Slow release in vitro systemen

Evelien Van Bavegem

Slow release in vitro systemen

Vaak gebeurt het dat planten bij in vitro vermeerdering alle nutriënten en groeiregulatoren snel opgebruiken, waardoor er in latere fasen van de cultuur een tekort aan deze componenten kan optreden. In deze masterproef werd onderzocht of het mogelijk is om via verschillende soorten micropartikels een slow release-effect te bereiken. Hierdoor kunnen de vraag en het aanbod van nutriënten beter op elkaar afgestemd worden. Eerst werden verschillende alterna-tieven onderzocht. Deze zijn ongecoat CaCO3, PSS-gecoat CaCO3, meerlagig gecoat CaCO3, PLGA-nanopartikels en CaCO3-PEI-micropartikels. Voor elke soort partikels werd getracht het protocol te optimaliseren en inkapseling door adsorptie werd vergeleken met coprecipita-tie. De release bij deze verschillende partikels werd gemodelleerd voor riboflavine en IBA. De partikels waarvoor opname van IBA kon vastgesteld worden, werden gebruikt bij het on-derzoek op Arabidopsis thaliana DR5:GUS. Dit waren CaCO3 zonder coating, PSS-gecoat CaCO3 en CaCO3-PEI, allen gecoprecipiteerd met IBA. De voorgemaakte partikels, bewaard in ethanol, werden geïmmobiliseerd in MS-medium en aangebracht op het verlengd hypocotyl van de in het donker gekiemde A. thaliana. Na één week vond de GUS-kleuring plaats. De blauwe verkleuring van de cellen, dat waargenomen werd ter hoogte van het hypocotyl, is een indicatie van het effect van IBA dat afgestaan is door herkristallisatie van de micropartikels.


