Maar dit zijn natuurlijk allemaal zaken die in de toekomst verder moeten uitgewerkt worden hoewel we nu al vrij zeker zijn dat vetweefsel het weefsel van de toekomst wordt in de geneeskunde.

Bibliografie

1.         Li BW, Liao WC, Wu SH, Ma H. Cryopreservation of fat tissue and application in autologous fat graft: in vitro and in vivo study. Aesthetic plastic surgery. 2012;36(3):714-22. Epub 2011/12/23.

2.         Son D, Oh J, Choi T, Kim J, Han K, Ha S, et al. Viability of fat cells over time after syringe suction lipectomy: the effects of cryopreservation. Annals of plastic surgery. 2010;65(3):354-60. Epub 2010/08/25.

3.         Cui X, Pu LL. The search for a useful method for the optimal cryopreservation of adipose aspirates: part II. In vivo study. Aesthetic surgery journal / the American Society for Aesthetic Plastic surgery. 2010;30(3):451-6. Epub 2010/07/06.

4.         Pu LL, Coleman SR, Cui X, Ferguson RE, Jr., Vasconez HC. Cryopreservation of autologous fat grafts harvested with the Coleman technique. Annals of plastic surgery. 2010;64(3):333-7. Epub 2010/02/25.

5.         Pu LL. Cryopreservation of adipose tissue. Organogenesis. 2009;5(3):138-42. Epub 2010/01/05.

6.         Cui X, Pu LL. The search for a useful method for the optimal cryopreservation of adipose aspirates: part I. In vitro study. Aesthetic surgery journal / the American Society for Aesthetic Plastic surgery. 2009;29(3):248-52. Epub 2009/07/18.

7.         Suga H, Matsumoto D, Inoue K, Shigeura T, Eto H, Aoi N, et al. Numerical measurement of viable and nonviable adipocytes and other cellular components in aspirated fat tissue. Plastic and reconstructive surgery. 2008;122(1):103-14. Epub 2008/07/03.

8.         Kauhanen S, Peltoniemi H. [Free fat transfer--a versatile tool in reconstructive surgery]. Duodecim. 2012;128(20):2074-84. Epub 2012/11/22. Rasvansiirto--korjaavan kirurgian yleistyva tyokalu.

9.         Property of Dr. Stillaert F. PS, UZGent.

10.      Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920-6. Epub 1993/05/14.

11.      Crandall DL, Hausman GJ, Kral JG. A review of the microcirculation of adipose tissue: anatomic, metabolic, and angiogenic perspectives. Microcirculation. 1997;4(2):211-32. Epub 1997/06/01.

12.      Crandall DL, DiGirolamo M. Hemodynamic and metabolic correlates in adipose tissue: pathophysiologic considerations. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 1990;4(2):141-7. Epub 1990/02/01.

13.      Di Girolamo M, Mendlinger S, Fertig JW. A simple method to determine fat cell size and number in four mammalian species. The American journal of physiology. 1971;221(3):850-8. Epub 1971/09/01.

14.      Alexander JK, Dennis EW, Smith WG, Amad KH, Duncan WC, Austin RC. Blood volume, cardiac output, and distribution of systemic blood flow in extreme obesity. Cardiovascular Research Center bulletin. 1962;1:39-44. Epub 1962/01/01.

15.      Plagemann K. Zum 150 Geburtstag von Gustav Adolf Neuber (1850-1932). Schleswig-Holsteinisches Ärzteblatt. 2000(12).

16.      Billings E, Jr., May JW, Jr. Historical review and present status of free fat graft autotransplantation in plastic and reconstructive surgery. Plastic and reconstructive surgery. 1989;83(2):368-81. Epub 1989/02/01.

17.      Mojallal A, Foyatier JL. [Historical review of the use of adipose tissue transfer in plastic and reconstructive surgery]. Annales de chirurgie plastique et esthetique. 2004;49(5):419-25. Epub 2004/11/03. Historique de l'utilisation du tissu adipeux comme produit de comblement en chirurgie plastique.

18.      Klein AW, Elson ML. The history of substances for soft tissue augmentation. Dermatologic surgery : official publication for American Society for Dermatologic Surgery [et al]. 2000;26(12):1096-105. Epub 2001/01/03.

