Enkel-keten antilichamen tegen actinebindende eiwitten als tool voor het bestuderen van de immuunrespons in dendritische cellen

Nincy Debeuf
Voetjes van immuuncellen verdwijnen met alpaca antilichamenIedereen lijdt wel eens aan een verstoring van het immuunsysteem. Een te zwak reagerend immuunsysteem maakt ons gevoelig voor infecties. Een te sterk reagerend immuunsysteem kan leiden tot auto-immuunziekten of allergieën. Het is dus belangrijk dat ons immuunsysteem in balans is en daar zorgen onze dendritische cellen voor.  Dendritische cellenDendritische cellen zijn belangrijke verdedigingscellen die binnentredende micro-organismen vangen en vervolgens de andere immuuncellen verwittigen om een immuunreactie te starten.

Enkel-keten antilichamen tegen actinebindende eiwitten als tool voor het bestuderen van de immuunrespons in dendritische cellen

Voetjes van immuuncellen verdwijnen met alpaca antilichamen

Iedereen lijdt wel eens aan een verstoring van het immuunsysteem. Een te zwak reagerend immuunsysteem maakt ons gevoelig voor infecties. Een te sterk reagerend immuunsysteem kan leiden tot auto-immuunziekten of allergieën. Het is dus belangrijk dat ons immuunsysteem in balans is en daar zorgen onze dendritische cellen voor.  

Dendritische cellenDendritische cellen zijn belangrijke verdedigingscellen die binnentredende micro-organismen vangen en vervolgens de andere immuuncellen verwittigen om een immuunreactie te starten. Dendritische cellen moeten voor hun boodschappersfunctie een grote afstand afleggen en zijn dan ook zeer beweeglijk. Ze maken daarbij gebruik van podosomen, te vergelijken met de voetjes van de cel.  Een podosoom (lees: voetje) is opgebouwd uit meerdere eiwitten, waaronder fascine en cortactine. Deze eiwitten bestaan uit meerdere domeinen (lees: fragmenten) en welk domein nu precies belangrijk is in de podosomen was tot voor kort onduidelijk.

Alpaca antilichamen en nanobodiesOm de precieze rol van fascine en cortactine in de ‘voetjes’  te onderzoeken, werd gebruik gemaakt van nanobodies. Nanobodies zijn kleine eiwitten die voorkomen in het bloed van kameelachtigen, zoals alpaca’s. Doordat deze nanobodies zo klein en stabiel zijn, kunnen ze worden gebruikt om één welbepaald domein van een eiwit (zoals fascine en cortactine) uit te schakelen. De andere domeinen van het eiwit worden gespaard. Dit is een groot voordeel tegenover andere onderzoekstechnieken die het volledige eiwit uitschakelen.

Voetjes verdwijnenIsabel Van Audenhove (Doctoraatsstudente UGent) en Nincy Debeuf (masterstudente UGent) brachten nanobodies in dendritische cellen om één domein van fascine en cortactine uit te schakelen. Er werd gewerkt met menselijke dendritische cellen die geïsoleerd werden uit het bloed van gezonde vrijwilligers. De nanobodies werden via een elektrische puls binnenin de cellen gebracht en vervolgens werden de cellen microscopisch bestudeerd. Zo werd gezien dat het inbrengen van de nanobodies tegen een fascine en cortactine domein leidde tot het verdwijnen van de ‘voetjes’ van dendritische cellen. Bovendien zagen de dendritische cellen er veel minder beweeglijk uit. In het lichaam zou dit betekenen dat de boodschappersfunctie van deze immuuncellen is aangetast.  

