Molecular and functional analyses of lectins in gastrointestinal and vaginal Lactobacillus species

Nicole
Imholz

LECTINES: HET NIEUWE WAPEN VAN PROBIOTICA

Suikers zijn niet louter de brandstoffen waar wij energie uit halen om te overleven. Elk levend wezen –van bacterie tot zoogdier- gebruikt suikers voor communicatie en interacties. Nu blijkt dat probiotica, goede bacteriën, dit systeem gebruiken om ziekteverwekkende bacteriën en schimmels te slim af te zijn.

Wie is er nu niet geïnteresseerd in suikers, hét basisingrediënt voor alles wat lekker is? Voor een chemicus die suikers als moleculen bestudeert, zijn ze nog interessanter! Suikers vormen namelijk een groep moleculen met een enorme diversiteit. Ook al bestaat er een beperkt aantal enkelvoudige suikers (monosachariden), deze kunnen op oneindig veel manieren aan elkaar geschakeld worden tot lange, vertakte ketens (polysachariden). Levende wezens maken hier handig gebruik van. Hoe weet namelijk het griepvirus dat hij bij onze luchtwegen beland is, zijn doelwit voor infectie? Of hoe weten cellen van ons immuunsysteem dat ze een gevaarlijke bacterie aanvallen? De suikers op de buitenkant van virussen, bacteriën en cellen vormen een code die aangeeft om welke soort het gaat en door andere organismen herkend kan worden. Zo kunnen al onze verschillende lichaamscellen in harmonie samenwerken en worden gevaarlijke indringers herkend.

Lectines ontrafelen de suikercode
Hoe herkennen cellen dan elkaars suikers? Hiervoor dragen cellen eiwitten die heel nauwkeurig verschillende soorten suikers van elkaar kunnen onderscheiden. Deze eiwitten noemen we “lectines” naar het Latijnse “legere”, wat “lezen” betekent. Doordat lectines rechtstreeks kunnen binden aan suikers aanwezig op cellen, bacteriën en virussen, hebben ze allerlei functies. Zo gebruiken ziekteverwekkers zoals Salmonella  en Escherichia coli lectines om zich aan de darmwand vast te hechten, een belangrijke eerste stap voor infectie. Een groep waarvan lectines nog heel weinig bestudeerd zijn, zijn goedaardige bacteriën of probiotica.

We zijn nooit alleen: microbiota
Miljarden bacteriën koloniseren ons lichaam op onze huid, in onze luchtwegen, darmen en urogenitaal stelsel. Deze enorme groep ongevaarlijke organismen noemen we de microbiota. Ze zorgen voor de ontwikkeling van ons immuunsysteem, de afbraak van complexe polysachariden en de aanmaak van vitaminen. Omdat deze bacteriën zo belangrijk zijn voor onze gezondheid, kwam het idee om onze microbiota een handje op weg te helpen door het bewust toevoegen van bepaalde bacteriën aan ons dieet. Zo ontstonden “probiotica”, bacteriën die het welzijn bevorderen wanneer ze in gepaste hoeveelheid worden ingenomen.

Probiotica: het grote mysterie
Probiotica kunnen ons immuunsysteem aanwakkeren, onze darmbarrière versterken en direct andere (gevaarlijke) bacteriën tegenhouden. Inmiddels kan je in de winkel veel yoghurtjes vinden met goede bacteriën. Twee wereldwijd veel gebruikte probiotica zijn Lactobacillus rhamnosus GG en Lactobacillus rhamnosus GR-1, afgekort LGG en LGR-1. LGG is een probioticum voor de darm en kan helpen tegen bijvoorbeeld diarree. Anderzijds is LGR-1 een probioticum voor de vagina dat kan helpen bij vaginale infecties. Jammer genoeg zijn weinig van alle goede effecten van probiotica heel duidelijk in mensen aangetoond en werkt het niet bij iedereen. Wetenschappers begrijpen nog niet helemaal hoe probiotica deze effecten uitoefenen. Maar als we echt zouden begrijpen hoe ze werken, kunnen we bepaalde probiotica mogelijk inzetten tegen allerlei nare ziektes.

Lectines van probiotica op de kaart gezet
Kunnen lectines de vragen die we hebben over probiotica oplossen? Bezitten bekende probiotica als LGG en LGR-1 überhaupt lectines? Nu hebben wij ontdekt dat deze beide bacteriën, net zoals in haast alle levende wezens, inderdaad eiwitten hebben die aan suikers kunnen binden! Maar wat doen deze lactobacillen met hun lectines? Ten eerste hebben we gekeken of de lectines van LGG en LGR-1 kunnen binden aan micro-organismen die ook in de darm of vagina leven. Inderdaad, lectines blijken zich onder andere te hechten aan de schimmel Candida albicans, een veel voorkomende veroorzaker van vaginale infecties. Het is dus heel goed mogelijk dat probiotica lectines gebruiken om direct contact te maken met andere micro-organismen. Zo zouden ze bijvoorbeeld kunnen voorkomen dat gevaarlijke bacteriën of schimmels zich vasthechten in de darm of vagina. Voor Candida hebben we al aanwijzingen dat dit het geval is.

Een tweede eigenschap van de lectines van LGG en LGR-1 is nog meer baanbrekend. Veel bacteriën komen in de natuur voor als een meercellige gemeenschap genaamd biofilm. Dit is een slijmerige laag gehecht aan een oppervlak, waarin bacteriën dicht op elkaar leven. Ze ontstaan gemakkelijk op implantaten, katheters, industriële installaties… Het probleem is dat de bacteriën als gemeenschap beter bestand zijn tegen antibiotica, waardoor biofilms moeilijk te verwijderen zijn. Nu is aangetoond dat de lectines van LGG en LGR-1 biofilms voorkomen van zowel Salmonella Typhimurium, als Escherichia coli. Hoe de lectines de biofilms tegenhouden, is nog niet bekend.

De ontdekte lectines van LGG en LGR-1 geven niet alleen nieuwe argumenten in het omstreden debat rond probiotica. Tegelijk vormen ze voor ons een nieuwe strategie die bacteriën gebruiken om met elkaar te wedijveren. Hopelijk kunnen we deze strategie in de toekomst ook zelf gebruiken in de strijd tegen biofilms.

 

Bibliografie

Bibliography

Anukam, K.C., Macklaim, J.M., Gloor, G.B., Reid, G., Boekhorst, J., Renckens, B., van Hijum, S.A.F.T., Siezen, R.J., 2013. Genome Sequence of Lactobacillus pentosus KCA1: Vaginal Isolate from a Healthy Premenopausal Woman. PLoS One 8, e59239.

Anukam, K.C., Osazuwa, E., Osemene, G.I., Ehigiagbe, F., Bruce, A.W., Reid, G., 2006. Clinical study comparing probiotic Lactobacillus GR-1 and RC-14 with metronidazole vaginal gel to treat symptomatic bacterial vaginosis. Microbes and Infection 8, 2772-2776.

Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D.R., Fernandes, G.R., Tap, J., Bruls, T., Batto, J.-M., Bertalan, M., Borruel, N., Casellas, F., Fernandez, L., Gautier, L., Hansen, T., Hattori, M., Hayashi, T., Kleerebezem, M., Kurokawa, K., Leclerc, M., Levenez, F., Manichanh, C., Nielsen, H.B., Nielsen, T., Pons, N., Poulain, J., Qin, J., Sicheritz-Ponten, T., Tims, S., Torrents, D., Ugarte, E., Zoetendal, E.G., Wang, J., Guarner, F., Pedersen, O., de Vos, W.M., Brunak, S., Dore, J., Weissenbach, J., Ehrlich, S.D., Bork, P., 2011. Enterotypes of the human gut microbiome. Nature 473, 174-180.

Atassi, F., Brassart, D., Grob, P., Graf, F., Servin, A.L., 2006. Lactobacillus strains isolated from the vaginal microbiota of healthy women inhibit Prevotella bivia and Gardnerella vaginalis in coculture and cell culture. FEMS Immunology & Medical Microbiology 48, 424-432.

Audfray, A., Varrot, A., Imberty, A., 2013. Bacteria love our sugars: Interaction between soluble lectins and human fucosylated glycans, structures, thermodynamics and design of competing glycocompounds. Comptes Rendus Chimie 16, 482-490.

Balzarini, J., 2007. Targeting the glycans of glycoproteins: a novel paradigm for antiviral therapy. Nature Reviews Microbiology 5, 583-597.

Bazaka, K., Crawford, R., Nazarenko, E., Ivanova, E., 2011. Bacterial Extracellular Polysaccharides. In: Linke, D., Goldman, A. (Eds.), Bacterial Adhesion. Springer Netherlands, pp. 213-226.

Belkaid, Y., Hand, Timothy W., 2014. Role of the Microbiota in Immunity and Inflammation. Cell 157, 121-141.

Bertozzi, C.R., Rabuka, D., 2009. Structural basis of glycan diversity. In: Varki, A., Cummings, R.D., Esko, J.D. (Eds.), Essentials of Glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY).

Bishop, J.R., Gagneux, P., 2006. Evolution of carbohydrate antigens--microbial forces shaping host glycomes? Glycobiology 17, 23R-34R.

Blattner, F.R., Plunkett, G., Bloch, C.A., Perna, N.T., Burland, V., Riley, M., ColladoVides, J., Glasner, J.D., Rode, C.K., Mayhew, G.F., Gregor, J., Davis, N.W., Kirkpatrick, H.A., Goeden, M.A., Rose, D.J., Mau, B., Shao, Y., 1997. The complete genome sequence of Escherichia coli K-12. Science 277, 1453-&.

Boekhorst, J., Helmer, Q., Kleerebezem, M., Siezen, R.J., 2006. Comparative analysis of proteins with a mucus-binding domain found exclusively in lactic acid bacteria. Microbiology 152, 273-280.

Bowman, S.M., Free, S.J., 2006. The structure and synthesis of the fungal cell wall. BioEssays 28, 799-808.

Brachmann, C.B., Davies, A., Cost, G.J., Caputo, E., Li, J.C., Hieter, P., Boeke, J.D., 1998. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115-132.

Breidenstein, E.B., de la Fuente-Nunez, C., Hancock, R.E., 2011. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 19, 419-426.

Brinster, S., Furlan, S., Serror, P., 2007. C-Terminal WxL Domain Mediates Cell Wall Binding in Enterococcus faecalis and Other Gram-Positive Bacteria. J. Bacteriol. 189, 1244-1253.

Caballero-Franco, C., Keller, K., De Simone, C., Chadee, K., 2007. The VSL#3 probiotic formula induces mucin gene expression and secretion in colonic epithelial cells.

Cadieux, P., Burton, J., Devillard, E., Reid, G., 2009. Lactobacillus by-products inhibit the growth and virulence of uropathogenic Escherichia coli. J Physiol Pharmacol 60, 13-18.

Casali, N., 2003. Escherichia coli host strains. In: Casali, N., Preston, A. (Eds.), E. coli Plasmid Vectors. Humana Press Inc., Totowa, pp. 27-48.

Cash, H.L., Whitham, C.V., Behrendt, C.L., Hooper, L.V., 2006. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313, 1126-1130.

Chan, R.C.Y., Reid, G., Irvin, R.T., Bruce, A.W., Costerton, J.W., 1985. COMPETITIVE-EXCLUSION OF UROPATHOGENS FROM HUMAN UROEPITHELIAL CELLS BY LACTOBACILLUS WHOLE CELLS AND CELL-WALL FRAGMENTS. Infect Immun 47, 84-89.

Chemani, C., Imberty, A., de Bentzmann, S., Pierre, M., Wimmerova, M., Guery, B.P., Faure, K., 2009. Role of LecA and LecB lectins in Pseudomonas aeruginosa-induced lung injury and effect of carbohydrate ligands. Infect Immun 77, 2065-2075.

Cherpes, T.L., Meyn, L.A., Krohn, M.A., Lurie, J.G., Hillier, S.L., 2003. Association between acquisition of herpes simplex virus type 2 in women and bacterial vaginosis. Clinical Infectious Diseases 37, 319-325.

Chersi, A., di Modugno, F., Rosanò, L., 1997. Selective `in synthesis' labelling of peptides by fluorochromes. Biochimica et Biophysica Acta (BBA) - General Subjects 1336, 83-88.

Claes, I., 2011. Factors determining the probiotic effect of Lactobacillus rhamnosus GG in experimental colitis. Faculty of Bioscience Engineering. KU Leuven, Leuven, p. 110.

Copley, S.D., 2012. Moonlighting is mainstream: paradigm adjustment required. BioEssays 34, 578-588.

Cotter, P.D., Ross, R.P., Hill, C., 2013. Bacteriocins - a viable alternative to antibiotics? Nat Rev Micro 11, 95-105.

Dam, T.K., Brewer, C.F., 2010. Lectins as pattern recognition molecules: The effects of epitope density in innate immunity*. Glycobiology 20, 270-279.

De Man, J.C., Rogosa, M., Sharpe, M.E., 1960. A MEDIUM FOR THE CULTIVATION OF LACTOBACILLI. Journal of Applied Bacteriology 23, 130-135.

Diggle, S.P., Stacey, R.E., Dodd, C., Camara, M., Williams, P., Winzer, K., 2006. The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. Environ. Microbiol. 8, 1095-1104.

Doron, S., Snydman, D.R., Gorbach, S.L., 2005. Lactobacillus GG: Bacteriology and Clinical Applications. Gastroenterology Clinics of North America 34, 483-498.

Duncan, M.J., Mann, E.L., Cohen, M.S., Ofek, I., Sharon, N., Abraham, S.N., 2005. The Distinct Binding Specificities Exhibited by Enterobacterial Type 1 Fimbriae Are Determined by Their Fimbrial Shafts. Journal of Biological Chemistry 280, 37707-37716.

Eckert, L.O., Moore, D.E., Patton, D.L., Agnew, K.J., Eschenbach, D.A., 2003. Relationship of vaginal bacteria and inflammation with conception and early pregnancy loss following in-vitro fertilization. Infectious diseases in obstetrics and gynecology 11, 11-17.

Ekmekci, H., Aslim, B., Darilmaz, D.O., 2009. Factors affecting the coaggregation ability of vaginal Lactobacilli with Candida spp. Ann. Microbiol. 59, 163-167.

Etzler, M.E., Surolia, A., Cummings, R.D., 2009. L-type lectins. In: Varki, A., Cummings, R.D., Esko, J.D. (Eds.), Essentials of Glycobiology, 2nd edition. Cold Spring Harbor Laboratory Press, New York.

Fabrega, A., Vila, J., 2013. Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev 26, 308-341.

Ferir, G., Huskens, D., Palmer, K.E., Boudreaux, D.M., Swanson, M.D., Markovitz, D.M., Balzarini, J., Schols, D., 2012. Combinations of Griffithsin with Other Carbohydrate-Binding Agents Demonstrate Superior Activity Against HIV Type 1, HIV Type 2, and Selected Carbohydrate-Binding Agent-Resistant HIV Type 1 Strains. Aids Res. Hum. Retrovir. 28, 1513-1523.

Ferrreira, R.M.S.B., Freitas, R.F.L., Monteiro, S.A.V.S., 2012. Targeting carbohydrates: a novel paradigm for fungal control. European Journal of Plant Pathology 133, 117-140.

Fields, P.I., Swanson, R.V., Haidaris, C.G., Heffron, F., 1986. MUTANTS OF SALMONELLA-TYPHIMURIUM THAT CANNOT SURVIVE WITHIN THE MACROPHAGE ARE AVIRULENT. Proc. Natl. Acad. Sci. U. S. A. 83, 5189-5193.

Flemming, H.-C., Wingender, J., 2010. The biofilm matrix. Nat Rev Micro 8, 623-633.

Fornstedt, N., Porath, J., 1975. Characterization studies on a new lectin found in seeds of Vicia ervilia. FEBS Letters 57, 187-191.

Foster, T.J., Geoghegan, J.A., Ganesh, V.K., Hook, M., 2014. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol 12, 49-62.

Gabius, H.-J., André, S., Jiménez-Barbero, J., Romero, A., Solís, D., 2011. From lectin structure to functional glycomics: principles of the sugar code. Trends in Biochemical Sciences 36, 298-313.

Gajer, P., Brotman, R.M., Bai, G., Sakamoto, J., Schütte, U.M.E., Zhong, X., Koenig, S.S.K., Fu, L., Ma, Z., Zhou, X., Abdo, Z., Forney, L.J., Ravel, J., 2012. Temporal Dynamics of the Human Vaginal Microbiota. Science translational medicine 4, 132ra152-132ra152.

Gantois, I., Ducatelle, R., Pasmans, F., Haesebrouck, F., Hautefort, I., Thompson, A., Hinton, J.C., Van Immerseel, F., 2006. Butyrate Specifically Down-Regulates Salmonella Pathogenicity Island 1 Gene Expression. Appl Environ Microbiol 72, 946-949.

García-Cayuela, T., Korany, A.M., Bustos, I., P. Gómez de Cadiñanos, L., Requena, T., Peláez, C., Martínez-Cuesta, M.C., 2014. Adhesion abilities of dairy Lactobacillus plantarum strains showing an aggregation phenotype. Food Research International 57, 44-50.

Gardiner, G.E., Heinemann, C., Bruce, A.W., Beuerman, D., Reid, G., 2002. Persistence of Lactobacillus fermentum RC-14 and Lactobacillus rhamnosus GR-1 but not L-rhamnosus GG in the human vagina as demonstrated by randomly amplified polymorphic DNA. Clin. Diagn. Lab. Immunol. 9, 92-96.

Gareau, M.G., Sherman, P.M., Walker, W.A., 2010. Probiotics and the gut microbiota in intestinal health and disease. Nat Rev Gastroenterol Hepatol 7, 503-514.

Ghequire, M.G.K., De Mot, R., 2014. Ribosomally encoded antibacterial proteins and peptides from Pseudomonas.

Gillum, A., Tsay, E.H., Kirsch, D., 1984. Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Molec Gen Genet 198, 179-182.

Gow, N.A., Hube, B., 2012. Importance of the Candida albicans cell wall during commensalism and infection. Curr Opin Microbiol 15, 406-412.

Gross, G., Snel, J., Boekhorst, J., Smits, M.A., Kleerebezem, M., 2010. Biodiversity of mannose-specific adhesion in Lactobacillus plantarum revisited: strain-specific domain composition of the mannose-adhesin. Beneficial Microbes 1, 61-66.

Guidone, A., Zotta, T., Ross, R.P., Stanton, C., Rea, M.C., Parente, E., Ricciardi, A., 2014. Functional properties of Lactobacillus plantarum strains: A multivariate screening study. LWT-Food Sci. Technol. 56, 69-76.

Gupta, 2012.Lectins: an overview. In: Animal Lectins: Form, Function and Clinical Applications. Gupta (Ed.). Springer-Verlag Wien

Hall, R.A., Gow, N.A.R., 2013. Mannosylation in Candida albicans: role in cell wall function and immune recognition. Mol. Microbiol. 90, 1147-1161.

Harmanli, O.H., Cheng, G.Y., Nyirjesy, P., Chatwani, A., Gaughan, J.P., 2000. Urinary tract infections in women with bacterial vaginosis. Obstetrics & Gynecology 95, 710-712.

Heilmann, C., 2011. Adhesion Mechanisms of Staphylococci. In: Linke, D., Goldman, A. (Eds.), Bacterial Adhesion: Chemistry, Biology and Physics. Springer-Verlag Berlin, Berlin, pp. 105-123.

Hekmat, S., Soltani, H., Reid, G., 2009. Growth and survival of Lactobacillus reuteri RC-14 and Lactobacillus rhamnosus GR-1 in yogurt for use as a functional food. Innov. Food Sci. Emerg. Technol. 10, 293-296.

Hill, C., Guarner, F., Reid, G., Gibson, G.R., Merenstein, D.J., Pot, B., Morelli, L., Canani, R.B., Flint, H.J., Salminen, S., Calder, P.C., Sanders, M.E., 2014. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11, 506-514.

Hooper, L.V., Littman, D.R., Macpherson, A.J., 2012. Interactions Between the Microbiota and the Immune System. Science 336, 1268-1273.

Horsburgh, M.J., Aish, J.L., White, I.J., Shaw, L., Lithgow, J.K., Foster, S.J., 2002. σB Modulates Virulence Determinant Expression and Stress Resistance: Characterization of a Functional rsbU Strain Derived from Staphylococcus aureus 8325-4. J. Bacteriol. 184, 5457-5467.

Huberts, D.H.E.W., van der Klei, I.J., 2010. Moonlighting proteins: An intriguing mode of multitasking. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1803, 520-525.

Hunstad, D.A., Justice, S.S., Hung, C.S., Lauer, S.R., Hultgren, S.J., 2005. Suppression of Bladder Epithelial Cytokine Responses by Uropathogenic Escherichia coli. Infect Immun 73, 3999-4006.

Huskens, D., Schols, D., 2012. Algal Lectins as Potential HIV Microbicide Candidates. Marine Drugs 10, 1476-1497.

Kamada, N., Chen, G.Y., Inohara, N., Nunez, G., 2013. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol 14, 685-690.

Kankainen, M., Paulin, L., Tynkkynen, S., von Ossowski, I., Reunanen, J., Partanen, P., Satokari, R., Vesterlund, S., Hendrickx, A.P.A., Lebeer, S., De Keersmaecker, S.C.J., Vanderleyden, J., Hämäläinen, T., Laukkanen, S., Salovuori, N., Ritari, J., Alatalo, E., Korpela, R., Mattila-Sandholm, T., Lassig, A., Hatakka, K., Kinnunen, K.T., Karjalainen, H., Saxelin, M., Laakso, K., Surakka, A., Palva, A., Salusjärvi, T., Auvinen, P., de Vos, W.M., 2009. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human- mucus binding protein. Proceedings of the National Academy of Sciences 106, 17193-17198.

Karczewski, J., Troost, F.J., Konings, I., Dekker, J., Kleerebezem, M., Brummer, R.-J.M., Wells, J.M., 2010. Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier.

Kim, J., Sudbery, P., 2011. Candida albicans, a major human fungal pathogen. J Microbiol. 49, 171-177.

Klebanoff, M.A., Schwebke, J.R., Zhang, J., Nansel, T.R., Yu, K.-F., Andrews, W.W., 2004. Vulvovaginal Symptoms in Women With Bacterial Vaginosis. Obstetrics & Gynecology 104, 267-272.

Kleerebezem, M., Vaughan, E.E., 2009. Probiotic and Gut Lactobacilli and Bifidobacteria: Molecular Approaches to Study Diversity and Activity. Annual Review of Microbiology 63, 269-290.

Klemm, P., Hancock, V., Schembri, M.A., 2010. Fimbrial adhesins from extraintestinal Escherichia coli. Environmental Microbiology Reports 2, 628-640.

Knights, D., Ward, T.L., McKinlay, C.E., Miller, H., Gonzalez, A., McDonald, D., Knight, R., 2014. Rethinking “Enterotypes”. Cell Host & Microbe 16, 433-437.

Köhler, C.-D., Dobrindt, U., 2011. What defines extraintestinal pathogenic Escherichia coli? International Journal of Medical Microbiology 301, 642-647.

Korea, C.-G., Ghigo, J.-M., Beloin, C., 2011. The sweet connection: Solving the riddle of multiple sugar-binding fimbrial adhesins in Escherichia coli. BioEssays 33, 300-311.

Koumans, E.H., Markowitz, L.E., Hogan, V., 2002. Indications for therapy and treatment recommendations for bacterial vaginosis in nonpregnant and pregnant women: a synthesis of data. Clinical Infectious Diseases 35, S152-S172.

Kovachev, S.M., Vatcheva-Dobrevska, R.S., 2014. Local Probiotic Therapy for Vaginal Candida albicans Infections. Probiotics Antimicrob Proteins.

Lai, Y., Rosenshine, I., Leong, J.M., Frankel, G., 2013. Intimate host attachment: enteropathogenic and enterohaemorrhagic Escherichia coli. Cell Microbiol 15, 1796-1808.

Lasa, I., Penadés, J.R., 2006. Bap: a family of surface proteins involved in biofilm formation. Research in Microbiology 157, 99-107.

Latgé, J.-P., 2007. The cell wall: a carbohydrate armour for the fungal cell. Mol. Microbiol. 66, 279-290.

Le Trong, I., Aprikian, P., Kidd, B.A., Forero-Shelton, M., Tchesnokova, V., Rajagopal, P., Rodriguez, V., Interlandi, G., Klevit, R., Vogel, V., Stenkamp, R.E., Sokurenko, E.V., Thomas, W.E., 2010. Structural Basis for Mechanical Force Regulation of the Adhesin FimH via Finger Trap-like beta Sheet Twisting. Cell 141, 645-655.

Lebeer, S., Claes, I., Tytgat, H.L.P., Verhoeven, T.L.A., Marien, E., von Ossowski, I., Reunanen, J., Palva, A., de Vos, W.M., De Keersmaecker, S.C.J., Vanderleyden, J., 2012. Functional Analysis of Lactobacillus rhamnosus GG Pili in Relation to Adhesion and Immunomodulatory Interactions with Intestinal Epithelial Cells. Appl Environ Microbiol 78, 185-193.

Lebeer, S., Vanderleyden, J., De Keersmaecker, S.C.J., 2008. Genes and Molecules of Lactobacilli Supporting Probiotic Action. Microbiology and Molecular Biology Reviews 72, 728-764.

Lebeer, S., Vanderleyden, J., De Keersmaecker, S.C.J., 2010. Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat Rev Micro 8, 171-184.

Ledeboer, N.A., Frye, J.G., McClelland, M., Jones, B.D., 2006. Salmonella enterica Serovar Typhimurium Requires the Lpf, Pef, and Tafi Fimbriae for Biofilm Formation on HEp-2 Tissue Culture Cells and Chicken Intestinal Epithelium. Infect Immun 74, 3156-3169.

Lepage, P., Leclerc, M.C., Joossens, M., Mondot, S., Blottiere, H.M., Raes, J., Ehrlich, D., Dore, J., 2013. A metagenomic insight into our gut's microbiome. Gut 62, 146-158.

Linhares, I.M., Kanninen, T.T., Orfanelli, T., Jayaram, A., Doulaveris, G., Witkin, S.S., 2013. The Vaginal Microbiome: New Findings Bring New Opportunities. Drug Development Research 74, 360-364.

Lopes dos Santos Santiago, G., Tency, I., Verstraelen, H., Verhelst, R., Trog, M., Temmerman, M., Vancoillie, L., Decat, E., Cools, P., Vaneechoutte, M., 2012. Longitudinal qPCR Study of the Dynamics of L. crispatus, L. iners, A. vaginae, (Sialidase Positive) G. vaginalis, and P. bivia in the Vagina. PLoS One 7, e45281.

Malik, S., 2014. Molecular study of mannose-binding lectin(s) of lactobacilli and their potential as HIV trap. KU Leuven, Universiteit Antwerpen, p. 171.

Malik, S., Petrova, M.I., Claes, I.J.J., Verhoeven, T.L.A., Busschaert, P., Vaneechoutte, M., Lievens, B., Lambrichts, I., Siezen, R.J., Balzarini, J., Vanderleyden, J., Lebeer, S., 2013. The Highly Autoaggregative and Adhesive Phenotype of the Vaginal Lactobacillus plantarum Strain CMPG5300 Is Sortase Dependent. Appl Environ Microbiol 79, 4576-4585.

Martin, H.L., Richardson, B.A., Nyange, P.M., Lavreys, L., Hillier, S.L., Chohan, B., Mandaliya, K., Ndinya-Achola, J.O., Bwayo, J., Kreiss, J., 1999. Vaginal lactobacilli, microbial flora, and risk of human immunodeficiency virus type 1 and sexually transmitted disease acquisition. Journal of Infectious Diseases 180, 1863-1868.

Martinez, R.C.R., Franceschini, S.A., Patta, M.C., Quintana, S.M., Gomes, B.C., De Martinis, E.C.P., Reid, G., 2009. Improved cure of bacterial vaginosis with single dose of tinidazole (2 g), Lactobacillus rhamnosus GR-1, and Lactobacillus reuteri RC-14: a randomized, double-blind, placebo-controlled trial. Canadian Journal of Microbiology 55, 133-138.

McFarland, L.V., 2006. Meta-Analysis of Probiotics for the Prevention of Antibiotic Associated Diarrhea and the Treatment of Clostridium difficile Disease. Am J Gastroenterol 101, 812-822.

McMillan, A., Dell, M., Zellar, M.P., Cribby, S., Martz, S., Hong, E., Fu, J., Abbas, A., Dang, T., Miller, W., Reid, G., 2011. Disruption of urogenital biofilms by lactobacilli. Colloids Surf B Biointerfaces 86, 58-64.

Michiels, K., Van Damme, E.J.M., Smagghe, G., 2010. PLANT-INSECT INTERACTIONS: WHAT CAN WE LEARN FROM PLANT LECTINS? Arch. Insect Biochem. Physiol. 73, 193-212.

Mitchell, E., Houles, C., Sudakevitz, D., Wimmerova, M., Gautier, C., Perez, S., Wu, A.M., Gilboa-Garber, N., Imberty, A., 2002. Structural basis for oligosaccharide-mediated adhesion of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. Nat Struct Biol 9, 918-921.

Mueller, S., Saunier, K., Hanisch, C., Norin, E., Alm, L., Midtvedt, T., Cresci, A., Silvi, S., Orpianesi, C., Verdenelli, M.C., Clavel, T., Koebnick, C., Zunft, H.-J.F., Doré, J., Blaut, M., 2006. Differences in Fecal Microbiota in Different European Study Populations in Relation to Age, Gender, and Country: a Cross-Sectional Study. Appl Environ Microbiol 72, 1027-1033.

Ofek, I., Bayer, E.A., Abraham, S.N., 2013. Bacterial Adhesion. 107-123.

Ojala, T., Kankainen, M., Castro, J., Cerca, N., Edelman, S., Westerlund-Wikstrom, B., Paulin, L., Holm, L., Auvinen, P., 2014. Comparative genomics of Lactobacillus crispatus suggests novel mechanisms for the competitive exclusion of Gardnerella vaginalis. BMC Genomics 15, 1070.

Osset, J., Bartolomé, R.M., García, E., Andreu, A., 2001. Assessment of the Capacity of Lactobacillus to Inhibit the Growth of Uropathogens and Block Their Adhesion to Vaginal Epithelial Cells. Journal of Infectious Diseases 183, 485-491.

Pascual, L., Daniele, M., Giordano, W., Pájaro, M., Barberis, I., 2008. Purification and Partial Characterization of Novel Bacteriocin L23 Produced by Lactobacillus fermentum L23. Curr Microbiol 56, 397-402.

Perret, S., Sabin, C., Dumon, C., Pokorna, M., Gautier, C., Galanina, O., Ilia, S., Bovin, N., Nicaise, M., Desmadril, M., Gilboa-Garber, N., Wimmerova, M., Mitchell, E.P., Imberty, A., 2005. Structural basis for the interaction between human milk oligosaccharides and the bacterial lectin PA-IIL of Pseudomonas aeruginosa. Biochemical Journal 389, 325-332.

Petrova, M.I., 2013. Molecular and functional analyses of lectin in Lactobacillus rhamnosus. KU Leuven, Universiteit Antwerpen, p. 241.

Petrova, M.I., Lievens, E., Malik, S., Imholz, N., Lebeer, S., 2015. Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health. Frontiers in physiology 6.

Petrova, M.I., Mathys, L., Lebeer, S., Noppen, S., Van Damme, E.J.M., Tanaka, H., Igarashi, Y., Vaneechoutte, M., Vanderleyden, J., Balzarini, J., 2013a. Inhibition of infection and transmission of HIV-1 and lack of significant impact on the vaginal commensal lactobacilli by carbohydrate-binding agents. Journal of Antimicrobial Chemotherapy 68, 2026-2037.

Petrova, M.I., van den Broek, M., Balzarini, J., Vanderleyden, J., Lebeer, S., 2013b. Vaginal microbiota and its role in HIV transmission and infection. FEMS Microbiol Rev 37, 762-792.

Pickard, J.M., Maurice, C.F., Kinnebrew, M.A., Abt, M.C., Schenten, D., Golovkina, T.V., Bogatyrev, S.R., Ismagilov, R.F., Pamer, E.G., Turnbaugh, P.J., Chervonsky, A.V., 2014. Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 514, 638-641.

Pieters, R., 2011. Carbohydrate Mediated Bacterial Adhesion. In: Linke, D., Goldman, A. (Eds.), Bacterial Adhesion. Springer Netherlands, pp. 227-240.

Pretzer, G., Snel, J., Molenaar, D., Wiersma, A., Bron, P.A., Lambert, J., de Vos, W.M., van der Meer, R., Smits, M.A., Kleerebezem, M., 2005. Biodiversity-based identification and functional characterization of the mannose-specific adhesin of Lactobacillus plantarum. J. Bacteriol. 187, 6128-6136.

Rahme, L., Stevens, E., Wolfort, S., Shao, J., Tompkins, R., Ausubel, F., 1995. Common virulence factors for bacterial pathogenicity in plants and animals. Science 268, 1899-1902.

Ravel, J., Gajer, P., Abdo, Z., Schneider, G.M., Koenig, S.S.K., McCulle, S.L., Karlebach, S., Gorle, R., Russell, J., Tacket, C.O., Brotman, R.M., Davis, C.C., Ault, K., Peralta, L., Forney, L.J., 2011. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. U. S. A. 108, 4680-4687.

Reid, G., 1999. The scientific basis for probiotic strains of Lactobacillus. Appl Environ Microbiol 65, 3763-3766.

Reid, G., Bruce, A.W., 2001. Selection of Lactobacillus Strains for Urogenital Probiotic Applications. Journal of Infectious Diseases 183, S77-S80.

Reid, G., McGroarty, J.A., Angotti, R., Cook, R.L., 1988. Lactobacillus inhibitor production against Escherichia coli and coaggregation ability with uropathogens. Canadian Journal of Microbiology 34, 344-351.

Robijns, S., 2013. Identification and characterization of new, broadly applicable small molecule inhibitors of Salmonella biofilm formation. KU Leuven, Leuven, p. 267.

Robinson, C.J., Bohannan, B.J.M., Young, V.B., 2010. From Structure to Function: the Ecology of Host-Associated Microbial Communities. Microbiology and Molecular Biology Reviews 74, 453-+.

Sakamoto, S., Iijima, M., Matsuzawa, H., Ohta, T., 1994. PRODUCTION OF THERMOPHILIC PROTEASE BY GLUCOSE-CONTROLLED FED-BATCH CULTURE OF RECOMBINANT OF ESCHERICHIA-COLI. Journal of Fermentation and Bioengineering 78, 304-309.

Sambrook, J., Fritsch, E.F., Maniatis, T., 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor, New York.

Sanchez, B., Saad, N., Schmitter, J., Bressolier, P., M.C., U., 2010. Adhesive properties, extracellular protein production, and metabolism in the Lactobacillus rhamnosus GG strain when grown in the presence of mucin. Journal of Microbiology and Biotechnology 20, 978-984.

Saunders, S., Bocking, A., Challis, J., Reid, G., 2007. Effect of Lactobacillus challenge on Gardnerella vaginalis biofilms. Colloids Surf B Biointerfaces 55, 138-142.

Schluter, J., Nadell, C.D., Bassler, B.L., Foster, K.R., 2015. Adhesion as a weapon in microbial competition. Isme J 9, 139-149.

Segers, M.E., Lebeer, S., 2014. Towards a better understanding of Lactobacillus rhamnosus GG-host interactions. Microbial cell factories 13, S7.

Servin, A.L., 2004. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens.

Sharon, N., Lis, H., 2007. Lectins. Springer, Dordrecht, The Netherlands.

Siezen, R., Boekhorst, J., Muscariello, L., Molenaar, D., Renckens, B., Kleerebezem, M., 2006. Lactobacillus plantarum gene clusters encoding putative cell-surface protein complexes for carbohydrate utilization are conserved in specific gram-positive bacteria. BMC Genomics 7, 126.

Smith, B.C., McAndrew, T., Chen, Z., Harari, A., Barris, D.M., Viswanathan, S., Rodriguez, A.C., Castle, P., Herrero, R., Schiffman, M., Burk, R.D., 2012. The Cervical Microbiome over 7 Years and a Comparison of Methodologies for Its Characterization. PLoS One 7, e40425.

Söderling, E., Marttinen, A., Haukioja, A., 2011. Probiotic Lactobacilli Interfere with Streptococcus mutans Biofilm Formation In Vitro. Curr Microbiol 62, 618-622.

Sokurenko, E.V., Chesnokova, V., Dykhuizen, D.E., Ofek, I., Wu, X.-R., Krogfelt, K.A., Struve, C., Schembri, M.A., Hasty, D.L., 1998. Pathogenic adaptation of Escherichia coli by natural variation of the FimH adhesin. Proceedings of the National Academy of Sciences 95, 8922-8926.

Spurbeck, R.R., Arvidson, C.G., 2011. Lactobacilli at the front line of defense against vaginally acquired infections. Future Microbiology 6, 567-582.

Srinivas, V.R., Reddy, G.B., Ahmad, N., Swaminathan, C.P., Mitra, N., Surolia, A., 2001. Legume lectin family, the ‘natural mutants of the quaternary state’, provide insights into the relationship between protein stability and oligomerization. Biochimica et Biophysica Acta (BBA) - General Subjects 1527, 102-111.

Srinivasan, S., Hoffman, N.G., Morgan, M.T., Matsen, F.A., Fiedler, T.L., Hall, R.W., Ross, F.J., McCoy, C.O., Bumgarner, R., Marrazzo, J.M., Fredricks, D.N., 2012. Bacterial Communities in Women with Bacterial Vaginosis: High Resolution Phylogenetic Analyses Reveal Relationships of Microbiota to Clinical Criteria. PLoS One 7, e37818.

Steenackers, H., Hermans, K., Vanderleyden, J., De Keersmaecker, S.C., 2012. Salmonella biofilms: an overview on occurrence, structure, regulation and eradication. Food Research International 45, 502-531.

Strous, G.J., Dekker, J., 1992. Mucin-type glycoproteins. Critical reviews in biochemistry and molecular biology 27, 57-92.

Swidsinski, A., Doerffel, Y., Loening-Baucke, V., Swidsinski, S., Verstraelen, H., Vaneechoutte, M., Lemm, V., Schilling, J., Mendling, W., 2010. <i>Gardnerella</i> Biofilm Involves Females and Males and Is Transmitted Sexually. Gynecologic and Obstetric Investigation 70, 256-263.

The Human Microbiome Project Consortium, 2012. Structure, function and diversity of the healthy human microbiome. Nature 486, 207-214.

Thompson, R., Creavin, A., O’Connell, M., O’Connor, B., Clarke, P., 2011. Optimization of the enzyme-linked lectin assay for enhanced glycoprotein and glycoconjugate analysis. Analytical Biochemistry 413, 114-122.

Tielker, D., Hacker, S., Loris, R., Strathmann, M., Wingender, J., Wilhelm, S., Rosenau, F., Jaeger, K.E., 2005. Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. Microbiology-(UK) 151, 1313-1323.

Tomás, M.S.J., Ocaña, V.S., Wiese, B., Nader-Macías, M.E., 2003. Growth and lactic acid production by vaginal Lactobacillus acidophilus CRL 1259, and inhibition of uropathogenic Escherichia coli. J Med Microbiol 52, 1117-1124.

Turchi, B., Mancini, S., Fratini, F., Pedonese, F., Nuvoloni, R., Bertelloni, F., Ebani, V.V., Cerri, D., 2013. Preliminary evaluation of probiotic potential of Lactobacillus plantarum strains isolated from Italian food products. World J. Microbiol. Biotechnol. 29, 1913-1922.

Tytgat, H., Sánchez-Rodríguez, A., Schoofs, G., Verhoeven, T., De Keersmaecker, S., Marchal, K., Vanderleyden, J., Lebeer, S., 2012. A combined approach to study the protein glycosylation potential of Lactobacillus rhamnosus GG (LGG). Communications in agricultural and applied biological sciences 77, 15.

Tytgat, H.L.P., Lebeer, S., 2014. The Sweet Tooth of Bacteria: Common Themes in Bacterial Glycoconjugates. Microbiology and Molecular Biology Reviews 78, 372-417.

Valdivia, R.H., Falkow, S., 1996. Bacterial genetics by flow cytometry: Rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol. Microbiol. 22, 367-378.

van Baarlen, P., Wells, J.M., Kleerebezem, M., 2013. Regulation of intestinal homeostasis and immunity with probiotic lactobacilli. Trends Immunol 34, 208-215.

Van Breedam, W., Pöhlmann, S., Favoreel, H.W., de Groot, R.J., Nauwynck, H.J., 2014. Bitter-sweet symphony: glycan–lectin interactions in virus biology. FEMS Microbiol Rev 38, 598-632.

Van Damme, E.M., Smith, D., Cummings, R., Peumans, W., 2011. Glycan Arrays to Decipher the Specificity of Plant Lectins. In: Wu, A.M. (Ed.), The Molecular Immunology of Complex Carbohydrates-3. Springer US, pp. 757-767.

van de Wijgert, J.H., Borgdorff, H., Verhelst, R., Crucitti, T., Francis, S., Verstraelen, H., Jespers, V., 2014. The vaginal microbiota: what have we learned after a decade of molecular characterization? PLoS One 9, e105998.

Van Houdt, R., Michiels, C.W., 2005. Role of bacterial cell surface structures in Escherichia coli biofilm formation. Research in Microbiology 156, 626-633.

Vandenborre, G., Smagghe, G., Van Damme, E.J.M., 2011. Plant lectins as defense proteins against phytophagous insects. Phytochemistry 72, 1538-1550.

Varki, A., Etzler, M.E., Cummings, R.D., Esko, J.D., 2009. Discovery and Classification of Glycan-Binding Proteins. In: Varki, A., Cummings, R.D., Esko, J.D. (Eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY).

Vélez, M.P., Petrova, M.I., Lebeer, S., Verhoeven, T.L.A., Claes, I., Lambrichts, I., Tynkkynen, S., Vanderleyden, J., De Keersmaecker, S.C.J., 2010. Characterization of MabA, a modulator of Lactobacillus rhamnosus GG adhesion and biofilm formation.

Verstraelen, H., Delanghe, J., Roelens, K., Blot, S., Claeys, G., Temmerman, M., 2005. Subclinical iron deficiency is a strong predictor of bacterial vaginosis in early pregnancy. BMC infectious diseases 5, 55.

Verstraelen, H., Swidsinski, A., 2013. The biofilm in bacterial vaginosis: implications for epidemiology, diagnosis and treatment. Current opinion in infectious diseases 26, 86-89.

Virji, M., 2009. Ins and Outs of Microbial Adhesion. Top. Curr. Chem. 288, 1-15.

von Ossowski, I., Satokari, R., Reunanen, J., Lebeer, S., De Keersmaecker, S.C., Vanderleyden, J., de Vos, W.M., Palva, A., 2011a. Functional characterization of a mucus-specific LPXTG surface adhesin from probiotic Lactobacillus rhamnosus GG. Appl Environ Microbiol 77, 4465-4472.

von Ossowski, I., Satokari, R., Reunanen, J., Lebeer, S., De Keersmaecker, S.C.J., Vanderleyden, J., de Vos, W.M., Palva, A., 2011b. Functional Characterization of a Mucus-Specific LPXTG Surface Adhesin from Probiotic Lactobacillus rhamnosus GG. Appl Environ Microbiol 77, 4465-4472.

Vuotto, C., Longo, F., Donelli, G., 2014. Probiotics to counteract biofilm-associated infections: promising and conflicting data. In J Oral Sci 6, 189-194.

Wagner, C., Barlag, B., Gerlach, R.G., Deiwick, J., Hensel, M., 2014. The Salmonella enterica giant adhesin SiiE binds to polarized epithelial cells in a lectin-like manner. Cell Microbiol 16, 962-975.

Wagner, C., Hensel, M., 2011. Adhesive Mechanisms of Salmonella enterica. In: Linke, D., Goldman, A. (Eds.), Bacterial Adhesion. Springer Netherlands, pp. 17-34.

Walencka, E., Różalska, S., Sadowska, B., Różalska, B., 2008. The influence of Lactobacillus acidophilus-derived surfactants on staphylococcal adhesion and biofilm formation. Folia Microbiol 53, 61-66.

Wang, G., Xia, Y., Cui, J., Gu, Z., Song, Y., Chen, Y.Q., Chen, H., Zhang, H., Chen, W., 2013. The roles of moonlighting proteins in bacteria. Curr. Issues Mol. Biol 16, 15-22.

Weening, E.H., Barker, J.D., Laarakker, M.C., Humphries, A.D., Tsolis, R.M., Bäumler, A.J., 2005. The Salmonella enterica Serotype Typhimurium lpf, bcf, stb, stc, std, and sth Fimbrial Operons Are Required for Intestinal Persistence in Mice. Infect Immun 73, 3358-3366.

Wiesenfeld, H.C., Hillier, S.L., Krohn, M.A., Landers, D.V., Sweet, R.L., 2003. Bacterial vaginosis is a strong predictor of Neisseria gonorrhoeae and Chlamydia trachomatis infection. Clinical Infectious Diseases 36, 663-668.

Woo, J., Ahn, J., 2013. Probiotic‐mediated competition, exclusion and displacement in biofilm formation by food‐borne pathogens. Letters in Applied Microbiology 56, 307-313.

Yan, F., Polk, D.B., 2002. Probiotic Bacterium Prevents Cytokine-induced Apoptosis in Intestinal Epithelial Cells. Journal of Biological Chemistry 277, 50959-50965.

Yang, Y.-H., Jiang, Y.-L., Zhang, J., Wang, L., Bai, X.-H., Zhang, S.-J., Ren, Y.-M., Li, N., Zhang, Y.-H., Zhang, Z., Gong, Q., Mei, Y., Xue, T., Zhang, J.-R., Chen, Y., Zhou, C.-Z., 2014. Structural Insights into SraP-Mediated Staphylococcus aureus Adhesion to Host Cells. PLoS Pathogens 10, e1004169.

Yao, C.K., Tan, H.L., van Langenberg, D.R., Barrett, J.S., Rose, R., Liels, K., Gibson, P.R., Muir, J.G., 2014. Dietary sorbitol and mannitol: food content and distinct absorption patterns between healthy individuals and patients with irritable bowel syndrome. Journal of Human Nutrition and Dietetics 27, 263-275.

Younes, J.A., van der Mei, H.C., van den Heuvel, E., Busscher, H.J., Reid, G., 2012. Adhesion forces and coaggregation between vaginal staphylococci and lactobacilli. PLoS One 7, e36917.

Zárate, G., Nader-Macias, M.E., 2006. Influence of probiotic vaginal lactobacilli on in vitro adhesion of urogenital pathogens to vaginal epithelial cells. Letters in Applied Microbiology 43, 174-180.

Zhou, X., Bent, S.J., Schneider, M.G., Davis, C.C., Islam, M.R., Forney, L.J., 2004. Characterization of vaginal microbial communities in adult healthy women using cultivation-independent methods. Microbiology 150, 2565-2573.

Zogaj, X., Nimtz, M., Rohde, M., Bokranz, W., Römling, U., 2001. The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol. Microbiol. 39, 1452-1463.

 

 

Download scriptie (3.69 MB)
Universiteit of Hogeschool
KU Leuven
Thesis jaar
2015