19.      From Wikipedia tfe. Conrad Gesner; biography. 2014.

20.      From Wikipedia tfe. Gustav Adolf Neuber; biography. 2014.

21.      Czerny V. Drei Plastische Operationen. III. Plastischer Ersatz der Brustdrüse durch ein Lipom. Verhandlungen der Deutschen Gesellscahft für Chirurgie. 1895;II:216-7.

22.      Hinderer U, Del Rio J. Erich Lexer's mammoplasty. Aesth Plast Surg. 1992(16):7.

23.      Bruning P. Contribution a l'étude des greffes adipeuses. Bull Acad R Med Belg. 1919(28):5.

24.      Peer LA. The neglected free fat graft. Plast Reconstr Surg (1946). 1956;18(4):233-50. Epub 1956/10/01.

25.      Fischer A, Fischer G. Revised technique for cellulitis fat. Reduction in riding breeches deformity. Bull Int Acad Cosm Surg. 1977(2):40.

26.      Illouz YG. The fat cell "graft": a new technique to fill depressions. Plastic and reconstructive surgery. 1986;78(1):122-3. Epub 1986/07/01.

27.      Fournier P. Microlipoextraction et microlipoinjection. Rev Chir Esthet Lang France. 1985(10):36-40.

28.      Klein J. The tumescent technique for liposuction surgery. Jorunal of the Amercian Academu of Cosmetic Surgery. 1987;4:263-7.

29.      Lillis PJ. Liposuction surgery under local anesthesia: limited blood loss and minimal lidocaine absorption. The Journal of dermatologic surgery and oncology. 1988;14(10):1145-8. Epub 1988/10/01.

30.      Hanke CW, Bernstein G, Bullock S. Safety of tumescent liposuction in 15,336 patients. National survey results. Dermatologic surgery : official publication for American Society for Dermatologic Surgery [et al]. 1995;21(5):459-62. Epub 1995/05/01.

31.      Fournier P. Body sculpturing through syringe liposuction and autologuous fat re-injection. Paris: Samuel Rolf International. 1987.

32.      Asken S. Liposuction surgery and autologous fat transplantation. Norwalk C, editor: Appleton & Lange; 1988.

33.      Bircoll M, Novack BH. Autologous fat transplantation employing liposuction techniques. Annals of plastic surgery. 1987;18(4):327-9. Epub 1987/04/01.

34.      Bircoll M. Autologous fat transplantation. Plastic and reconstructive surgery. 1987;79(3):492-3. Epub 1987/03/01.

35.      Bircoll M. Cosmetic breast augmentation utilizing autologous fat and liposuction techniques. Plastic and reconstructive surgery. 1987;79(2):267-71. Epub 1987/02/01.

36.      surgeons Asop. 2012 Post-Mastectomy Fat Graft/Fat Transfer ASPS Guiding Principles. Arlington Heights2012; Available from: http://www.plasticsurgery.org/Documents/medical-professionals/health-policy/guiding-principles/2012Post-MastectomyFatGraft-FatTransferASPSGuidingPrinciples.pdf.

37.      Delay E, Garson S, Tousson G, Sinna R. Fat injection to the breast: technique, results, and indications based on 880 procedures over 10 years. Aesthetic surgery journal / the American Society for Aesthetic Plastic surgery. 2009;29(5):360-76. Epub 2009/10/15.

38.      Rigotti G, Marchi A, Galie M, Baroni G, Benati D, Krampera M, et al. Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells. Plastic and reconstructive surgery. 2007;119(5):1409-22; discussion 23-4. Epub 2007/04/07.

39.      Coleman SR, Saboeiro AP. Fat grafting to the breast revisited: safety and efficacy. Plastic and reconstructive surgery. 2007;119(3):775-85; discussion 86-7. Epub 2007/02/22.

40.      Delay E, Sinna R, Delaporte T, Flageul G, Tourasse C, Tousson G. Patient information before aesthetic lipomodeling (lipoaugmentation): a French plastic surgeon's perspective. Aesthetic surgery journal / the American Society for Aesthetic Plastic surgery. 2009;29(5):386-95. Epub 2009/10/15.

41.      Sarfati I, Ihrai T, Kaufman G, Nos C, Clough KB. Adipose-tissue grafting to the post-mastectomy irradiated chest wall: preparing the ground for implant reconstruction. Journal of plastic, reconstructive & aesthetic surgery : JPRAS. 2011;64(9):1161-6. Epub 2011/04/26.