Toekomst met nanobodiesNaast het aantonen dat welbepaalde domeinen van fascine en cortactine nodig zijn voor de voetjes van dendritische cellen, is deze masterproef ook een mooi voorbeeld van de toepassingsmogelijkheden van nanobodies. Vaak worden nanobodies gebruikt om eiwitten buiten de cel te beïnvloeden. Hier werd aangetoond dat nanobodies ook binnenin de cel geraken en effecten hebben, zelfs op eiwitten die niet door de klassieke geneesmiddelen bereikt kunnen worden. De onderzoeksgroep van professor Gettemans (UGent), tevens promoter van deze masterproef, heeft ook al kunnen aantonen dat kankereiwitten geblokkeerd kunnen worden met nanobodies. Zo zorgden nanobodies in muizen voor minder uitzaaiingen van borstkankercellen. Er wordt dan ook verwacht dat nanobodies in de toekomst een nieuwe klasse van medicijnen zullen vormen.

Bibliografie

1. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K (2000). Immunobiology of dendritic cells. Annu Rev Immunol 18:767-811.2. Schroeder HW Jr, Cavacini L (2010). Structure and function of immunoglobulins. J Allergy Clin Immunol 125:S41-52.3. Van Audenhove I, Van Impe K, Ruano-Gallego D, De Clercq S, De Muynck K, Vanloo B, Verstraete H, Fernández LÁ, Gettemans J (2013). Mapping cytoskeletal protein function in cells by means of nanobodies. Cytoskeleton 70:604-622.4. Köhler G, Milstein C (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495-497.5. Brekke OH, Sandlie I (2003). Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nat Rev Drug Discovery 2:52-62.6. Joosten V, Lokman C, Van Den Hondel CA, Punt PJ (2003). The production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi. Microb Cell Fact 2:1.7. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N, Hamers R (1993). Naturally occurring antibodies devoid of light chains. Nature 363:446-448.8. Vanlandschoot P, Stortelers C, Beirnaert E, Ibañez LI, Schepens B, Depla E, Saelens X (2011). Nanobodies®: new ammunition to battle viruses. Antiviral Res 92:389-407.9. Wesolowski J, Alzogaray V, Reyelt J, Unger M, Juarez K, Urrutia M, Cauerhff A, Danquah W, Rissiek B, Scheuplein F, Schwarz N, Adriouch S, Boyer O, Seman M, Licea A, Serreze DV, Goldbaum FA, Haag F, Koch-Nolte F (2009). Single domain antibodies: promising experimental and therapeutic tools in infection and immunity. Med Microbiol Immunol 198:157-174.10. Deffar K, Shi H, Li L, Wang X, Zhu X (2009). Nanobodies - the new concept in antibody engineering. Afr J Biotechnol 8:2645-2652.11. Cortez-Retamozo V, Backmann N, Senter PD, Wernery U, De Baetselier P, Muyldermans S, Revets H (2004). Efficient cancer therapy with a nanobody-based conjugate. Cancer Res 64:2853-2857.12. Verheesen P, ten Haaft MR, Lindner N, Verrips CT, de Haard JJ (2003). Beneficial properties of single-domain antibody fragments for application in immunoaffinity purification and immuno-perfusion chromatography. Biochim Biophys Acta 1624:21-28.13. Griffin L, Lawson A (2011). Antibody fragments as tools in crystallography. Clin Exp Immunol 165:285-291.14. Delanote V, Vanloo B, Catillon M, Friederich E, Vandekerckhove J, Gettemans J (2010). An alpaca single-domain antibody blocks filopodia formation by obstructing L-plastin-mediated F-actin bundling. FASEB J 24:105-118.15. Van Impe K, Bethuyne J, Cool S, Impens F, Ruano-Gallego D, De Wever O, Vanloo