Alere. FITC Reagents FITC Reagents at Alere (pp. 2).
Baker, C., Pradhan, A., Pakstis, L., Pochan, D. J., & Shah, S. I. (2005). Synthesis and antibac-terial properties of silver nanoparticles. J Nanosci Nanotechnol, 5(2), 244-249. doi: Doi 10.1166/Jnn.2005.034
Carretero, A. S., Blanco, C. C., Barrero, F. A., & Gutierrez, A. F. (1998). Method for the quantitative determination of 1-naphthaleneacetic acid in spiked canned pineapple samples by micelle-stabilized room temperature phosphorescence. Journal of Agricultural and Food Chemistry, 46(2), 561-565.
Caruso, F., Caruso, R. A., & Mohwald, H. (1998). Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science, 282(5391), 1111-1114. doi: DOI 10.1126/science.282.5391.1111
De Geest, B. G., Sanders, N. N., Sukhorukov, G. B., Demeester, J., & De Smedt, S. C. (2007). Release mechanisms for polyelectrolyte capsules. Chemical Society Reviews, 36(4), 636-649. doi: Doi 10.1039/B600460c
Decher, G. (2006). An Introduction to Polyelectrolyte Multilayers: Layer-by-Layer Adsorp-tion (LbL): Institut Charles Sadron.
del Mercato, L. L., Rivera-Gil, P., Abbasi, A. Z., Ochs, M., Ganas, C., Zins, I., . . . Parak, W. J. (2010). LbL multilayer capsules: recent progress and future outlook for their use in life sci-ences. Nanoscale, 2(4), 458-467. doi: Doi 10.1039/B9nr00341j
Delcea, M., Mohwald, H., & Skirtach, A. G. (2011). Stimuli-responsive LbL capsules and nanoshells for drug delivery. Advanced Drug Delivery Reviews, 63(9), 730-747. doi: DOI 10.1016/j.addr.2011.03.010
Donath, E., Sukhorukov, G. B., Caruso, F., Davis, S. A., & Mohwald, H. (1998). Novel hol-low polymer shells by colloid-templated assembly of polyelectrolytes. Angewandte Chemie-International Edition, 37(16), 2202-2205.
Dong, H., & Beer, S. V. (2000). Riboflavin induces disease resistance in plants by activating a novel signal transduction pathway. Phytopathology, 90(8), 801-811. doi: Doi 10.1094/Phyto.2000.90.8.801
Dorta, M. J., Munguia, O., & Llabres, M. (1993). Effects of Polymerization Variables on Plga Properties - Molecular-Weight, Composition and Chain Structure. International Journal of Pharmaceutics, 100(1-3), 9-14. doi: Doi 10.1016/0378-5173(93)90069-R
Epstein, E., & Ludwigmuller, J. (1993). Indole-3-Butyric Acid in Plants - Occurrence, Syn-thesis, Metabolism and Transport. Physiologia Plantarum, 88(2), 382-389. doi: DOI 10.1034/j.1399-3054.1993.880224.x
Galston, A. W. (1950). Riboflavin, Light, and the Growth of Plants. Science, 111.
Guan, W. B., Xu, P. J., Wang, K., Song, Y., & Zhang, H. Y. (2011). Determination and study on dissipation of 1-naphthylacetic acid in garlic and soil using high performance liquid chro-matography-tandem mass spectrometry. Food and Chemical Toxicology, 49(11), 2869-2874. doi: DOI 10.1016/j.fct.2011.08.009
Hu, Z. Y., Tang, J. H., Ge, Z. L., Song, T. M., Qiu, T., Xie, H. P., & Guo, L. P. (2013). Fluo-rescence Enhancement of IgG-FITC Based on Surface Plasmon Resonance of Ag@SiO2 Na-noparticles as Application of Biomarker. Analytical Letters, 46(5), 844-855. doi: Doi 10.1080/00032719.2012.738342
Jin, S. P., Wang, Y. S., He, J. F., Yang, Y., Yu, X. H., & Yue, G. R. (2013). Preparation and Properties of a Degradable Interpenetrating Polymer Networks Based on Starch with Water Retention, Amelioration of Soil, and Slow Release of Nitrogen and Phosphorus Fertilizer. Journal of Applied Polymer Science, 128(1), 407-415. doi: Doi 10.1002/App.38162
Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl, 40(11), 2004-2021.
Liu, W. L., Lo, S. H., Singco, B., Yang, C. C., Huang, H. Y., & Lin, C. H. (2013). Novel trypsin-FITC@MOF bioreactor efficiently catalyzes protein digestion. Journal of Materials Chemistry B, 1(7), 928-932. doi: Doi 10.1039/C3tb00257h
Lopez-Marzo, A., Pons, J., & Merkoci, A. (2012). Controlled formation of nanostructured CaCO3-PEI microparticles with high biofunctionalizing capacity. Journal of Materials Chem-istry, 22(30), 15326-15335. doi: Doi 10.1039/C2jm32240d
Ludwig-Muller, J. (2000). Indole-3-butyric acid in plant growth and development. Plant Growth Regulation, 32(2-3), 219-230. doi: Doi 10.1023/A:1010746806891
Martins, J. A., & Dias, M. A. F. S. (2009). The impact of smoke from forest fires on the spec-tral dispersion of cloud droplet size distributions in the Amazonian region. Environmental Research Letters, 4(1). doi: Artn 015002 Doi 10.1088/1748-9326/4/1/015002
Mer, C. L. (1957). A Re-Examination of the Supposed Effect of Riboflavin on Growth. Plant Physiology, 32(3), 175-185. doi: Doi 10.1104/Pp.32.3.175
Ochs, C. J., Such, G. K., Yan, Y., van Koeverden, M. P., & Caruso, F. (2010). Biodegradable click capsules with engineered drug-loaded multilayers. Acs Nano, 4(3), 1653-1663. doi: 10.1021/nn9014278
Overvoorde, P., Fukaki, H., & Beeckman, T. (2010). Auxin Control of Root Development. Cold Spring Harbor Perspectives in Biology, 2(6). doi: 10.1101/cshperspect.a001537