42.      Seth AK, Hirsch EM, Kim JY, Fine NA. Long-term outcomes following fat grafting in prosthetic breast reconstruction: a comparative analysis. Plastic and reconstructive surgery. 2012;130(5):984-90. Epub 2012/07/11.

43.      Petit JY, Botteri E, Lohsiriwat V, Rietjens M, De Lorenzi F, Garusi C, et al. Locoregional recurrence risk after lipofilling in breast cancer patients. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO. 2012;23(3):582-8. Epub 2011/05/26.

44.      Rigotti G, Marchi A, Stringhini P, Baroni G, Galie M, Molino AM, et al. Determining the oncological risk of autologous lipoaspirate grafting for post-mastectomy breast reconstruction. Aesthetic plastic surgery. 2010;34(4):475-80. Epub 2010/03/25.

45.      Spear SL, Wilson HB, Lockwood MD. Fat injection to correct contour deformities in the reconstructed breast. Plastic and reconstructive surgery. 2005;116(5):1300-5. Epub 2005/10/12.

46.      Missana MC, Laurent I, Barreau L, Balleyguier C. Autologous fat transfer in reconstructive breast surgery: indications, technique and results. European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology. 2007;33(6):685-90. Epub 2007/01/24.

47.      Mu DL, Luan J, Mu L, Xin MQ. Breast augmentation by autologous fat injection grafting: management and clinical analysis of complications. Annals of plastic surgery. 2009;63(2):124-7. Epub 2009/07/04.

48.      Gumucio CA, Pin P, Young VL, Destouet J, Monsees B, Eichling J. The effect of breast implants on the radiographic detection of microcalcification and soft-tissue masses. Plastic and reconstructive surgery. 1989;84(5):772-8; discussion 9-82. Epub 1989/11/01.

49.      de Blacam C, Momoh AO, Colakoglu S, Tobias AM, Lee BT. Evaluation of clinical outcomes and aesthetic results after autologous fat grafting for contour deformities of the reconstructed breast. Plastic and reconstructive surgery. 2011;128(5):411e-8e. Epub 2011/10/28.

50.      Lee KS, Seo SJ, Park MC, Park DH, Kim CS, Yoo YM, et al. Sepsis with multiple abscesses after massive autologous fat grafting for augmentation mammoplasty: a case report. Aesthetic plastic surgery. 2011;35(4):641-5. Epub 2010/11/09.

51.      Maillard GF. Liponecrotic cysts after augmentation mammaplasty with fat injections. Aesthetic plastic surgery. 1994;18(4):405-6. Epub 1994/01/01.

52.      Bircoll M. Liponecrotic pseudocysts following fat injection into the breast. Plastic and reconstructive surgery. 2010;126(6):2289. Epub 2010/12/03.

53.      Kim H, Yang EJ, Bang SI. Bilateral liponecrotic pseudocysts after breast augmentation by fat injection: a case report. Aesthetic plastic surgery. 2012;36(2):359-62. Epub 2011/08/02.

54.      Delay E, Spear SL, Willey SC, Robb GL, M.Y. H. lipomodeling of the reconstructed breast. In: (Eds.) N, editor. Surgery of the breast: principles and art. US: Lippincott Williams & Wilkins; 2005. p. 930-46.

55.      Smith P, Adams WP, Jr., Lipschitz AH, Chau B, Sorokin E, Rohrich RJ, et al. Autologous human fat grafting: effect of harvesting and preparation techniques on adipocyte graft survival. Plastic and reconstructive surgery. 2006;117(6):1836-44. Epub 2006/05/03.

56.      Nguyen A, Pasyk KA, Bouvier TN, Hassett CA, Argenta LC. Comparative study of survival of autologous adipose tissue taken and transplanted by different techniques. Plastic Reconstructive Surgery. 1990(85):378-86.

57.      Kokonas TC, Bucky LP, Hurley C, May JW, Jr. The fate of suctioned and surgically removed fat after reimplantation for soft-tissue augmentation: a volumetric and histologic study in the rabbit. Plastic and reconstructive surgery. 1993(91):763-8.

58.      Niechajev I, Sevcuk O. Long-term results of fat transplantation: clinical and histologic studies. Plastic and reconstructive surgery. 1994;94(3):496-506. Epub 1994/09/01.

59.      Horl HW, Feller AM, Biemer E. Technique for liposuction fat reimplantation and long-term volume evaluation by magnetic resonance imaging. Annals of plastic surgery. 1991;26(3):248-58. Epub 1991/03/01.

60.      Hong SJ, Lee JH, Hong SM, Park CH. Enhancing the viability of fat grafts using new transfer medium containing insulin and beta-fibroblast growth factor in autologous fat transplantation. Journal of plastic, reconstructive & aesthetic surgery : JPRAS. 2010;63(7):1202-8. Epub 2009/06/27.

61.      Keck M, Zeyda M, Burjak S, Kamolz LP, Selig H, Stulnig TM, et al. Coenzyme Q10 does not enhance preadipocyte viability in an in vitro lipotransfer model. Aesthetic plastic surgery. 2012;36(2):453-7. Epub 2011/10/04.

62.      Marra KG, Defail AJ, Clavijo-Alvarez JA, Badylak SF, Taieb A, Schipper B, et al. FGF-2 enhances vascularization for adipose tissue engineering. Plastic and reconstructive surgery. 2008;121(4):1153-64. Epub 2008/03/20.

63.      Rothschild LJ, Mancinelli RL. Life in extreme environments. Nature. 2001;409(6823):1092-101. Epub 2001/03/10.

64.      Hengherr S, Reuner A, Brummer F, Schill RO. Ice crystallization and freeze tolerance in embryonic stages of the tardigrade Milnesium tardigradum. Comparative biochemistry and physiology Part A, Molecular & integrative physiology. 2010;156(1):151-5. Epub 2010/02/02.

65.      do Amaral MC, Lee RE, Jr., Costanzo JP. Enzymatic regulation of glycogenolysis in a subarctic population of the wood frog: implications for extreme freeze tolerance. PloS one. 2013;8(11):e79169. Epub 2013/11/16.

66.      Costanzo JP, Lee RE, Jr. Urea loading enhances freezing survival and postfreeze recovery in a terrestrially hibernating frog. The Journal of experimental biology. 2008;211(Pt 18):2969-75. Epub 2008/09/09.

67.      Sherman JK. Historical Synopsis of Human Semen Cryobanking. In: David G, Price WS, editors. Human Artificial Insemination and Semen Preservation: Springers US; 1980. p. pp 95-105.

68.      De Felici M, Dolci S. From testis to teratomas: a brief history of male germ cells in mammals. The International journal of developmental biology. 2013;57(2-4):115-21. Epub 2013/06/21.

69.      Polge C, Smith AU, Parkes AS. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature. 1949;164(4172):666. Epub 1949/10/15.

70.      Lovelock JE. Resuspension in plasma of human red blood-cells frozen in glycerol. Lancet. 1952;1(6721):1238-9. Epub 1952/06/21.

71.      Sherman JK. Freezing and freeze-drying of bull spermatozoa. The American journal of physiology. 1957;190(2):281-6. Epub 1957/08/01.

72.      Cryobiologie So. About the Society for Cryobiology. Society for Cryobiology Editorial office , University of Bedfordshire, 250 Butterfield, Great Marlings, Luton LU2 8LE, United Kingdom2013; Available from: http://sc.memberclicks.net/about-the-sfc.

73.      Walters EM, Benson JD, Woods EJ, Critser JK. The history of sperm

cryopreservation. In: Pacey AA, Tomlinson MJ, editors. Sperm Banking - theory and practice. Cambrigde: Cambridge University press; 2009. p. 136.

74.      Moore K, Bonilla AQ. Cryopreservation of mammalian embryos: The state of the art. ARBS Annual Review of Biomedical Sciences. 2006;8:19-32.

75.      Christiani AA, Curaba M, Van Langendonckt A, Dolmans M, Donnez J. Vitrification as an alternative means of cryopreserving ovarian tissue. Reproductive BioMedicine Online. 2011;23(2):160_86.

76.      Lovelock JE. The haemolysis of human red blood-cells by freezing and thawing. Biochimica et biophysica acta. 1953;10(3):414-26. Epub 1953/03/01.

77.      Levitt J, Meryman HT. Mechanism of freezing in (plant or animal?) living cells and tissues. Science. 1957;125(3240):194-5. Epub 1957/02/01.

78.      Karow AM, Jr., Webb WR. Tissue freezing. A theory for injury and survival. Cryobiology. 1965;2(3):99-108. Epub 1965/11/01.

79.      Meryman HT. Observations on the present state of blood preservation by freezing. Cryobiology. 1968;5(2):144-6. Epub 1968/09/01.

80.      Mazur P, Leibo SP, Chu EH. A two-factor hypothesis of freezing injury. Evidence from Chinese hamster tissue-culture cells. Experimental cell research. 1972;71(2):345-55. Epub 1972/01/01.

81.      Rohrich RJ, Sorokin ES, Brown SA. In search of improved fat transfer viability: a quantitative analysis of the role of centrifugation and harvest site. Plastic and reconstructive surgery. 2004;113(1):391-5; discussion 6-7. Epub 2004/01/07.

82.      Padoin AV, Braga-Silva J, Martins P, Rezende K, Rezende AR, Grechi B, et al. Sources of processed lipoaspirate cells: influence of donor site on cell concentration. Plastic and reconstructive surgery. 2008;122(2):614-8. Epub 2008/07/16.

83.      Li K, Gao J, Zhang Z, Li J, Cha P, Liao Y, et al. Selection of donor site for fat grafting and cell isolation. Aesthetic plastic surgery. 2013;37(1):153-8. Epub 2012/12/13.

84.      Rohrich RJ, Morales DE, Krueger JE, Ansari M, Ochoa O, Robinson J, Jr., et al. Comparative lipoplasty analysis of in vivo-treated adipose tissue. Plastic and reconstructive surgery. 2000;105(6):2152-8; discussion 9-60. Epub 2000/06/06.

85.      Shiffman MA, Mirrafati S. Fat transfer techniques: the effect of harvest and transfer methods on adipocyte viability and review of the literature. Dermatologic surgery : official publication for American Society for Dermatologic Surgery [et al]. 2001;27(9):819-26. Epub 2001/09/13.

86.      Leong DT, Hutmacher DW, Chew FT, Lim TC. Viability and adipogenic potential of human adipose tissue processed cell population obtained from pump-assisted and syringe-assisted liposuction. Journal of dermatological science. 2005;37(3):169-76. Epub 2005/03/01.

87.      Ozsoy Z, Kul Z, Bilir A. The role of cannula diameter in improved adipocyte viability: a quantitative analysis. Aesthetic surgery journal / the American Society for Aesthetic Plastic surgery. 2006;26(3):287-9. Epub 2006/05/01.

88.      Ferguson RE, Cui X, Fink BF, Vasconez HC, Pu LL. The viability of autologous fat grafts harvested with the LipiVage system: a comparative study. Annals of plastic surgery. 2008;60(5):594-7. Epub 2008/04/25.

89.      Pu LL, Coleman SR, Cui X, Ferguson RE, Jr., Vasconez HC. Autologous fat grafts harvested and refined by the Coleman technique: a comparative study. Plastic and reconstructive surgery. 2008;122(3):932-7. Epub 2008/09/04.

90.      Erdim M, Tezel E, Numanoglu A, Sav A. The effects of the size of liposuction cannula on adipocyte survival and the optimum temperature for fat graft storage: an experimental study. Journal of plastic, reconstructive & aesthetic surgery : JPRAS. 2009;62(9):1210-4. Epub 2008/06/24.

91.      Surgery RC. Viafill Fat Transfer System. 2008; Available from: http://www.rumercosmetics.com/minimally-invasive-center-philadelphia/fillers-and-injectables/viafill-fat-injections/.

92.      Crawford JL, Hubbard BA, Colbert SH, Puckett CL. Fine tuning lipoaspirate viability for fat grafting. Plastic and reconstructive surgery. 2010;126(4):1342-8. Epub 2010/10/05.

93.      Herold C, Pflaum M, Utz P, Wilhelmi M, Rennekampff HO, Vogt PM. [Viability of autologous fat grafts harvested with the Coleman technique and the tissu trans system (shippert method): a comparative study]. Handchirurgie, Mikrochirurgie, plastische Chirurgie : Organ der Deutschsprachigen Arbeitsgemeinschaft fur Handchirurgie : Organ der Deutschsprachigen Arbeitsgemeinschaft fur Mikrochirurgie der Peripheren Nerven und Gefasse 2011;43(6):361-7. Epub 2012/01/14. Vitalitatsvergleich von Fetttransplantaten welche mit der Coleman Technik und dem Tissu Trans System (Shippert Methode) gewonnen wurden.

94.      Kirkham JC, Lee JH, Medina MA, 3rd, McCormack MC, Randolph MA, Austen WG, Jr. The impact of liposuction cannula size on adipocyte viability. Annals of plastic surgery. 2012;69(4):479-81. Epub 2012/09/12.

95.      Lee JH, Kirkham JC, McCormack MC, Nicholls AM, Randolph MA, Austen WG, Jr. The effect of pressure and shear on autologous fat grafting. Plastic and reconstructive surgery. 2013;131(5):1125-36. Epub 2013/02/07.

96.      Boschert MT, Beckert BW, Puckett CL, Concannon MJ. Analysis of lipocyte viability after liposuction. Plastic and reconstructive surgery. 2002;109(2):761-5; discussion 6-7. Epub 2002/01/31.

97.      Butterwick KJ. Lipoaugmentation for aging hands: a comparison of the longevity and aesthetic results of centrifuged versus noncentrifuged fat. Dermatologic surgery : official publication for American Society for Dermatologic Surgery [et al]. 2002;28(11):987-91. Epub 2002/12/04.

98.      Ramon Y, Shoshani O, Peled IJ, Gilhar A, Carmi N, Fodor L, et al. Enhancing the take of injected adipose tissue by a simple method for concentrating fat cells. Plastic and reconstructive surgery. 2005;115(1):197-201; discsussion 2-3. Epub 2004/12/29.

99.      Rose JG, Jr., Lucarelli MJ, Lemke BN, Dortzbach RK, Boxrud CA, Obagi S, et al. Histologic comparison of autologous fat processing methods. Ophthalmic plastic and reconstructive surgery. 2006;22(3):195-200. Epub 2006/05/23.

100.    Kurita M, Matsumoto D, Shigeura T, Sato K, Gonda K, Harii K, et al. Influences of centrifugation on cells and tissues in liposuction aspirates: optimized centrifugation for lipotransfer and cell isolation. Plastic and reconstructive surgery. 2008;121(3):1033-41; discussion 42-3. Epub 2008/03/05.

101.    Khater R, Atanassova P, Anastassov Y, Pellerin P, Martinot-Duquennoy V. Clinical and experimental study of autologous fat grafting after processing by centrifugation and serum lavage. Aesthetic plastic surgery. 2009;33(1):37-43. Epub 2008/11/21.

102.    Kim IH, Yang JD, Lee DG, Chung HY, Cho BC. Evaluation of centrifugation technique and effect of epinephrine on fat cell viability in autologous fat injection. Aesthetic surgery journal / the American Society for Aesthetic Plastic surgery. 2009;29(1):35-9. Epub 2009/02/24.

103.    Xie Y, Zheng D, Li Q, Chen Y, Lei H, Pu LL. The effect of centrifugation on viability of fat grafts: an evaluation with the glucose transport test. Journal of plastic, reconstructive & aesthetic surgery : JPRAS. 2010;63(3):482-7. Epub 2009/01/09.

104.    Minn KW, Min KH, Chang H, Kim S, Heo EJ. Effects of fat preparation methods on the viabilities of autologous fat grafts. Aesthetic plastic surgery. 2010;34(5):626-31. Epub 2010/05/06.

105.    Conde-Green A, de Amorim NF, Pitanguy I. Influence of decantation, washing and centrifugation on adipocyte and mesenchymal stem cell content of aspirated adipose tissue: a comparative study. Journal of plastic, reconstructive & aesthetic surgery : JPRAS. 2010;63(8):1375-81. Epub 2009/08/15.

106.    Conde-Green A, Baptista LS, de Amorin NF, de Oliveira ED, da Silva KR, Pedrosa Cda S, et al. Effects of centrifugation on cell composition and viability of aspirated adipose tissue processed for transplantation. Aesthetic surgery journal / the American Society for Aesthetic Plastic surgery. 2010;30(2):249-55. Epub 2010/05/06.

107.    Botti G, Pascali M, Botti C, Bodog F, Cervelli V. A clinical trial in facial fat grafting: filtered and washed versus centrifuged fat. Plastic and reconstructive surgery. 2011;127(6):2464-73. Epub 2011/05/28.

108.    Ferraro GA, De Francesco F, Tirino V, Cataldo C, Rossano F, Nicoletti G, et al. Effects of a new centrifugation method on adipose cell viability for autologous fat grafting. Aesthetic plastic surgery. 2011;35(3):341-8. Epub 2010/11/12.

109.    Pulsfort AK, Wolter TP, Pallua N. The effect of centrifugal forces on viability of adipocytes in centrifuged lipoaspirates. Annals of plastic surgery. 2011;66(3):292-5. Epub 2010/08/28.

110.    Hoareau L, Bencharif K, Girard AC, Gence L, Delarue P, Hulard O, et al. Effect of centrifugation and washing on adipose graft viability: a new method to improve graft efficiency. Journal of plastic, reconstructive & aesthetic surgery : JPRAS. 2013;66(5):712-9. Epub 2013/01/30.

111.    Conde-Green A, Wu I, Graham I, Chae JJ, Drachenberg CB, Singh DP, et al. Comparison of 3 techniques of fat grafting and cell-supplemented lipotransfer in athymic rats: a pilot study. Aesthetic surgery journal / the American Society for Aesthetic Plastic surgery. 2013;33(5):713-21. Epub 2013/05/31.

112.    Zhu M, Cohen SR, Hicok KC, Shanahan RK, Strem BM, Yu JC, et al. Comparison of three different fat graft preparation methods: gravity separation, centrifugation, and simultaneous washing with filtration in a closed system. Plastic and reconstructive surgery. 2013;131(4):873-80. Epub 2013/04/02.

113.    Cui XD, Gao DY, Fink BF, Vasconez HC, Pu LL. Cryopreservation of human adipose tissues. Cryobiology. 2007;55(3):269-78. Epub 2007/10/19.

114.    Pu LL, Cui X, Fink BF, Gao D, Vasconez HC. Adipose aspirates as a source for human processed lipoaspirate cells after optimal cryopreservation. Plastic and reconstructive surgery. 2006;117(6):1845-50. Epub 2006/05/03.

115.    Pu LL, Cui X, Li J, Fink BF, Cibull ML, Gao D. The fate of cryopreserved adipose aspirates after in vivo transplantation. Aesthetic surgery journal / the American Society for Aesthetic Plastic surgery. 2006;26(6):653-61. Epub 2006/11/01.

116.    Pu LL, Cui X, Fink BF, Cibull ML, Gao D. Long-term preservation of adipose aspirates after conventional lipoplasty. Aesthetic surgery journal / the American Society for Aesthetic Plastic surgery. 2004;24(6):536-41. Epub 2004/11/01.

117.    MacRae JW, Tholpady SS, Ogle RC, Morgan RF. Ex vivo fat graft preservation: effects and implications of cryopreservation. Annals of plastic surgery. 2004;52(3):281-2; discussion 3. Epub 2004/05/26.

118.    Moscatello DK, Dougherty M, Narins RS, Lawrence N. Cryopreservation of human fat for soft tissue augmentation: viability requires use of cryoprotectant and controlled freezing and storage. Dermatologic surgery : official publication for American Society for Dermatologic Surgery [et al]. 2005;31(11 Pt 2):1506-10. Epub 2006/01/19.

119.    Atik B, Ozturk G, Erdogan E, Tan O. Comparison of techniques for long-term storage of fat grafts: an experimental study. Plastic and reconstructive surgery. 2006;118(7):1533-7. Epub 2006/11/15.

120.    Wolter TP, von Heimburg D, Stoffels I, Groeger A, Pallua N. Cryopreservation of mature human adipocytes: in vitro measurement of viability. Annals of plastic surgery. 2005;55(4):408-13. Epub 2005/09/28.

121.    Pu LL, Cui X, Fink BF, Cibull ML, Gao D. Cryopreservation of adipose tissues: the role of trehalose. Aesthetic surgery journal / the American Society for Aesthetic Plastic surgery. 2005;25(2):126-31. Epub 2005/03/01.

122.    Lidagoster MI, Cinelli PB, Levee EM, Sian CS. Comparison of autologous fat transfer in fresh, refrigerated, and frozen specimens: an animal model. Annals of plastic surgery. 2000;44(5):512-5. Epub 2000/05/11.

123.    Shoshani O, Ullmann Y, Shupak A, Ramon Y, Gilhar A, Kehat I, et al. The role of frozen storage in preserving adipose tissue obtained by suction-assisted lipectomy for repeated fat injection procedures. Dermatologic surgery : official publication for American Society for Dermatologic Surgery [et al]. 2001;27(7):645-7. Epub 2001/07/10.

124.    Lei H, Li q F. [Study on viability measurement of fat for grafting]. Zhonghua zheng xing wai ke za zhi = Zhonghua zhengxing waike zazhi = Chinese journal of plastic surgery. 2005;21(5):375-8. Epub 2005/12/13.

125.    Lee JH, Kirkham JC, McCormack MC, Medina MA, Nicholls AM, Randolph MA, et al. A novel approach to adipocyte analysis. Plastic and reconstructive surgery. 2012;129(2):380-7. Epub 2012/01/31.

126.    Kim M, Kim I, Kim SH, Jung M, Han S, Lee J, et al. Cryopreserved human adipogenic-differentiated pre-adipocytes: a potential new source for adipose tissue regeneration. Cytotherapy. 2007;9(5):468-76. Epub 2007/09/06.

127.    Greenspan P, Mayer EP, Fowler SD. Nile red: a selective fluorescent stain for intracellular lipid droplets. The Journal of cell biology. 1985;100(3):965-73. Epub 1985/03/01.

128.    Greenberger JS. Corticosteroid-dependent differentiation of human marrow preadipocytes in vitro. In vitro. 1979;15(10):823-8. Epub 1979/10/01.

129.    Company BDa. Flow Cytometry Protocol for Analysis of Cell Viability using Propidium Iodide. R&D Systems, Inc., 614 McKinley Place NE, Minneapolis, MN 554132013; Available from: http://www.rndsystems.com/literature_flow_cytometry_analysis_propidium_iodide.aspx.

130.    Diagnostics R. Cell Proliferation Kit II (XTT) - Principle. Roche Diagnostics Nederland B.V., Postbus 1007, 1300 BA Almere, Netherlands2014; Available from: http://www.roche-applied-science.com/shop/products/cell-proliferation-kit-ii-xtt- - tab-3.

131.    Scuderi N, Ceccarelli S, Onesti MG, Fioramonti P, Guidi C, Romano F, et al. Human adipose-derived stromal cells for cell-based therapies in the treatment of systemic sclerosis. Cell transplantation. 2013;22(5):779-95. Epub 2012/04/25.

132.    Daumas A, Eraud J, Hautier A, Sabatier F, Magalon G, Granel B. [Interests and potentials of adipose tissue in scleroderma]. La Revue de medecine interne / fondee  par la Societe nationale francaise de medecine interne. 2013;34(12):763-9. Epub 2013/09/21. Potentialites et interet du tissu adipeux dans la sclerodermie.

133.    Zanelato TP, Marquesini G, Colpas PT, Magalhaes RF, de Moraes AM. Implantation of autologous fat globules in localized scleroderma and idiopathic lipoatrophy--report of five patients. Anais brasileiros de dermatologia. 2013;88(6 Suppl 1):120-3. Epub 2013/12/19.

134.    Del Papa N, Caviggioli F, Sambataro D, Zaccara E, Vinci V, Di Luca G, et al. Autologous Fat Grafting in the Treatment of Fibrotic Perioral Changes in Patients with Systemic Sclerosis. Cell transplantation. 2013. Epub 2013/10/25.

135.    Consorti G, Tieghi R, Clauser LC. Frontal linear scleroderma: long-term result in volumetric restoration of the fronto-orbital area by structural fat grafting. The Journal of craniofacial surgery. 2012;23(3):e263-5. Epub 2012/05/26.

136.    Shinya A, Pedersen D, Malinouski M. Method for Analysis and Sorting of Live Adipocytes. Union Biometrica, Holliston, MA; 2014; Available from: http://www.unionbio.com/biosorter/.

Download scriptie (6.01 MB)
Universiteit of Hogeschool
Universiteit Gent
Thesis jaar
2014
Thema('s)