B, Van Troys M, Lambein K, Boucherie C, Martens E, Zwaenepoel O, Hassanzadeh-Ghassabeh G, Vandekerckhove J, Gevaert K, Fernández LA, Sanders NN, Gettemans J (2013). A nanobody targeting the F-actin capping protein CapG restrains breast cancer metastasis. Breast Cancer Res 15:R116.16. De Clercq S, Zwaenepoel O, Martens E, Vandekerckhove J, Guillabert A, Gettemans J (2013). Nanobody-induced perturbation of LFA-1/L-plastin phosphorylation impairs MTOC docking, immune synapse formation and T cell activation. Cell Mol Life Sci 70:909-922.17. De Clercq S, Boucherie C, Vandekerckhove J, Gettemans J, Guillabert A (2013). L-plastin nanobodies perturb matrix degradation, podosome formation, stability and lifetime in THP-1 macrophages. PLoS One 8:e78108.18. Cao T, Heng BC (2005). Intracellular antibodies (intrabodies) versus RNA interference for therapeutic applications. Ann Clin Lab Sci 35:227-229.19. Broisat A, Hernot S, Toczek J, De Vos J, Riou LM, Martin S, Ahmadi M, Thielens N, Wernery U, Caveliers V, Muyldermans S, Lahoutte T, Fagret D, Ghezzi C, Devoogdt N (2012). Nanobodies targeting mouse/human VCAM1 for the nuclear imaging of atherosclerotic lesions. Circ Res 110:927-937.20. Saerens D, Kinne J, Bosmans E, Wernery U, Muyldermans S, Conrath K (2004). Single domain antibodies derived from dromedary lymph node and peripheral blood lymphocytes sensing conformational variants of prostate-specific antigen. J Biol Chem 279:51965-51972.21. Roovers RC, Laeremans T, Huang L, De Taeye S, Verkleij AJ, Revets H, de Haard HJ, van Bergen en Henegouwen PM (2007). Efficient inhibition of EGFR signaling and of tumour growth by antagonistic anti-EFGR Nanobodies. Cancer Immunol Immunother 56:303-317.22. Li T, Bourgeois JP, Celli S, Glacial F, Le Sourd AM, Mecheri S, Weksler B, Romero I, Couraud PO, Rougeon F, Lafaye P (2012). Cell-penetrating anti-GFAP VHH and corresponding fluorescent fusion protein VHH-GFP spontaneously cross the blood-brain barrier and specifically recognize astrocytes: application to brain imaging. FASEB J 26:3969-3979.23. Palucka K, Banchereau J (2012). Cancer immunotherapy via dendritic cells. Nat Rev Cancer 12:265-277.24. Banchereau J, Steinman RM (1998). Dendritic cells and the control of immunity. Nature 392:245-252.25. Burns S, Hardy SJ, Buddle J, Yong KL, Jones GE, Thrasher AJ (2004). Maturation of DC is associated with changes in motile characteristics and adherence. Cell Motil Cytoskeleton 57:118-132.26. West MA, Prescott AR, Chan KM, Zhou Z, Rose-John S, Scheller J, Watts C (2008). TLR ligand-induced podosome disassembly in dendritic cells is ADAM17 dependent. J Cell Biol 182:993-1005.27. Steinman RM, Banchereau J (2007). Taking dendritic cells into medicine. Nature 449:419-426.28. Cheever MA, Higano CS (2011). PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res 17:3520-3526.29. Linder S, Wiesner C, Himmel M (2011). Degrading devices: invadosomes in proteolytic cell invasion. Annu Rev Cell Dev Biol 27:185-211.30. Schachtner H, Calaminus SD, Thomas SG, Machesky LM (2013). Podosomes in adhesion, migration, mechanosensing and matrix remodeling. Cytoskeleton 70:572-589.31. Linder S (2009). Invadosomes at a glance. J Cell Sci 122:3009-3013.32. Imai K, Nonoyama S, Ochs HD (2003). WASP (Wiskott-Aldrich syndrome protein) gene mutations and phenotype. Curr Opin Allergy Clin Immunol 3:427-436.33. Quintavalle M, Elia L, Condorelli G, Courtneidge SA (2010). MicroRNA control of podosome formation in vascular smooth muscle cells in vivo and in vitro. J Cell Biol 189:13-22.34. Carman CV, Sage PT, Sciuto TE, de la Fuente MA, Geha RS, Ochs HD, Dvorak HF, Dvorak AM, Springer TA (2007). Transcellular diapedesis is initiated by invasive podosomes. Immunity 26:784-797.35. Luxenburg C, Geblinger D, Klein E, Anderson K, Hanein D, Geiger B, Addadi L (2007). The architecture of the adhesive apparatus of cultured osteoclasts: from podosome formation to sealing zone assembly. PLoS One 2:e179.36. Kureishy N, Sapountzi V, Prag S, Anilkumar N, Adams JC (2002). Fascins, and their roles in cell structure and function. Bioessays 24:350-361.37. Hashimoto Y, Kim DJ, Adams JC (2011). The roles of fascins in health and disease. J Pathol 224:289-300.38. Sedeh RS, Fedorov AA, Fedorov EV, Ono S, Matsumura F, Almo SC, Bathe M (2010). Structure, evolutionary conservation, and conformational dynamics of Homo sapiens fascin-1, an F-actin crosslinking protein. J Mol Biol 400:589-604.39. Yang S, Huang FK, Huang J, Chen S, Jakoncic J, Leo-Macias A, Diaz-Avalos R, Chen L, Zhang JJ, Huang XY (2013). Molecular mechanism of fascin function in filopodial formation. J Biol Chem 288:274-284.40. Jansen S, Collins A, Yang C, Rebowski G, Svitkina T, Dominguez R (2011). Mechanism of actin filament bundling by fascin. J Biol Chem 286:30087-30096.41. Kirkbride KC, Sung BH, Sinha S, Weaver AM (2011). Cortactin: a multifunctional regulator of cellular invasiveness. Cell Adh Migr 5:187-198.42. Jayo A, Parsons M (2010). Fascin: a key regulator of cytoskeletal dynamics. Int J Biochem Cell Biol 42:1614-1617.43. Sun J, He H, Pillai S, Xiong Y, Challa S, Xu L, Chellappan S, Yang S (2013). GATA3 transcription factor abrogates Smad4 transcription factor-mediated fascin overexpression, invadopodium formation, and breast cancer cell invasion. J Biol Chem 288:36971-36982.44. Adams JC (2004). Fascin protrusions in cell interactions. Trends Cardiovasc Med 14:221-226.45. Li A, Dawson JC, Forero-Vargas M, Spence HJ, Yu X, König I, Anderson K, Machesky LM (2010). The actin-bundling protein fascin stabilizes actin in invadopodia and potentiates protrusive invasion. Curr Biol 20:339-345.46. Tan VY, Lewis SJ, Adams JC, Martin RM (2013). Association of fascin-1 with mortality, disease progression and metastasis in carcinomas: a systematic review and meta-analysis. BMC Med 11:52.47. Kim MY, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH, Norton L, Massagué J (2009). Tumor self-seeding by circulating cancer cells. Cell 139:1315-1326.48. Ross R, Jonuleit H, Bros M, Ross XL, Yamashiro S, Matsumura F, Enk AH, Knop J, Reske-Kunz AB (2000). Expression of the actin-bundling protein fascin in cultured human dendritic cells correlates with dendritic morphology and cell differentiation. J Invest Dermatol 115:658-663.49. Mosialos G, Yamashiro S, Baughman RW, Matsudaira P, Vara L, Matsumura F, Kieff E, Birkenbach M (1994). Epstein-Barr virus infection induces expression in B lymphocytes of a novel gene encoding an evolutionarily conserved 55-kilodalton actin-bundling protein. J Virol 68:7320-7328.50. Ross R, Ross XL, Schwing J, Längin T, Reske-Kunz AB (1998). The actin-bundling protein fascin is