Parakhonskiy, B. (2013, 2013-09-12). [Loading of small molecules in particles].
Parakhonskiy, B. (2014, 2014-02-12). [Slow Release Particles].
Parakhonskiy, B. V., Haase, A., & Antolini, R. (2012). Sub-micrometer vaterite containers: synthesis, substance loading, and release. Angew Chem Int Ed Engl, 51(5), 1195-1197.
Peyratout, C. S., & Dahne, L. (2004). Tailor-made polyelectrolyte microcapsules: from multi-layers to smart containers. Angew Chem Int Ed Engl, 43(29), 3762-3783. doi: 10.1002/anie.200300568
Pildysh, M. (2009). United States Patent No. US 7,615,093 B2. U. S. Patent.
Popa, G., Boulmedais, F., Zhao, P., Hemmerle, J., Vidal, L., Mathieu, E., . . . Voegel, J. C. (2010). Nanoscale Precipitation Coating: The Deposition of Inorganic Films through Step-by-Step Spray-Assembly. Acs Nano, 4(8), 4792-4798. doi: Doi 10.1021/Nn1005667
Price, A. D., Johnston, A. P. R., Such, G. K., & Caruso, F. (2010). Reaction Vessels Assem-bled by the Sequential Adsorption of Polymers. Modern Techniques for Nano- and Microre-actors/-Reactions, 229, 155-179. doi: Doi 10.1007/12_2009_44
Raghavan, V. (2004). Role of 2,4-dichlorophenoxyacetic acid (2,4-D) in somatic embryogen-esis on cultured zygotic embryos of Arabidopsis: cell expansion, cell cycling, and morpho-genesis during continuous exposure of embryos to 2,4-D. Am J Bot, 91(11), 1743-1756. doi: 10.3732/ajb.91.11.1743
Rodriguez-Sainz, C., Valor, L., Hernandez, D. C., Gil, J., Carbone, J., Pascual-Bernaldez, M., . . . Fernandez-Cruz, E. (2013). Flow Cytometry Analysis with a New FITC-Conjugated Monoclonal Antibody-3E12 for HLA-B*57:01 Rapid Screening in Prevention of Abacavir Hypersensitivity in HIV-1-Infected Patients. Hiv Clinical Trials, 14(4), 160-164. doi: Doi 10.1310/Hct1404-160
Schmaljohann, D. (2006). Thermo- and pH-responsive polymers in drug delivery. Advanced Drug Delivery Reviews, 58(15), 1655-1670. doi: DOI 10.1016/j.addr.2006.09.020
Skirtach, A. G., Yashchenok, A. M., & Mohwald, H. (2011). Encapsulation, release and ap-plications of LbL polyelectrolyte multilayer capsules. Chemical Communications, 47(48), 12736-12746. doi: Doi 10.1039/C1cc13453a
Svenskaya, Y., Parakhonskiy, B., Haase, A., Atkin, V., Lukyanets, E., Gorin, D., & Antolini, R. (2013). Anticancer drug delivery system based on calcium carbonate particles loaded with a photosensitizer. Biophys Chem, 182, 11-15. doi: 10.1016/j.bpc.2013.07.006
Tang, R., Kim, C. S., Solfiell, D. J., Rana, S., Mout, R., Velazquez-Delgado, E. M., . . . Rotel-lo, V. M. (2013). Direct delivery of functional proteins and enzymes to the cytosol using na-noparticle-stabilized nanocapsules. Acs Nano, 7(8), 6667-6673. doi: 10.1021/nn402753y
Trenkel, M. E. (1997). Controlled-Release and Stabilized Fertilizers in Agriculture - Improv-ing Fertilizer Use Efficiency. Paris: the International Fertilizer Industry Association.
Xie, L. L., Song, X. X., Tong, W. J., & Gao, C. Y. (2012). Preparation and structure evolution of bowknot-like calcium carbonate particles in the presence of poly(sodium 4-styrene sulfate). J Colloid Interface Sci, 385, 274-281. doi: DOI 10.1016/j.jcis.2012.06.076
Yan, G. W., Wang, L., & Huang, J. H. (2009). The crystallization behavior of calcium car-bonate in ethanol/water solution containing mixed nonionic/anionic surfactants. Powder Technology, 192(1), 58-64. doi: DOI 10.1016/j.powtec.2008.11.013
Yang, G. P., Bhuvaneswari, T. V., Joseph, C. M., King, M. D., & Phillips, D. A. (2002). Roles for riboflavin in the Sinorhizobium - Alfalfa association. Molecular Plant-Microbe In-teractions, 15(5), 456-462. doi: Doi 10.1094/Mpmi.2002.15.5.456
Yashchenok, A., Parakhonskiy, B., Donatan, S., Kohler, D., Skirtach, A., & Mohwald, H. (2013). Polyelectrolyte multilayer microcapsules templated on spherical, elliptical and square calcium carbonate particles. Journal of Materials Chemistry B, 1(9), 1223-1228. doi: Doi 10.1039/C2tb00416j
Yashchenok, A. M., Borisova, D., Parakhonskiy, B. V., Masic, A., Pinchasik, B. E., Mohwald, H., & Skirtach, A. G. (2012). Nanoplasmonic smooth silica versus porous calcium carbonate bead biosensors for detection of biomarkers. Annalen Der Physik, 524(11), 723-732. doi: DOI 10.1002/andp.201200158
Zhao, L. N., & Wang, J. K. (2012). Biomimetic synthesis of hollow microspheres of calcium carbonate crystals in the presence of polymer and surfactant. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 393, 139-143. doi: DOI 10.1016/j.colsurfa.2011.11.012
Zhao, Q., & Li, B. (2008). pH-controlled drug loading and release from biodegradable micro-capsules. Nanomedicine, 4(4), 302-310. doi: 10.1016/j.nano.2008.06.004
Zhou, J., Moya, S., Ma, L., Gao, C. Y., & Shen, J. C. (2009). Polyelectrolyte Coated PLGA Nanoparticles: Templation and Release Behavior. Macromol Biosci, 9(4), 326-335. doi: DOI 10.1002/mabi.200800188

Universiteit of Hogeschool
Biowetenschappen: voedingsindustrie
Prof. dr. ir. Stefaan Werbrouck, Prof. dr. André Skirtach
Share this on: