Bestrijding van wortelknobbelnematoden via defensie-elicitoren in tomaat

Eline Lemmens
Know your rootsAaltjes vormen voor de landbouw een probleem dat zowel letterlijk als figuurlijk bij de wortels aangepakt moet worden. Aaltjes zijn namelijk microscopisch kleine wormpjes die zich in plantenwortels nestelen en daar knobbels doen ontstaan die ze vervolgens als service flat gebruiken: ze voltooien er hun levenscyclus en snoepen hiervoor voedingstoffen van de plant af.Aaltjes, de onzichtbare vijandenVanuit het wortelstelsel vertrekken bijna alle noodzakelijke voedingsstoffen naar de rest van de plant, dus als er iets mis is met de wortels, is de plant al snel verloren.

Bestrijding van wortelknobbelnematoden via defensie-elicitoren in tomaat

Know your roots

Aaltjes vormen voor de landbouw een probleem dat zowel letterlijk als figuurlijk bij de wortels aangepakt moet worden. Aaltjes zijn namelijk microscopisch kleine wormpjes die zich in plantenwortels nestelen en daar knobbels doen ontstaan die ze vervolgens als service flat gebruiken: ze voltooien er hun levenscyclus en snoepen hiervoor voedingstoffen van de plant af.

Aaltjes, de onzichtbare vijanden

Vanuit het wortelstelsel vertrekken bijna alle noodzakelijke voedingsstoffen naar de rest van de plant, dus als er iets mis is met de wortels, is de plant al snel verloren.  De wortelknobbels die door de aaltjes veroorzaakt worden, verhinderen een goede opname van water en mineralen. Dit leidt tot zwakkere planten die gevoeliger zijn voor bijkomstige infecties en bovendien veel minder opbrengst (zoals vruchten) opleveren. Wat aaltjes extra vervelend maakt, is dat ze zowat alle planten kunnen infecteren zoals bananen, tarwe en tomaten. Aaltjes zorgen zo jaarlijks voor een wereldwijd verlies van vele miljarden euro’s. Helaas zijn er twee knelpunten die de bestrijding van aaltjes bemoeilijken. Ten eerste moeten telers ervan overtuigd geraken dat de problemen van hun gewas veroorzaakt worden door microscopische plantparasieten - aaltjes worden niet voor niets 'The Invisible Enemy' genoemd. Ten tweede is er het verbod op vele chemische bestrijdingsmiddelen. Methylbromide was bijvoorbeeld een zeer doeltreffend middel om aaltjes uit te roeien, het had alleen een niet te verwaarlozen nadeel: zelfs bij lage concentraties kan het ook dodelijk zijn voor mensen. Het is met andere woorden absoluut noodzakelijk dat er nieuwe strategieën voor de bestrijding van aaltjes ontwikkeld en toegepast worden. In deze masterproef werd daarom nagegaan of aaltjes bij de tomatenplant bestreden kunnen worden met methyljasmonaat.

Methyljasmonaat, een veelbelovend biologisch bestrijdingsmiddel

Methyljasmonaat is een vluchtig hormoon dat planten kunnen afscheiden om de verdedigingsmechanismen van hun plantenburen op te wekken. Methyljasmonaat wordt dus door planten gebruikt als een soort alarmsignaal om mekaar te waarschuwen voor aanvallen van herbivoren zoals insecten. In deze masterproef hebben we het verdedigingssysteem van tomatenplanten proberen te boosten door ze te bespuiten met een oplossing van methyljasmonaat en ze dan te infecteren met aaltjes. Volgens verschillende bronnen uit de wetenschappelijk literatuur zijn planten die besproeid worden met methyljasmonaat beter bestand tegen infecties door aaltjes. Vreemd genoeg kon onze onderzoeksgroep deze resultaten niet bevestigen. Vandaar dat het ons interessant leek om in deze masterproef na te gaan welke factoren de werking van methyljasmonaat op zo’n manier beïnvloeden dat de planten wel bestand worden tegen aaltjes. Helpt het bijvoorbeeld om de tomatenplanten meerdere keren met methyljasmonaat te bespuiten in plaats van één keer? Of is methyljasmonaat wél een goed bestrijdingsmiddel wanneer tomatenplanten met wat minder aaltjes te maken krijgen?

Methyljasmonaat, een mythe?

In een eerste experiment bespoten we de tomatenplanten wekelijks met methyljasmonaat om te kijken of ze bij deze behandelingsfrequentie opgewassen waren tegen een ziektedruk van 1000 aaltjes per plant. In een tweede experiment keken we of een eenmalige bespuiting met methyljasmonaat tomatenplanten kon beschermen tegen een contact met 100, 200, 350 of 1000 aaltjes per plant. Om na te gaan of de behandelingen werkten, keken we telkens enerzijds naar het effect van methyljasmonaat op de planten zelf (lengte en gewicht van de stengel, wortelgewicht en totaalgewicht van de plant) en anderzijds naar het effect op de aaltjes (met hoeveel konden ze de plant succesvol infecteren, hoeveel wortelknobbels veroorzaakten ze en hoeveel eitjes legden ze). Tegen alle verwachtingen in, toonden beide experimenten aan dat methyljasmonaat geen negatieve invloed had op de aaltjes en dat een wekelijkse bespuiting de planten zelfs ontvankelijker maakte voor meer aaltjes. Nochtans waren er wel indicaties dat methyljasmonaat zorgde voor een versterking van het verdedigingssysteem van de planten. We zagen namelijk dat planten die met methyljasmonaat besproeid werden, consequent een kortere stengel of lager stengelgewicht hadden dan planten die gewoon met water besproeid werden. Deze afname in groei wees erop dat de planten meer energie hadden gestoken in hun verdedigingssysteem waardoor er minder energie overbleef om te investeren in hun groei.

Aaltjes, de onklopbare vijanden?

Samengevat leek het er dus op dat het verdedigingssysteem van de planten wel degelijk een boost kreeg, ondanks het feit dat de aaltjes rustig hun gang bleven gaan. Eén andere onderzoeksgroep vond een gelijkaardig resultaat. Zij wisten hiervoor ook de verklaring te achterhalen: ze zagen namelijk dat de verdedigingsgenen die door methyljasmonaat méér tot expressie kwamen, gewoon terug uitgeschakeld werden bij een infectie met aaltjes. Dit vormt meteen ook een zeer aannemelijke reden voor het feit dat wij geen bestrijdingseffect van methyljasmonaat konden waarnemen. De vraag blijft dan natuurlijk: waarom zijn er tal van experimenten in de wetenschappelijke literatuur waarbij de onderzoekers aantonen dat methyljasmonaat een infectie van tomatenplanten door aaltjes wél kan verminderen? Na een vergelijkende studie bleek er één groot verschil te zijn tussen deze experimenten en ons onderzoek, namelijk het gebruikte tomatenras. Onze hypothese luidde daarom als  volgt: methyljasmonaat kan sommige, maar niet alle tomatenrassen beter bestand maken tegen aaltjes. De logische volgende stap binnen dit onderzoek was dan uiteraard om onze experimentele set-up identiek te herhalen voor verschillende tomatenrassen. Inmiddels heeft onze onderzoeksgroep dit gedaan en de resultaten bevestigden onze hypothese: er zijn inderdaad andere tomatenrassen waarbij sproeien met methyljasmonaat wel een effect heeft.

Know your roots and your enemies

Wolven zijn al lang niet meer de grootste vijanden van de boeren, aaltjes zijn dit helaas wel. Want aaltjes lijken misschien een ‘ver-van-mijn-bed-show’, maar ook vele Belgische telers hebben hiermee te kampen. Ondanks veelbelovende literatuur, bleek uit deze masterproef duidelijk dat methyljasmonaat niet het wondermiddel is dat zo broodnodig is voor de bestrijding van aaltjes. Vandaar dat onderzoek naar andere milieuvriendelijke alternatieven absoluut dringend en noodzakelijk is. Want hoewel aaltjes bijzonder klein en onschuldig lijken, zijn ze echte wolven in schaapsvacht en daardoor niet te onderschatten landbouwvijanden. 

Bibliografie

Abad, P. et al., 2009. Invasion, Feeding and Development. In: Root-knot nematodes. Pondicherry,India: MPG Books Group, pp. 163-176. Abad, P., Favery, B., Rosso, M. & Castagnone‐sereno, P., 2003. Root‐knot nematode parasitism andhost response: molecular basis of a sophisticated interaction. Molecular Plant Pathology, 4(4), pp.217-224. Abdel-Monaim, M., Morsy, K., Sarhan, E. & Hamed, N., 2012. Influence of Certain Resistance InducingChemicals on Alfalfa Rust Disease and Its Effect on Growth Parameters and Yield Components.Australian Journal of Basic and Applied Sciences, 6(3), pp. 506-514. Abeles, F. B., Morgan, P. W. & Saltveit, M. E., 1992. Ethylene in plant biology. 2e editie red. San Diego: Academic press. Agrios, G. N., 1997. Plant Pathology. San Diego (Calif.): Academic press. Ahman, I. & Ninkovic, V., 2010. Volatile Interactions Between Undamaged Plants: Effects andPotential for Breeding Resistance to Aphids. In: Plant communication from an ecological perspective.sl: Springer. Almagro, L. et al., 2009. Class III peroxidases in plant defence reactions. Journal of ExperimentalBotany, Volume 60(2), pp. 377-390. Altamiranda, E. A. G., Andreu, A. B., Daleo, G. R. & Olivieri, F. P., 2008. Effect of β-aminobutyric acid(BABA) on protection against Phytophthora infestans throughout the potato crop cycle. AustralasianPlant Pathology, Volume 37, pp. 421-427. Anamika, S., 2012. Variation in Life Cycle of Meloidogyne Incognita in Different Months in IndianCondition. International Journal of Science and Research, 3(7), pp. 2286-2288. Anfoka, G. H., 2000. Benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester induces systemicresistance in tomato (Lycopersicon esculentum. Mill cv. Vollendung) to Cucumber mosaic virus. CropProtection, Volume 19(6), pp. 401-405. Arimura, G.-I.et al., 2000. Herbivory-induced volatiles elicit defence genes in lima bean leaves.Nature, Volume 406(6795), pp. 512-515. Arve, L., Torre, S., Olsen, J. E. & Tanino, K., 2011. Stomatal Responses to DroughtStress and AirHumidity. In: Abiotic Stress in Plants - Mechanisms and Adaptations. [online]: InTech, hoofdstuk 8. Atkinson, H., Urwin, P. & Hussey, R., 2009. Plant Biotechnology and Control. In: Root knot nematodes.Pondicherry, India: MPG Books Group, pp. 338-362. Baldwin, I. T. et al., 2006. Volatile signaling in plant-plant interactions: "talking trees" in the genomicsera. Science (New York, N.Y.), Volume 311(5762), pp. 812-815. Barea, J. & Jeffries, P., 1995. Arbuscular mycorrhizas in sustainable soil-plant systems. In: MycorrhizaStructure, Function, Molecular Biology and Biotechnology. Berlin, Germany: Springer, pp. 521-559. Barilli, E., Prats, E. & Rubiales, D., 2010. Benzothiadiazole and BABA improve resistance to Uromycespisi (Pers.) Wint. in Pisum sativum L. with an enhancement of enzymatic activities and total phenoliccontent. European Journal Of Plant Pathology, 128(4), pp. 483-493. Barr, F., 1997. Toxocara canis. U.S. National Library of Medicine, Volume 38(11), , pp. 531-4. Bengtsson, T. et al., 2014. Activation of defence responses to Phytophthora infestans in potato byBABA. Plant Pathology, 63(1), pp. 193-202. Bengtsson, T. et al., 2014. Proteomics and transcriptomics of the BABA-induced resistance responsein potato using a novel functional annotation approach. Bmc Genomics, 15(1). Benhamou, N., 1996. Elicitor-induced plant defence pathways. Trends in Plant Science, Volume 1(7),pp. 233-240. Bent, E., 2006. Induced Systemic Resistance Mediated by Plant Growth-Promoting Rhizobacteria(PGPR) and Fungi (PGPF). In: Multigenic and Induced Systemic Resistance in Plants . Boston, MA :Springer US, pp. 225-246. Berry, S. D., Rutherford, R. S. & Curtis, R. H., 2011. Preliminary investigations into inducing resistancein sugarcane. South African Journal of Plant and Soil, Volume 28, p. 272. Bird, D. M., Opperman, C. H. & Davies, K. G., 2003. Interactions between bacteria and plant-parasiticnematodes: now and then. International Journal for Parasitology, 33(11), pp. 1269-1276. Bokshi, A. I., Morris, S. C. & Deverall, B. J., 2003. Effects of benzothiadiazole and acetylsalicylic acid onβ‐1,3‐glucanase activity and disease resistance in potato. Plant Pathology, Volume 52(1), pp. 22-27. Braun, D. & Slewinski, T., 2009. Genetic Control of Carbon Partitioning in Grasses: Roles of SucroseTransporters and Tie-dyed Loci in Phloem Loading. Plant Physiology, 149(1), pp. 71-81. Byrd, D. P., Kirkpatrick, T. & Barker, K. R., 1983. An improved technique for clearing and staining planttissues for detecting of nematodes. Journal of nemathology, Volume 15, pp. 142-143. Castagnone-Sereno, P., 2002. Genetic variability of nematodes: a threat to the durability of plantresistance genes?. Euphytica, 124(2), pp. 193-199. Castagnone-Sereno, P., Danchin, E. G., Danchin, E. G. & Abad, P., 2013. Diversity and Evolution ofRoot-Knot Nematodes Genus Meloidogyne: New Insights from the Genomic Era. Annual Review ofPhytopathology, Volume 51, p. 203–220. Chinnasri, B., Sipes, B. & Schmitt, D., 2003. Effects of acibenzolar-s-methyl application toRotylenchulus reniformis and Meloidogyne javanica. Journal Of Nematology, 35(1), pp. 110-114. Chinnasri, B., Sipes, B. & Schmitt, D., 2006. Effects of inducers of systemic acquired resistance onreproduction of Meloidogyne javanica and Rotylenchulus reniformis in pineapple. Journal OfNematology, 38(3), pp. 319-325. Chitwood, D. J., 2002. Phytochemical based strategies for nematode control. Annual review ofphytopathology, Volume 40, pp. 221-249. Chitwood, D. J. & Perry, R. N., 2009. Reproduction, physiology and biochemistry. In: Root-knotnematodes. Pondicherry, India.: MPG Books Group, p. 182–200. Cobb, N. A., 1914. Antarctic marine free-living nematodes of the Shackleton Expedition. contributionsto a science of nematology, Volume 1, pp. 1-33. Cohen, Y., Gisi, U. & Niderman, T., 1993. Local and systemic protection against Phytophthorainfestans induced in potato and tomato plants by jasmonic acid and jasmonic methyl ester.Phytopathology, 83(10), pp. 1054-1062. Collins, H., Navare, D., Riga, E. & Pierce, F., 2006. Effect of foliar applied plant elicitors on microbialand nematode populations in the root zone of potato. Communications In Soil Science And PlantAnalysis, 37(11-12), pp. 1747-1759. Conrath, U., Pieterse, C. M. J. & Mauch-mani, B., 2002. Priming in plant-pathogen interactions.Trends in plant science , Volume 7(5), pp. 210-216. Cooper, W. & Goggin, F., 2005a. Effects of jasmonate-induced defenses on root-knot nematodeinfection of resistant and susceptible tomato cultivars. Entomologia Experimentalis Et Applicata,Volume 115(1), pp. 107-115. Cooper, W. & Goggin, F., 2005b. Effects of jasmonate-induced defenses in tomato on the potatoaphid, Macrosiphum euphorbiae. Entomologia Experimentalis Et Applicata, 115(1), pp. 107-115. Cooper, W., Jia, L. & Goggin, L., 2005. Effects of Jasmonate-Induced Defenses on Root-KnotNematode Infection of Resistant and Susceptible Tomato Cultivars. Journal of Chemical Ecology,31(9), pp. 1953-1967. Corbett, B. P. et al., 2011. The effects of root-knot nematode infection and mi-mediated nematoderesistance in tomato on plant fitness. Journal of nematology, 43(2), pp. 82-89. Coyne, D. L., Nicol, J. M. & Claudius-Cole, B., 2007. Practical plant nematology: A field and laboratoryguide, Cotonou, Benin: SP-IPM Secretariat, International Institute of Tropical Agriculture (IITA). Creelman, R. A. & Mullet, J. E., 1995. Jasmonic acid distribution and action in plants: regulationduring development and response to biotic and abiotic stress. Proceedings of the National Academyof Sciences of the United States, Volume 92(10), pp. 4114-4119. Creelman, R. A. & Mullet, J. E., 1997. Biosynthesis and action of jasmonates in plants. Annual Reviewof Plant Biology, Volume 481(1), pp. 355-381. Creelman, R., Tierney, M. & Mullet, J., 1992. Jasmonic acid/methyl jasmonate accumulate inwounded soybean hypocotyls and modulate wound gene expression. Proceedings Of The NationalAcademy Of Sciences Of The United States Of Ame, 89(11), pp. 4938-4941. Curtis, R., 2007. Plant parasitic nematode proteins and the host parasite interaction. FunctionalGenomics and Proteomics, Volume 6, p. 50–58. Curtis, R. H., Robinson, A. F. & Perry, R. N., 2009. Hatch and Host Location. In: Root-knot Nematodes.Pondicherry, India: MPG Books Group, pp. 139-155. Czapski, J. & Saniewski, M., 1992. Stimulation of Ethylene Production and Ethylene-Forming EnzymeActivity in Fruits of the Non-Ripening nor and rin Tomato Mutants by Methyl Jasmonate. Journal ofPlant Physiology, 139(3), pp. 265-268. De Souza, A., Narvencar, K. P. & Sindhoora, K., 2013. The neurological effects of methyl bromideintoxication. Journal of the Neurological Sciences, Volume 335(1-2), pp. 36-41. Dixon, R., 1994. Early Events in the Activation of Plant Defense Responses. Annual Review ofPhytopathology, Volume 32(1), pp. 479-501. Drewer, J., Heal, K. V., Smith, K. A. & Heal, M. R., 2008. Methyl bromide emissions to the atmospherefrom temperate woodland ecosystems. Global Change Biology, Volume 14(11), pp. 2539-2547. Dropkin, V., 1969. The necrotic reaction of tomatoes and other hosts resistant to Meloidogyne:reversal by temperature.. Phytopathology, Volume 59 (11), p. 1632–1637. Dubreuil, G. M. M. D. E. A. P. a. R. M., 2007. Transcriptome analysis of rootknot nematode functionsinduced in the early stages of parasitism.. New Phytologist, Volume 176, p. 426–436. Eddaoudi, M., Ammati, M. & Rammah, M., 1997. Identification of the resistance breaking ofpopulations of Meloidogyne on tomatoes in Morocco and their effect on new sources of resistance.Fundamental and Applied Nematology, Volume 20, pp. 285-289. Eisenback, J. D. & Hunt, J. D., 2009. General Morphology. In: Root-knot Nematodes. Pondicherry,India: MPG Books Group, pp. 18-54. El Hadrami, A., Adam, L. R., El Hadrami, I. & Daayf, F., 2010. Chitosan in plant protection. MarineDrugs, 8(4), pp. 968-987. El-Sayed, S. & Mahdy, M., 2015. Effect of chitosan on root-knot nematode, Meloidogyne javanica ontomato plants. International Journal of ChemTech Research, 7(4), pp. 1985-1992. Esbenshade, P. R. & Triantaphyllou, A. C., 1987. Enzymatic relationships and evolution in the genusmeloidogyne (nematoda: tylenchida). Journal of nematology, Volume 19(1), pp. 8-18. Fageria, N. & Moreira, A., 2011. The Role of Mineral Nutrition on Root Growth of Crop Plants. In:Advances in Agronomy. Burlington: Elsevier, pp. 251-318. Faoro, F., Maffi, D., Cantu, D. & Iriti, M., 2008. Chemical-induced resistance against powdery mildewin barley: the effects of chitosan and benzothiadiazole. Biocontrol, 53(2), pp. 387-401. Farag, M. & Paré, P., 2002. C6-Green leaf volatiles trigger local and systemic VOC emissions intomato. Phytochemistry, 61(5), pp. 545-554. Farmer, E. E., Pearce, G. & Ryan, C. A., 1989. In vitro phosphorylation of plant plasma membraneproteins in response to the proteinase inhibitor inducing factor. Proceedings of the NationalAcademy of Sciences of the United States of America, Volume 86(5), pp. 1539-1542 Farmer, E. & Ryan, C., 1990. Interplant communication: Airborne methyl jasmonate induces synthesisof proteinase inhibitors in plant leaves. Proceedings of the National Academy of Sciences of theUnited States of America, 87(19), pp. 7713-7716. Flor, H. H., 1971. Current Status of the Gene-For-Gene Concept. Annual Review of Phytopathology,Volume 91(1), pp. 275-296. Freckman, D. W. & Caswell, E. P., 1985. The Ecology of Nematodes in Agroecosystems. Annual Reviewof Phytopathology, 231(1), pp. 275-296. Friedrich, L. et al., 1996. A benzothiadiazole derivative induces systemic acquired resistance intobacco. The Plant Journal, Volume 10(1), pp. 61-70. Fujimoto, T. et al., 2011. Expression profile of jasmonic acid-induced genes and the inducedresistance against the root-knot nematode (Meloidogyne incognita) in tomato plants (Solanumlycopersicum) after foliar treatment with methyl jasmonate. Journal Of Plant Physiology, Volume168(10), pp. 1084-1097. Gavin, A. S. et al., 2013. Nematocidal effects of natural phytoregulators jasmonic acid and methyljasmonateagainst Pratylenchus zeae and Helicotylenchus spp .. Natural Product Research, 27(11),pp. 1041-1048. Gharabadiyan, F., Jamali, S. & Komeili, H., 2013. Determining of root-knot nematode (meloidogynejavanica) damage function for tomato cultivars. Journal of Agricultural Sciences, 58(2), pp. 147-157. Giannakou, I. O. & Karpouzas, D. G., 2003. Evaluation of chemical and integrated strategies asalternatives to methyl bromide for the control of root-knot nematodes in Greece.. Pest ManagementScience, Volume 59, p. 883–892. Giannakou, I. O., Sidiropoulos, A. & Prophetou‐athanasiadou, D., 2002. Chemical alternatives tomethyl bromide for the control of root‐knot nematodes in greenhouses. Pest Management Science,Volume 58(3), pp. 290-296. Görlach, J. et al., 1996. Benzothiadiazole, a novel class of inducers of systemic acquired resistance,activates gene expression and disease resistance in wheat. The Plant cell, Volume Vol.8(4), pp. 629-643. Hahlbrock, K. et al., 2003. Non-self recognition, transcriptional reprogramming, and secondarymetabolite accumulation during plant/pathogen interactions. Proceedings Of The National AcademyOf Sciences Of The United States Of Ame, 100(2), pp. 14569-14576. Hammerschmidt, R., 2007. Introduction: definitions and some history. In: Induced Resistance forPlant Defence. A Sustainable Approach to Crop Protection. Chennai, India: COS Printers Pte Ltd, pp. 1-7. Hanik, N. et al., 2010. Partitioning of New Carbon as 11 C in Nicotiana tabacum Reveals Insight intoMethyl Jasmonate Induced Changes in Metabolism. Journal of Chemical Ecology, 36(10), pp. 1058-1067. 

Heijari, J. et al., 2005. Application of methyl jasmonate reduces growth but increases chemicaldefence and resistance against Hylobius abietis in Scots pine seedlings. Entomologia Experimentaliset Applicata, 115(1), pp. 117-124.

Herman, M. A. B., Davidson, J. K. & Smart, C. D., 2008. Induction of plant defense gene expression byplant activators and Pseudomonas syringae pv. tomato in greenhouse-grown tomatoes.Phytopathology, Volume 98(11), pp. 1226-1232.

Herman, M. A. B., Restrepo, S. & Smart, C. D., 2007. Defense gene expression patterns of three SARinducedtomato cultivars in the field. Physiological and Molecular Plant Pathology, Volume 71, pp.192-200. Hildebrand, D., Fukushige, H., Afitlhile, M. & Wang, C., 1998. Lipoxygenases in plant developmentand senescence. In: Eicosanoids and Related Compounds in Plants and Animals. London: PortlandPress Ltd, pp. 151-181. Hodge, S., Thompson, G. & Powell, G., 2005. Application of DL-beta-aminobutyric acid (BABA) as aroot drench to legumes inhibits the growth and reproduction of the pea aphid Acyrthosiphon pisum(Hemiptera : Aphididae). Bulletin Of Entomological Research, 95(5), pp. 449-455. Hokkanen, H. M., 2011. Progress in Biological Control. In: Biological Control of Plant-ParasiticNematodes: Building Coherence between Microbial Ecology and Molecular Mechanisms. Netherlands,Dordrecht: Springer Science & Business Media B.V., p. v. Horticulture Australia, 2014. Management of root-knot nematode in vegetable crops, sl: Limitedproject MT09067 ‘Managing the nematode threat’. Hossain, M. et al., 2011. Involvement of Endogenous Abscisic Acid in Methyl Jasmonate-InducedStomatal Closure in Arabidopsis. Plant Physiology, 156(1), pp. 430-438. Hugall, A., Stanton, J. & Moritz, C., 1997. Evolution of the AT-rich mitochondrial DNA of the root knotnematode, Meloidogyne hapla. Molecular biology and evolution, Volume 14(1), pp. 40-48. Hussain, M. A., Mukhta, T. & Kayani, M. Z., 2011. Assessment of the damage caused by Meloidogyneincognita on okra (Abelmoschus esculentus). The Journal of Animal & Plant Sciences, 21(4), pp. 857-861. Hyde, K., Swe, A. & Zhang, K.-Q., 2014. Nematode-Trapping Fungi . In: Nematode-Trapping Fungi .Dordrecht, Netherlands : Springer, pp. 2-8. Iriti, M. & Faoro, F., 2003. Benzothiadiazole (BTH) Induces Cell‐Death Independent Resistance inPhaseolus vulgaris against Uromyces appendiculatus. Journal of Phytopathology, Volume 151(3), pp.171-180. Jammes, F. et al., 2005. Genome-wide expression profiling of the host response. The Plant Journal,Volume 44(3), pp. 447-458. Janoud, i. A. & Flore, J., 2003. Effects of multiple applications of methyl jasmonate on fruit ripening,leaf gas exchange and vegetative growth in fruit trees. The Journal of Horticultural Science &Biotechnology, 78(6), pp. 793-797. Johnson, A. W. & Campbell, G. M., 1980. Managing nematode population densities on tomatotransplants using crop rotation and a nematicide. Journal of nematology, Volume 12(1), pp. 6-19. Jones, J. R. B. S. G. a. P. A., 2004. Glutathione peroxidases of the potato cyst nematode Globoderarostochiensis. Gene, Volume 324, p. 47–54. Jones, M., 1981. The development and function of plant cells modified by endoparasitic nematodes.In: B. Zuckerman & R. Rhode, red. Plant-parasitic nematodes. New York: Academic Press, pp. 225-279. Kalele, D., Affokpon, A., Coosemans, J. & Kimenju, J., 2010. Suppression of root-knot nematodes intomato and cucumber using biological control agents. African Journal of Horticultural Science,Volume 3, pp. 72-80. Kaloshian, I. et al., 1996. Resistance-breaking nematodes identified in California tomatoes. CaliforniaAgriculture, Volume 50, pp. 18-19. Kankam, F. & Adomako, J., 2014. Influence of Inoculum Levels of Root Knot Nematodes(Meloidogynespp.) on Tomato ( Solanum lycopersicum L.). Asian Journal of Agriculture and FoodScience, 2(2), pp. 171-178. Karmon, D., 2014. Agronews. [Online]Available at: http://news.agropages.com/News/NewsDetail---11325.htm[Geopend 4 oktober 2014]. Karssen, G. & Moens, M., 2006. Root-knot nematodes. In: Plant Nematology. Nederland: CABIpublishing, pp. 59-90. Kennedy, G. L., 1986. Chronic toxicity, reproductive, and teratogenic studies with oxamyl.Fundamental and Applied Toxicology, Volume 7(1), pp. 106-118. Khalil, M. S. & Badawy, M. E., 2012. Nematicidal activity of a biopolymer chitosan at differentmolecular weights against root-knot nematode, meloidogyne incognita. Plant Protection Science,48(4), pp. 70-178. Khan, T. A., Nasir, S. & Ashraf, M. S., 2004. effect of population levels of meloidogyne javanica onplant growth and nematode multiplication on cucurbits. Pakistan journal of nematology, 22(1), pp.83-89. Khaosaad, T., Garcia - Garrido, J. M., Steinkellner, S. & Vierheilig, H., 2007. Take-all disease issystemically reduced in roots of mycorrhizal barley plants.. Soil Biology and Biochemistry, Volume39(3), pp. 727-734. Koenning, S. R. et al., 1999. Survey of crop losses in response to phytoparasitic nematodes in theUnited States for 1994. Journal of nematology, 31(45), pp. 587-618. Kuchitsu, K., Kosaka, H., Shiga, T. & Shibuya, N., 1995. EPR evidence for generation of hydroxyl radicaltriggered by N-acetylchitooligosaccharide elicitor and a protein phosphatase inhibitor in suspensionculturedrice cells.. Protoplasma, Volume 188, pp. 138-142. Kyndt, T., Fernandez, D. & Gheysen, G., 2014. Plant-Parasitic Nematode Infections in Rice: Molecularand Cellular Insights. Annual Review of Phytopathology, Volume 52, pp. 135-153. Lafontaine, J. & Benhamou, N., 1996. Chitosan treatment: an emerging strategy for enhancingresistance of greenhouse tomato plants to infection by Fusarium oxysporum f. sp. radicis-lycopersici..Biocontrol Science and Technology, Volume 6, pp. 111-124. Lawton, K. A. et al., 1996. Benzothiadiazole induces disease resistance in Arabidopsis by activation ofthe systemic acquired resistance signal transduction pathway. The Plant Journal, Volume 10(1), pp.71-82. Li, J. et al., 2013. Defense-related transcription factors WRKY70 and WRKY54 modulate osmoticstress tolerance by regulating stomatal aperture in Arabidopsis. New Phytologist, 200(2), pp. 457-472. Luna, E., Lopez, A., Kooiman, J. & Ton, J., 2014b. Role of NPR1 and KYP in long-lasting inducedresistance by β-aminobutyric acid. Frontiers in Plant Science, 5(online). Luna, E. et al., 2014a. Plant perception of β-aminobutyric acid is mediated. Nature Chemical Biology,10(6), pp. 450-445. Maciejewska, B. & Kopcewicz, J., 2002. Inhibitory Effect of Methyl Jasmonate on Flowering andElongation Growth in Pharbitis nil. Journal of Plant Growth Regulation, 21(3), pp. 216-223. Magness, J. G. M. C. C., 1971. Food and feed crops of the United States. New Jersey: InterregionalResearch Project IR-4. Maleita, C., Curtis, R., Powers, S. & Abrantes, I., 2012. Inoculum levels of Meloidogyne hispanica andM. javanica affect nematode reproduction, and growth of tomato genotypes. PhytopathologiaMediterranea, 51(3), pp. 566-576. Mandal, B. et al., 2008. Biological and Molecular Analyses of the Acibenzolar-S-Methyl-InducedSystemic Acquired Resistance in Flue-Cured Tobacco Against Tomato spotted wilt virus.Phytopathology, 98(2), pp. 196-204. Molinari, S. & Baser, N., 2010. Induction of resistance to root-knot nematodes by SAR elicitors intomato. Crop Protection, 29(11), pp. 1354-1362. Moreira, X., Zas, R. & Sampedro, L., 2012. Methyl Jasmonate as Chemical Elicitor of InducedResponses and Anti-Herbivory Resistance in Young Conifer Trees. In: Plant Defence: BiologicalControl. Dordrecht: Springer, pp. 345-362. Mortensen, L., 1986. Effect of relative humidity on growth and flowering of some greenhouse plants.Scientia Horticulturae, 29(4), pp. 301-307. Nagorskaya, V. et al., 2014. virus (TMV) accumulation, hydrolase activity, and morphologicalabnormalities of the viral particles in leaves of N. tabacum L. cv. Samsun. Virologica Sinica, 29(4), pp.250-256. Nahar, K. et al., 2011. The jasmonate pathway is a key player in systemically induced defense againstroot knot nematodes in rice. Plant physiology, 157(1), pp. 305-316. Nelson, S., 2013. nematode life cycle diagram. [Kunst] (rsity of Hawaii at Manoa). Nishizawa, Y. et al., 1999. Regulation of the chitinase gene expression in suspension-cultured ricecells by N-acetylchitooligosaccharides: differences in the signal transduction pathways leading to theactivation of elicitor-responsive genes.. Plant Molecular Biology, 39(5), pp. 907-914. Noe, J. P., 2008. Pathogenicity and Isolation of Plant-parasitic Nematodes. In: Plant PathologyConcepts and Laboratory Exercises. Boca Raton: CRC Press, pp. 79-84. Nojiri, H. et al., 1996. Involvement of jasmonic acid in elicitor-induced phytoalexin production insuspension-cultured rice cells. Plant Physiology, 110(2), pp. 387-392. Noling, J. W., 2012. Nematode Management in Tomatoes, Peppers, and Eggplant, Lake Alfred:University of Florida. Noling, J. W. & Becker, J. O., 1994. The chelenge of research and extension to define and implementalternatives to methylbromide.. Journal of nematology, Volume 26, pp. 573-586. Ntalli, N. G. & Caboni, P., 2012. Botanical nematicides: a review. Journal of agricultural and foodchemistry, Volume 60(40), pp. 9929-9940 . Nusbaum, C. J. & Ferris, H., 1973. The Role of Cropping Systems in Nematode PopulationManagement. Annual Review of Phytopathology, Volume 11(1), pp. 423-440 . Oka, Y. & Cohen, Y., 2001. Induced resistance to cyst and root-knot nematodes in cereals by DL-β-amino-n-butyric acid. European Journal of Plant Pathology, 107(2), pp. 219-227. Oka, Y., Spiegel, Y. & Cohen, Y., 1999. Local and systemic induced resistance to the root-knotnematode in tomato by DL-β-amino-n-butyric acid. Phytopathology, 89(12), pp. 1138-1143. Oliveira, D. S., Oliveira, R. D. L., Silva, D. G. & Silva, R. V., 2011. Characterization of Meloidogyneincognita populations from São Paulo and Minas Gerais state and their pathogenicity on coffee plantsCaracterização de populações de Meloidogyne incognita de São Paulo e Minas Gerais e suapatogenicidade em cafeeiro. Tropical Plant Pathology, 36(3), pp. 190-194. Olthof, T. H., 1982. Effect of Age of Alfalfa Root on Penetration by Pratylenchus penetrans. Journal ofnematology, 14(1), pp. 100-105. Osman, H. et al., 2013. Effect of abiotic resistance inducers, γ-amino-n-butyric acid (GABA), ascorbicacid and chitosan on certain enzyme activities of eggplant inoculated with root-knot nematode,Meloidogyne incognita. Archives of Phytopathology and Plant Protection, 46(15), pp. 1-7. Osunlola, O. & Fawole, B., 2014. The Development and Life Cycle of Meloidogyne incognita insweetpotato (Ipomoea batatas) cv TIS 4400 -2. IOSR Journal of Agriculture and Veterinary Science ,7(9), pp. 49-53. Pathak, K. N., Keshari, N. & Haider, M. G., 2000. Effect of population levels of Meloidogyne incognitaon seed germination, seeding emergence and plant growth of cauliflower. Indian Journal ofNematology, 30(1), pp. 8-12. Paulson, R. E. & Webster, J. M., 1972. Ultrastructure of the hypersensitive reaction in roots oftomato, Lycopersicon esculentum L., to infection by the root-knot nematode, Meloidogyne incognita.Physiological Plant Pathology, Volume 2(3), p. 227. Perry, R. N., 2005. An evaluation of types of attractants enabling plant-parasitic nematodes to locateplant. Volume 13, pp. 83-88. Perry, R. N. & Moens, M., 2011. Introduction to Plant-Parasitic Nematodes. In: Genomics andMolecular Genetics of Plant-Nematode Interactions . Dordrecht: Springer Netherlands, pp. 3-20. Perry, R. N., Moens, M. & Starr, J. L., 2009. Meloidogyne Species – a Diverse Group of Novel andImportant Plant Parasites. In: Root-knot nematodes. Pondicherry, India: MPG Books Group, pp. 1-17. Pieterse, C. et al., 1996. Systemic resistance in Arabidopsis induced by biocontrol bacteria isindependent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell,Volume 8(8), pp. 1225-1237. Piotrowska, A. & Bajguz, A., 2011. Conjugates of abscisic acid, brassinosteroids, ethylene,gibberellins, and jasmonates. Phytochemistry, Volume 72(17), pp. 2097-2112. Porter, I., Brett, R. & Wiseman, B., 1999. Alternatives to methyl bromide: chemical fumigants orintegrated pest management systems?. Australasian Plant Pathology, Volume 28(1), pp. 65-71. Pospieszny, H. & Atabekov, J., 1989. Effect of chitosan on the hypersensitive reaction of bean toalfalfa mosaic virus (ALMV). Plant Science, 62(1), pp. 29-31. Pozo, M. J., Jung, S. C., López-Ráez, J. A. & Azcón-Aguilar, C., 2010. Impact of arbuscular mycorrhizalsymbiosis on plant response to biotic stress: The role of plant defence mechanisms. In: ArbuscularMycorrhizas: Physiology and Function . Dordrecht, Netherlands: Springer Dordrecht, pp. 193-207. Proctor, J. & Marks, C., 1974. The Determination of Normalizing Transformations for NematodeCount Data From Soil Samples and of Efficient Sampling Schemes. Nematologica, 20(4), pp. 395-406. Prot, J.-C., 1980. Migration of plant-parasitic nematodes towards plant roots. Review deNematologie, Volume 3, p. 305–318. Radwan, M., Farrag, S., Abu-Elamayem, M. & Ahmed, N., 2012. Biological control of the root-knotnematode, Meloidogyne incognita on tomato using bioproducts of microbial origin. Applied SoilEcology, Volume 56, pp. 58-62. Raghava, T., Ravikumar, P., Hegde, R. & Kush, A., 2010. Spatial and temporal volatile organiccompound response of select tomato cultivars to herbivory and mechanical injury. Plant Science,179(5), pp. 520-526. Rajan, T. V., 2009. Textbook of Medical Parasitology. New Dehli: BI Publications Pvt Ltd. Regis, M. A., 2008. The Role of Jasmonic Acid in Plant – Nematode Interaction, Wenen: sn Reimann, S., Hauschild, R., Hildebrandt, U. & Sikora, R., 2008. Interrelationships between Rhizobiumetli G12 and Glomus intraradices and multitrophic effects in the biological control of the root-knotnematode Meloidogyne incognita on tomato. Journal of Plant Diseases and Protection, Volume115(3), pp. 108-113. Rigal, A., Ma, Q. & Robert, S., 2014. Unraveling plant hormone signaling through the use of smallmolecules. [Online]Available at: http://journal.frontiersin.org/Journal/10.3389/fpls.2014.00373/full[Geo… 16 november 2014]. Robinson, A. & Perry, R., 2006. Behaviour and sensory perception. In: Plant Nematology. Wallingford,UK,: CAB International. Russell, E. I. J. T. E. I. R. a. C. D., 1985. Interactions of bacteria, fungi, and their nematode grazers:effects on nutrient cycling and plant growth.. Ecological Monographs, Volume 55, p. 119–140. Ryals, J., Uknes, S. & Ward, E., 1994. Systemic acquired resistance. Plant Physiology, 104(4), pp. 1109-1112. Sanz-Alférez, S., Mateos, B., Alvarado, R. & Sanchez, M., 2008. SAR induction in tomato plants is noteffective against root-knot nematode infection. European Journal of Plant Pathology, 120(4), pp. 417-425. Schittko, U., Hermsmeier, D. & Baldwin, I. T., 2001. Molecular interactions between the specialistherbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata.. PlantPhysiology, 125(2), pp. 701-711. Schmelz, E., Grebenok, R., Galbraith, D. & Bowers, W., 1999. Insect-Induced Synthesis ofPhytoecdysteroids in Spinach, Spinacia oleracea. Journal of Chemical Ecology, 25(8), pp. 1739-1757. Seinhorst, J., 1965. The relation between nematode density and damage to plants. Nematologica,Volume 11, pp. 137-154. Seo, S. H. et al., 2001. Jasmonic acid carboxyl methyltransferase: A key enzyme for jasmonateregulatedplant responses. Proceedings of the National Academy of Sciences of the United States,Volume 98(8), p. 4788. Shahabinejad, M. et al., 2014. Exogenous application of methyl jasmonate and salicylic acid increasesantioxidant activity in the leaves of pistachio (Pistacia vera L. cv. Fandoughi) trees and reduces theperformance of the phloem-feeding psyllid Agonoscena pistaciae. Arthropod-Plant Interactions, 8(6),pp. 525-530. Sharma, A. & Triverdi, C. P., 1992. studies on the life cycle of meloidogyne incognita in two cultivarsof Trigonrlla Foenum-Graecum. Nematologia Mediterranea, 20(2), pp. 215-216. Sharon, E. & Spiegel, Y., 1993. Glycoprotein Characterization of the Gelatinous Matrix in the RootknotNematode Meloidogyne javanica. Journal of nematology, Volume 25(4), pp. 585-589. Sheard, L. B. et al., 2010. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ coreceptor.Nature, Volume 468(7322), pp. 400-405. Shirley, H. L., 1929. The influence of light intensity and light quality upon the growth of plants.American Journal of Botany, 16(5), pp. 345-381. Sillero, J. C., Rojas - Molina, M. M., Avila, C. M. & Rubiales, D., 2012. Induction of systemic acquiredresistance against rust, ascochyta blight and broomrape in faba bean by exogenous application ofsalicylic acid and benzothiadiazole. Crop Protection, Volume 34, pp. 65-69. Singh, S. & Khurma, U., 2007. Susceptibility of six tomato cultivars to the root-knot nematode,Meloidogyne incognita. The South Pacific Journal of Natural Science, Volume 13, pp. 73-77. Soriano, I. R., Asenstorfer, R. E., Schmidt, O. & Riley, I. T., 2004b. Inducible Flavone in Oats ( Avenasativa ) Is a Novel Defense Against Plant-Parasitic Nematodes. Phytopathology, 94(11), pp. 1207-1214. Soriano, I., Riley, I., Potter, M. & Bowers, W., 2004a. Phytoecdysteroids: A Novel Defense AgainstPlant-Parasitic Nematode. Journal of Chemical Ecology, 30(10), pp. 1885-1899. Staswick, P., Su, W. & Howell, S., 1992. Methyl jasmonate inhibition of root growth and induction of aleaf protein are decreased in an Arabidopsis thaliana mutant. Proceedings Of The National AcademyOf Sciences Of The United States Of Ame, 89(15), pp. 6837-6840. Stephan, Z. A. & Trudgill, D. L., 1983. Effect of Time of Application on the Action of Foliar Sprays ofOxamyl on Meloidogyne hapla in Tomato. Journal of nematology, Volume 15(1), pp. 96-101. Sticher, L., Mauch-Mani, B. & Métraux, J., 1997. Systemic acquired resistance. Annual Review ofPhytopathology, Volume 35, pp. 235-270. Stirling, G., 1991. Biological control of plant-parasitic nematodes. In: Diseases of nematodes, vol. II..Wallingford, UK: CAB International, pp. 93-139 . Suhita, D., Raghavendra, A., Kwak, J. & Vavasseur, A., 2004. Cytoplasmic alkalization precedesreactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatalclosure. Plant Physiology, 134(4), pp. 1536-1545. Talavera, M., Itou, K. & Mizukubo, T., 2001. Reduction of nematode damage by root colonization witharbuscular mycorrhiza (Glomus spp.) in tomato-Meloidogyne incognita (Tylenchida: Meloidogynidae)and carrot-Pratylenchus penetrans (Tylenchida: Pratylenchidae) pathosystems.. Applied Entomologyand Zoology, Volume 36(3), pp. 387-392. Tamogami, S. et al., 2012. Methyl jasmonate is transported to distal leaves via vascular processmetabolizing itself into JA-Ile and triggering VOCs emission as defensive metabolites. Plant Signaling& Behavior, Volume 7(11), pp. 1378-1381. Taylor, A. L. & Sasser, J. N., 1978. Biology, identification and control of root-knot nematodes. NorthCarolina: North Carolina State University Graphics. Taylor, M. J., Hoerauf, A. & Bockarie, M., 2010. Lymphatic filariasis and onchocerciasis. U.S. NationalLibrary of Medicine, Volume 376(9747), pp. 1175-1185. Thakur, M. & Sohal, B., 2013. Role of Elicitors in Inducing Resistance in Plants against PathogenInfection: A Review. ISRN Biochemistry, Volume 2013, pp. 1-10. Thaler, J., Farag, M., Pare, P. & Dicke, M., 2002. Jasmonate-deficient plants have reduced direct andindirect defences against herbivores. Ecology Letters, 5(6), pp. 764-774. Thines, B. et al., 2007. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonatesignalling. Nature, Volume 448(7154), pp. 661-665. Triantaphyllou, A., 1984. Polyploidy in meiotic parthenogenetic populations of Meloidogyne haplaand a mechanism of conversion to diploidy. Revue de Nématologie, Volume 7, pp. 65-72. Triantaphyllou, A., 1985. Cytogenetics, cytotaxonomy and phylogeny of the root-knot nematode. In:Advanced treaties of Meloidogyne Vol. 1. Biology and control.. North Carolina State: Universitygraphics, pp. 113-126. Triantaphyllou, A. C., 1981. Oogenesis and the Chromosomes of the Parthenogenic Root-knotNematode Meloidogyne incognita. Journal of nematology, Volume 13(2), pp. 95-104. Triantaphyllou, A. C., 1983. Cytogenetic aspects of nematode evolution. In: Plant paraseticnematodes. Fith Avenue, New York: Acedelic press, Inc., p. 55–71. Trudgill, D. & Blok, V., 2001. Apomictic, polyphagous root-knot nematodes: exceptionally successfuland. Annual Review Phytopathology, Volume 39, pp. 53-77. Udalova, Z. V., Revina, T. A., Gerasimova, N. G. & Zivovieva, S. V., 2014. Participation of proteinaseinhibitors in protection of tomato plants against root-knot nematodes. Doklady Biological Sciences,458(1), pp. 306-309. Uknes, S. et al., 1992. Acquiered-resistance in Arabidopsis. Plant cell, Volume 4(6), pp. 645-656. Vallad, G. & Goodman, R., 2004. Systemic acquired resistance and induced systemic resistance inconventional agriculture. Crop Science, Volume 44(6), pp. 1920-1934. Van Gundy, S. D., 1985. Ecology of Meloidogyne Spp.. In: An Advanced Treatise on Meloidogyne .Raleigh, North Carolina: North Carolina State University Graphics, pp. 177-182. Van Loon, L., 1997. Induced resistance in plants and the role of pathogenesis-related proteins..Journal of Plant Pathology, Issue 103, p. 753–765. Van Loon, L., Bakker, P. & Pieterse, C., 1998. Systemic resistance induced by rhizosphere bacteria.Annual Review of Phytopathology, Volume 36, pp. 453-483. Vasyukova, N. et al., 2009. Jasmonic Acid and Tomato Resistance to the Root Knot NematodeMeloidogyne incognita. Doklady Biological Sciences, Volume 428, pp. 448-450. Vatanparast, G., Mirdehghan, S. H., Karimi, H. R. & Vazifeshenas, M. H., 2012. Foliar Application ofSalicylic Acid, Methyl Jasmonate and Potassium Sulfate on Photosynthetic Characteristics and FruitQuality of Pomegranate. Iran Agricultural Research, 31(2). Vernooij, B. et al., 1994. Salicylic acid is not the translocated signal responsible for inducing systemicacquired resistance but is required in signal transduction. Plant Cell, Volume 6(7), pp. 959-965. Vieira dos Santos, M., Curtis, R. & Abrantes, I., 2013. Effect of plant elicitors on the reproduction ofthe root-knot nematode Meloidogyne chitwoodi on susceptible hosts. European Journal of PlantPathology, 136(1), pp. 193-202 . Vishnudasan, D., Tripathi, M., Rao, U. & Khurana, P., 2005. Assessment of nematode resistance inwheat transgenic plants expressing potato proteinase inhibitor (PIN2) gene. Transgenic Research,14(5), pp. 665-675. Vivas, M., Martin, J., Gil, L. & Solla, A., 2012. Evaluating methyl jasmonate for induction of resistanceto Fusarium oxysporum, F. circinatum and Ophiostoma novo-ulmi. Forest Systems, 21(2), pp. 289-299. Walker-Simmons, M. & Ryan, C., 1984. Proteinase inhibitor synthesis in tomato leaves. PlantPhysiology, Volume 76, pp. 787-790. Walls, R., Appel, H., Cipollini, M. & Schultz, J., 2005. Fertility, Root Reserves and the Cost of InducibleDefenses in the Perennial Plant Solanum carolinense. Journal of Chemical Ecology, 31(10), pp. 2263-2288. Walters, D., Cowley, T. & Mitchell, A., 2002. Methyl jasmonate alters polyamine metabolism andinduces systemic protection against powdery mildew infection in barley seedlings. Journal ofExperimental Botany, 53(369), pp. 747-756. Walters, D. & Fontaine, J. M., 2009. Practical application of induced resistance to plant diseases: anappraisal of effectiveness under field conditions. The Journal of Agricultural Science, 147(5), pp. 523-535. Walters, D. R., 2009. Are plants in the field already induced? Implications for practical diseasecontrol. Crop Protection, 28(6), pp. 459-465. Walters, D. R., Ratsep, J. & Havis, N. D., 2013. Controlling crop diseases using induced resistance:challenges for the future. Journal Of Experimental Botany, 64((5)), pp. 1263-1280 . Wang, C., 1998. Methyl jasmonate inhibits postharvest sprouting and improves storage quality ofradishes. Postharvest Biology And Technology, 14(2), pp. 179-183. Wang, S., 1999. Methyl jasmonate reduces water stress in strawberry. Journal of Plant GrowthRegulation, 18(3), pp. 27-134. Wasternack, C., 2007. Jasmonates: an update on biosynthesis, signal transduction and action in plantstress response, growth and development. Annals of botany, 100(4), pp. 681-697. Whitehead, A. G. & Hemming, J. R., 1965. Comparison of some quantitative methods of extractingsmall vermiform nematodes from soil. Annals of Applied Biology, Volume 55, pp. 25-38. Wiggers, R. J., 1990. DNA Content and Variation in Chromosome Number in Plant Cells Affected byMeloidogyne incognita and M. arenaria. Phytopathology, 80(12), p. 1391. Wondafrash, M., Van Dam, N. M. & Tytgat, T. O. G., 2013. Plant systemic induced responses mediateinteractions between root parasitic nematodes and aboveground herbivorous insects. Frontiers inplant science, Volume 4, p. 87. Wyss, U., Grundler, F. M. W. & Munch, A., 1992. The parasitic behaviour of second-stage juveniles ofMeloidogyne Incognita in Roots of Arabidopsis Thaliana. Nematologica, 38(1), pp. 98-111. Xing, L. & Westphal, A., 2005. A method for field infestation with Meloidogyne incognita. Journal ofNematology, 37(4), pp. 500-503. Xu, J., Narabu, T., Mizukubo, T. & Hibi, T., 2001. A Molecular Marker Correlated with SelectedVirulence Against the Tomato Resistance Gene Mi in Meloidogyne incognita, M. javanica, and M.arenaria. Phytopathology, Volume 377-382, p. 91(4). Yamada, A., Shibuya, N., Kodama, O. & Akatsuka, T., 1993. Induction of phytoalexin formation insuspension cultured rice cells by N-acetylchitooligosaccharides.. Bioscience, Biotechnology, andBiochemistry, Volume 57, pp. 405-409. Yan, Z. et al., 2002. Induced systemic protection against tomato late blight elicited by plant growthpromotingrhizobacteria. Phytopathology, Volume 92(12), pp. 1329-1333. Yeh, C. C. et al., 1995. A comparative study of the effects of methyl jasmonate and abscisic acid onsome rice physiological processes. Journal of Plant Growth Regulation, 14(1), pp. 23-28. Yigit, F., 2011. Acibenzolar-S-methyl induces lettuce resistance against Xanthomonas campestris pv.vitians. African Journal Of Biotechnology, 10(47), pp. 9606-9612. Zhang, L. et al., 2011. Effects of jasmonate on proteinase inhibitor II and variation in tomato responseto root-knot nematodes. Acta Horticulturae, Volume 917, pp. 249-252. Zhao, X. S. M. a. H. M., 2000. Species-dependent effects of border cell and root tip exudates onnematode behaviour.. Phytopathology, Volume 90, p. 1239–1245. Zhou, J. et al., 2015. Involvement of nitric oxide in the jasmonate-dependent basal defense againstroot-knot nematode in tomato plants. Frontiers in Plant Science, 6(193). Zimmerli, L., Jakab, G., Metraux, J. & Mauch-Mani, B., 2000. Potentiation of pathogen-specificdefense mechanisms in Arabidopsis by beta -aminobutyric acid. Proceedings of the National Academyof Sciences, 97(23μ), pp. 12920-12925. Zimmerli, L., Metraux, J.-P. & Mauch-Mani, B., 2001. [beta]-Aminobutyric acid-induced protection ofarabidopsis against the necrotrophic fungus Botrytis cinerea. Plant Physiology, 126(2), pp. 517-523

 

Universiteit of Hogeschool
Bio-ingenieurswetenschappen
Publicatiejaar
2015
Kernwoorden
Deel deze scriptie