involved in the formation of dendritic processes in maturing epidermal Langerhans cells. J Immunol 160:3776-3782.51. Al-Alwan MM, Rowden G, Lee TD, West KA (2001). Fascin is involved in the antigen presentation activity of mature dendritic cells. J Immunol 166:338-345.52. Geyeregger R, Zeyda M, Bauer W, Kriehuber E, Säemann MD, Zlabinger GJ, Maurer D, Stulnig TM (2007). Liver X receptors regulate dendritic cell phenotype and function through blocked induction of the actin-bundling protein fascin. Blood 109:4288-4295.53. Rothoeft T, Balkow S, Krummen M, Beissert S, Varga G, Loser K, Oberbanscheidt P, van den Boom F, Grabbe S (2006). Structure and duration of contact between dendritic cells and T cells are controlled by T cell activation state. Eur J Immunol 36:3105-3117.54. Yamakita Y, Matsumura F, Lipscomb MW, Chou PC, Werlen G, Burkhardt JK, Yamashiro S (2011). Fascin1 promotes cell migration of mature dendritic cells. J Immunol 186:2850-2859.55. Ross R, Sudowe S, Beisner J, Ross XL, Ludwig-Portugall I, Steitz J, Tüting T, Knop J, Reske-Kunz AB (2003). Transcriptional targeting of dendritic cells for gene therapy using the promoter of the cytoskeletal protein fascin. Gene Ther 10:1035-1040.56. Ammer AG, Weed SA (2008). Cortactin branches out: roles in regulating protrusive actin dynamics. Cell Motil Cytoskeleton 65:687-707.57. MacGrath SM, Koleske AJ (2012). Cortactin in cell migration and cancer at a glance. J Cell Sci 125:1621-1626.58. Wu H, Reynolds AB, Kanner SB, Vines RR, Parsons JT (1991). Identification and characterization of a novel cytoskeleton-associated pp60src substrate. Mol Cell Biol 11:5113-5124.59. Hao JJ, Zhu J, Zhou K, Smith N, Zhan X (2005). The coiled-coil domain is required for HS1 to bind to F-actin and activate Arp2/3 complex. J Biol Chem 280:37988-37994.60. Uruno T, Zhang P, Liu J, Hao JJ, Zhan X (2003). Haematopoietic lineage cell-specific protein 1 (HS1) promotes actin-related protein (Arp) 2/3 complex-mediated actin polymerization. Biochem J 371:485-493.61. van Rossum AG, Schuuring-Scholtes E, van Buuren-van Seggelen V, Kluin PM, Schuuring E (2005). Comparative genome analysis of cortactin and HS1: the significance of the F-actin binding repeat domain. BMC Genomics 6:15.62. Dehring DA, Clarke F, Ricart BG, Huang Y, Gomez TS, Williamson EK, Hammer DA, Billadeau DD, Argon Y, Burkhardt JK (2011). Hematopoietic lineage cell-specific protein 1 functions in concert with the Wiskott-Aldrich syndrome protein to promote podosome array organization and chemotaxis in dendritic cells. J Immunol 186:4805-4818.63. Bañón-Rodríguez I, Monypenny J, Ragazzini C, Franco A, Calle Y, Jones GE, Antón IM (2011). The cortactin-binding domain of WIP is essential for podosome formation and extracellular matrix degradation by murine dendritic cells. Eur J Cell Biol 90:213-223.64. Huang Y, Biswas C, Klos Dehring DA, Sriram U, Williamson EK, Li S, Clarke F, Gallucci S, Argon Y, Burkhardt JK (2011). The actin regulatory protein HS1 is required for antigen uptake and presentation by dendritic cells. J Immunol 187:5952-5963.65. Van Audenhove I, Boucherie C, Pieters L, Zwaenepoel O, Vanloo B, Martens E, Verbrugge C, Hassanzadeh-Ghassabeh G, Vandekerckhove J, Cornelissen M, De Ganck A, Gettemans J (2014). Stratifying fascin and cortactin function in invadopodium formation using inhibitory nanobodies and targeted subcellular delocalization. FASEB J 28:1805-1818.66. van Helden SF, van Leeuwen FN, Figdor CG (2008). Human and murine model cell lines for dendritic cell biology evaluated. Immunol Lett 117:191-197.67. Yamauchi M, Hashimoto M, Ichiyama K, Yoshida R, Hanada T, Muta T, Komune S, Kobayashi T, Yoshimura A (2007). Ifi202, an IFN-inducible candidate gene for lupus susceptibility in NZB/W F1 mice, is a positive regulator for NF-kappaB activation in dendritic cells. Int Immunol 19:935-942.68. Kim JA, Cho K, Shin MS, Lee WG, Jung N, Chung C, Chang JK (2008). A novel electroporation method using a capillary and wire-type electrode. Biosens Bioelectron 23:1353-1360.69. Quast T, Tappertzhofen B, Schild C, Grell J, Czeloth N, Förster R, Alon R, Fraemohs L, Dreck K, Weber C, Lämmermann T, Sixt M, Kolanus W (2009). Cytohesin-1 controls the activation of RhoA and modulates integrin-dependent adhesion and migration of dendritic cells. Blood 113:5801-5810.70. Mangeot PE, Duperrier K, Nègre D, Boson B, Rigal D, Cosset FL, Darlix JL (2002). High levels of transduction of human dendritic cells with optimized SIV vectors. Mol Ther 5:283-290.71. Chen X, He J, Chang LJ (2004). Alteration of T cell immunity by lentiviral transduction of human monocyte-derived dendritic cells. Retrovirology 1:37.72. Tan PH, Beutelspacher SC, Xue SA, Wang YH, Mitchell P, McAlister JC, Larkin DF, McClure MO, Stauss HJ, Ritter MA, Lombardi G, George AJ (2005). Modulation of human dendritic-cell function following transduction with viral vectors: implications for gene therapy. Blood 105:3824-3832.73. Dullaers M, Van Meirvenne S, Heirman C, Straetman L, Bonehill A, Aerts JL, Thielemans K, Breckpot K (2006). Induction of effective therapeutic antitumor immunity by direct in vivo administration of lentiviral vectors. Gene Ther 13:630-640.74. Zanet J, Jayo A, Plaza S, Millard T, Parsons M, Stramer B (2012). Fascin promotes filopodia formation independent of its role in actin bundling. J Cell Biol 197:477-486.75. Vignjevic D, Kojima S, Aratyn Y, Danciu O, Svitkina T, Borisy GG (2006). Role of fascin in filopodial protrusion. J Cell Biol 174:863-875.76. Martinez-Quiles N, Rohatgi R, Antón IM, Medina M, Saville SP, Miki H, Yamaguchi H, Takenawa T, Hartwig JH, Geha RS, Ramesh N (2001). WIP regulates N-WASP-mediated actin polymerization and filopodium formation. Nat Cell Biol 3:484-491.77. Webb BA, Eves R, Mak AS (2006). Cortactin regulates podosome formation: roles of the protein interaction domains. Exp Cell Res 312:760-769.78. Tehrani S, Faccio R, Chandrasekar I, Ross FP, Cooper JA (2006). Cortactin has an essential and specific role in osteoclast actin assembly. Mol Biol Cell 17:2882-2895.79. Illés A, Enyedi B, Tamás P, Balázs A, Bogel G, Melinda, Lukács, Buday L (2006). Cortactin is required for integrin-mediated cell spreading. Immunol Lett 104:124-130.80. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003). Cell migration: integrating signals from front to back. Science 302:1704-1709.81. Burns S, Thrasher AJ, Blundell MP, Machesky L, Jones GE (2001). Configuration of human dendritic cell cytoskeleton by Rho GTPases, the WAS protein, and differentiation. Blood 98:1142-1149.

 

Universiteit of Hogeschool
Biomedische Wetenschappen
Publicatiejaar
2014
Kernwoorden
Share this on: