Synthesis of glycerol carbonate from glycerol and urea using gold-supported catalysts

Van Oudenhove

Au/MgO-type catalysts for the carbonylation of glycerol with urea. Effect of the morphology and macro/meso-porous structure of the support

M. Van Oudenhove1, W.Y. Hernández2*, A. Verberckmoes1 and P. Van Der Voort2

1 Industrial Catalysis and Adsorption Technology (INCAT), Department of Industrial Technology and Construction, Faculty of Engineering & Architecture, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium.

2 Center for Ordered Materials, Organometallics & Catalysis (COMOC), Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium.



Keywords: Gold catalysts, magnesium oxide, macro/meso-porous structure, glycerol conversion


1          Introduction

The reaction of glycerol with urea to form glycerol carbonate has become a relevant research topic during the last few years. This process utilizes two inexpensive and readily available compounds and additionally provides a route to upgrade the surplus production of glycerol formed in large quantities as byproduct during the production of biodiesel [1]. Although the reaction of glycerol with urea can proceed by increasing the temperature of the system, several heterogeneous catalysts (mostly Zn-based ones) have been found to improve its rate and selectivity to glycerol carbonate [2]. It is accepted that the existence of well-balanced acid-base properties of the catalyst are responsible of the activity and selectivity during the reaction. Hutchings et al. [3] presented a gold supported on magnesia catalyst as a high active and selective system for the glycerolysis of urea. These authors suggest that the combination of the basic properties of the support with the Lewis acidity of the gold-supported nanoparticles results in the improvement of the yield and selectivity. Moreover, the support can also play an additional role concerning to the stabilization of the gold nanoparticles and/or the occurrence of different metal-support interaction effects (e.g. charge withdrawing effects). Thus, the rational design of MgO-type supports (considering parameters such as morphology and porous structure) and the study of the gold-support interactions originated in these types of materials represent a feasible way to improve the catalytic efficiency and stability of Au/MgO-type catalysts.

This work describes the synthesis of MgO-type supports by a hydrothermal synthesis route, employing Pluronic P123 block copolymer surfactant or cetyltrimethylammonium bromide (CTAB) as soft-templates. Gold nanoparticles were deposited on the most relevant supports (in terms of surface and morphology) and used as catalysts for the synthesis of glycerol carbonate.


2          Experimental/methodology

In a typical synthesis, P123 or CTAB were dissolved in water at 60 ºC and under vigorous stirring to form a transparent solution. After that, the Mg(NO3)2.6H2O was added the to the clear solution (surfactant/Mg molar ratio equal to 0.03). An aqueous ammonia solution (25 wt%) was added dropwise at room temperature to the resulting liquid mixture under stirring until having a final pH close to 10. After precipitation, the slurry was transferred to a 50-mL Teflon-lined stainless steel autoclave for hydrothermal treatment at the selected temperature (120 ºC) for 12 or 24 h. The obtained solid was filtered out and washed three of four times with distilled water and ethanol (for the removal of the majority of the surfactant) and then dried overnight at 100 ºC.  MgO was formed by calcination at 500 ºC, 3h, using a very slow calcination program.

3          Results and discussion

Afbeelding verwijderd.Figure 1 shows the XRD patterns of the samples calcined at 500 ºC. All the materials present the reflections characteristic of a pure MgO periclase-phase. Nevertheless, depending on the surfactant used, the MgO particles exhibit a different morphology. The SEM micrographs of the samples prepared with P123, CTAB and without addition of surfactant are shown in figure 2-a, 2-b and 2-c, respectively. In the absence of surfactant or using CTAB, a similar morphology of hexagonal nanoplates is observed. Higher agglomeration is seen without using surfactant. On the other hand, the presence of P123 provokes the formation of randomly piled aggregates of sheets. Those types of structures allow the formation of flower-like agglomerates with an open macroporous structure.

In all the prepared samples, the textural analysis reveals the formation of mesoporous structures (isotherm adsorption IV-type). However, the material synthesized in presence of P123 is the one with the highest surface area and pore volume.



      Afbeelding verwijderd. Afbeelding verwijderd.








Fig. 2. SEM images of a). P-120-12-500, b). C-120-12-500 and c). W-120-12-500 materials

Table 1. Textural properties of the synthesized materials


SBET (m2/g)

Pore Vol. (cm3/g)

Av. Pore size (Å)













4          Conclusions

The combination of an open macro and mesoporous structure and a relevant surface area make the P-120-12-500 solid an interesting material to support gold-nanoparticles. Such textural and morphological properties are expected to influence the stabilization and dispersion of the deposited metallic phase and the diffusional process involved during the catalytic reaction.


[1]   M.O. Sonnati, S. Amigoni, E.P.T de Givenchy, T. Darmanin, O. Choulet, F. Guittard, Green Chem. 15 (2013) 283.

[2]   M. Aresta, A. Dibenedetto, F. Nocito, C. Ferragina, J. Catal. 268 (2009) 106.

[3]   C. Hammon, J.A. Lopez-Sanchez, M.H. Ab Rahim, N. Dimitratos, R.L. Jenkins, A.F. Carley, Q. He, C.J. Kiely, D.W. Knight, G.J. Hutchings, Dalton Trans. 40 (2011) 3927.


1.         Lertlukkanasuk, N., et al. (2013). "Reactive distillation for synthesis of glycerol carbonate via glycerolysis of urea." Chemical Engineering and Processing 70: 103-109.

2.         Hammond, C., et al. (2011). "Synthesis of glycerol carbonate from glycerol and urea with gold-based catalysts." Dalton Transactions 40(15): 3927-3937.

3.         Rubio-Marcos, F., et al. (2010). "Novel hierarchical Co3O4/ZnO mixtures by dry nanodispersion and their catalytic application in the carbonylation of glycerol." Journal of Catalysis 275(2): 288-293.

4.         Zheng, L., et al. (2014). "Transesterification of glycerol with dimethyl carbonate over Mg-Al hydrotalcites." Chinese Journal of Catalysis 35(3): 310-318.

5.         Climent, M. J., et al. (2010). "Chemicals from biomass: Synthesis of glycerol carbonate by transesterification and carbonylation with urea with hydrotalcite catalysts. The role of acid-base pairs." Journal of Catalysis 269(1): 140-149.

6.         Sonnati, M. O., et al. (2013). "Glycerol carbonate as a versatile building block for tomorrow: synthesis, reactivity, properties and applications." Green Chemistry 15(2): 283-306.

7.         Ochoa-Gomez, J. R., et al. (2012). "A Brief Review on Industrial Alternatives for the Manufacturing of Glycerol Carbonate, a Green Chemical." Organic Process Research & Development 16(3): 389-399.

8.         Li, J. and T. Wang (2011). "Chemical equilibrium of glycerol carbonate synthesis from glycerol." Journal of Chemical Thermodynamics 43(5): 731-736.

9.         Du, M., et al. (2012). "Synthesis of glycerol carbonate from glycerol and dimethyl carbonate catalyzed by K2CO3/MgO." Research on Chemical Intermediates 38(3-5): 1069-1077.

10.      Bai, R., et al. (2011). "Synthesis of glycerol carbonate from glycerol and dimethyl carbonate catalyzed by KF modified hydroxyapatite." Journal of Industrial and Engineering Chemistry 17(4): 777-781.

11.      Zhou, C. H., et al. (2013). "Recent Advances in Catalytic Conversion of Glycerol." Catalysis Reviews-Science and Engineering 55(4): 369-453.

12.      Xiang, X., et al. (2012). "Urea formation from carbon dioxide and ammonia at atmospheric pressure." Environmental Chemistry Letters 10(3): 295-300.

13.      Srinivas, B., et al. (2012). "Photocatalytic Synthesis of Urea from in situ Generated Ammonia and Carbon Dioxide." Photochemistry and Photobiology 88(2): 233-241.

14.      Bruice, P. Y. (2011). Organic Chemistry, Pearson.

15.      Verberckmoes, A. (2014). Fysicochemie II.

16.      Verberckmoes, A. (2011). Aanvullingen Chemie II: Partim Organische Chemie.

17.      Parlett, C. M. A., et al. (2013). "Hierarchical porous materials: catalytic applications." Chemical Society Reviews 42(9): 3876-3893.

18.      Fujita, S.-i., et al. (2013). "Synthesis of glycerol Carbonate from glycerol and urea using zinc-containing solid catalysts: A homogeneous reaction." Journal of Catalysis 297: 137-141.

19.      Okutsu, M. and Kitsuki, T. (2000). Japanese Patent. No. 0001072.

20.      Aresta, M., et al. (2009). "Valorization of bio-glycerol: New catalytic materials for the synthesis of glycerol carbonate via glycerolysis of urea." Journal of Catalysis 268(1): 106-114.

21.      Clearfie.A, et al. (1968). "New crystalline phases of zirconium phosphate possessing ion-exchange properties." Journal of Inorganic & Nuclear Chemistry 30(8): 2249-&.

22.      Yamanaka, S. and M. Tanaka (1979). "Formation region and structural model of gamma-zirconium phosphate." Journal of Inorganic & Nuclear Chemistry 41(1): 45-48.

23.      Clearfield, A. and Smith, S.D.  (1968). “The Crystal Structure of Zirconium Phosphate and the Mechanism of Its Ion Exchange Behavior.” Journal of Colloid and Interface Science 28(2): 325-330.

24.      Schroeder, S. and G., M (2002). Temperature-Programmed Desorption (TPD)/Thermal Desorption Spectroscopy (TDS). A. P. C. Laboratory. Berlin.

25.      Rubio-Marcos, F., et al. (2013). "Control of the Interphases Formation Degree in Co3O4/ZnO Catalysts." Chemcatchem 5(6): 1431-1440.

26.      Wang, L., et al. (2011). "Efficient synthesis of glycerol carbonate from glycerol and urea with lanthanum oxide as a solid base catalyst." Catalysis Communications 12(15): 1458-1462.

27.      Valange, S., et al. (2007). "Lanthanum oxides for the selective synthesis of phytosterol esters: Correlation between catalytic and acid-base properties." Journal of Catalysis 251(1): 113-122.

28.      Zhang, F., et al. (2008). "Layered Double Hydroxides as Catalytic Materials: Recent Development." Catalysis Surveys from Asia 12(4): 253-265.

29.      Liu, P., et al. (2014). "Promotional effect of transition metal doping on the basicity and activity of calcined hydrotalcite catalysts for glycerol carbonate synthesis." Applied Catalysis B-Environmental 144: 135-143.

30.      Sun, Y., et al. (2014). "A Sustainable Preparation of Glycerol Carbonate from Glycerol and Urea Catalyzed by Hydrotalcite-Like Solid Catalysts." Energy Technology 2(3): 263-268.

31.      Kannan, S. (2006). "Catalytic applications of hydrotalcite-like materials and their derived forms." Catalysis Surveys from Asia 10(3-4): 117-137.

32.      Prescott, H. A., et al. (2005). "Application of calcined Mg-Al hydrotalcites for Michael additions: an investigation of catalytic activity-and acid-base properties." Journal of Catalysis 234(1): 119-130.

33.      Takehira, K. and T. Shishido (2007). "Preparation of supported metal catalysts starting from hydrotalcites as the precursors and their improvements by adopting "memory effect"." Catalysis Surveys from Asia 11(1-2): 1-30.

34.      Ab Rahim, M. H., et al. (2012). "Gold, palladium and gold-palladium supported nanoparticles for the synthesis of glycerol carbonate from glycerol and urea." Catalysis Science & Technology 2(9): 1914-1924.

35.      Stratakis, M. and H. Garcia (2012). "Catalysis by Supported Gold Nanoparticles: Beyond Aerobic Oxidative Processes." Chemical Reviews 112(8): 4469-4506.

36.      Wan, X., et al. (2013). “Magnesia-supported gold nanoparticles as efficient catalysts for oxidative esterification of aldehydes or alcohols with methanol to methyl esters.” Catalysis today 233: 147-154.

37.      Boronat, M., et al. (2011). "Mechanism of selective alcohol oxidation to aldehydes on gold catalysts: Influence of surface roughness on reactivity." Journal of Catalysis 278(1): 50-58.

38.      Carabineiro, S. A. C., et al. (2011). "Gold nanoparticles supported on magnesium oxide for CO oxidation." Nanoscale Research Letters 6.

39.      Okumura, M., et al. (2003). "Preparation of supported gold catalysts by gas-phase grafting of gold acethylacetonate for low-temperature oxidation of CO and of H2." Journal of Molecular Catalysis a-Chemical 199(1-2): 73-84.

40.      Guzman, J. and B. C. Gates (2004). "Catalysis by supported gold: Correlation between catalytic activity for CO oxidation and oxidation states of gold." Journal of the American Chemical Society 126(9): 2672-2673.

41.      Yoon, B., et al. (2005). "Charging effects on bonding and catalyzed oxidation of CO on Au-8 clusters on MgO." Science 307(5708): 403-407.

42.      Minico, S., et al. (1997). "FT-IR study of Au/Fe2O3 catalysts for CO oxidation at low temperature." Catalysis Letters 47(3-4): 273-276.

43.      Hao, Z. P., et al. (2000). "Mechanism of gold activation in supported gold catalysts for CO oxidation." Reaction Kinetics and Catalysis Letters 70(1): 153-160.

44.      Haruta, M. (2002). "Catalysis of gold nanoparticles deposited on metal oxides." Cattech 6(3): 102-115.

45.      Geoffrey C. Bond, C. L., David T. Thompson (2006). Catalysis by gold. London, Imperial College press.

46.      Stocker, M. (1996). "X-ray photoelectron spectroscopy on zeolites and related materials." Microporous Materials 6(5-6): 235-257.

47.      Huang, X.-S., et al. (2009). "Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation." Applied Catalysis B-Environmental 90(1-2): 224-232.

48.      Gluhoi, A. C. (2005). Fundamental studies focused on understanding of gold catalysis. The Netherlands, Leiden University. Doctor: 205.

49.      Samodi, A., et al. (2013). "Effects of surfactants, solvents and time on the morphology of MgO nanoparticles prepared by the wet chemical method." Materials Letters 109: 269-274.

50.      Sun, R.-Q., et al. (2008). "Synthesizing nanocrystal-assembled mesoporous magnesium oxide using cotton fibres as exotemplate." Microporous and Mesoporous Materials 111(1-3): 314-322.

51.      Margitfalvi, J. L., et al. (2002). "Au/MgO catalysts modified with ascorbic acid for low temperature CO oxidation." Catalysis Today 72(1-2): 157-169.

52.      Koo, K. Y., et al. (2014). "A highly dispersed Pt/gamma-Al2O3 catalyst prepared via deposition-precipitation method for preferential CO oxidation." International Journal of Hydrogen Energy 39(11): 5696-5703.

53.      Costa, V. V., et al. (2012). "Gold nanoparticles supported on magnesium oxide as catalysts for the aerobic oxidation of alcohols under alkali-free conditions." Journal of Catalysis 292: 148-156.

54.      Pradeep, T. and Anshup (2009). "Noble metal nanoparticles for water purification: A critical review." Thin Solid Films 517(24): 6441-6478.

55.      Pradeep, T. and Nair, A. (2007). Indian Patent. No. 200767.

56.      Tang, C., et al. (2014). "Efficient fabrication of active CuO-CeO2/SBA-15 catalysts for preferential oxidation of CO by solid state impregnation." Applied Catalysis B-Environmental 146: 201-212.

57.      Chen, C. L., et al. (2001). "Direct impregnation method for preparing sulfated zirconia supported on mesoporous silica." Microporous and Mesoporous Materials 50(2-3): 201-208.

58.      Sun, J., et al. (2014). "Comparative study on the catalytic CO oxidation properties of CuO/CeO2 catalysts prepared by solid state and wet impregnation." Chinese Journal of Catalysis 35(8): 1347-1358.

59.      Xiong, H., et al. (2014). "Comparison of impregnation and deposition precipitation for the synthesis of hydrothermally stable niobia/carbon." Applied Catalysis a-General 471: 165-174.

60.      Koo, K. Y., et al. (2014). "A highly dispersed Pt/gamma-Al2O3 catalyst prepared via deposition-precipitation method for preferential CO oxidation." International Journal of Hydrogen Energy 39(11): 5696-5703.

61.      Park, H., et al. (2009). "Surface passivation of highly ordered TiO2 nanotube arrays and application to dye-sensitized solar cells using the concept of isoelectric point." Journal of the Ceramic Society of Japan 117(1365): 596-599.

62.      Estrada, M., et al. (2014). "Aerobic oxidation of benzyl alcohol in methanol solutions over Au nanoparticles: Mg(OH)2 vs MgO as the support." Applied Catalysis a-General 473: 96-103.

63.      Zhang, R., et al. (2012). "Mesoporous titania: From synthesis to application." Nano Today 7(4): 344-366.

64.      Vivero-Escoto, J. L., et al. (2012). "Recent progress in mesoporous titania materials: adjusting morphology for innovative applications." Science and Technology of Advanced Materials 13(1).

65.      Villar-Rodil, S., et al. (2005). "Activated carbon materials of uniform porosity from polyaramid fibers." Chemistry of Materials 17(24): 5893-5908.

66.      Mohamed, M. M., et al. (2007). "Synthesis of micro-mesoporous TiO2 materials assembled via cationic surfactants: Morphology, thermal stability and surface acidity characteristics." Microporous and Mesoporous Materials 103(1-3): 174-183.

67.      Yokoi, T. and T. Tatsumi (2007). "Synthesis of mesoporous silica materials by using anionic surfactants as template." Journal of the Japan Petroleum Institute 50(6): 299-311.

68.      Wan, Y., et al. (2007). "Designed synthesis of mesoporous solids via nonionic-surfactant-templating approach." Chemical Communications(9): 897-926.

69.      Wei-Dong, X., et al. (2008). "Preparation of mesoporous silica using amphoteric surfactant potassium and sodium N-dodecyl glycine template." Journal of the American Ceramic Society 91(5): 1517-1521.

70.      Pal, N. and A. Bhaumik (2013). "Soft templating strategies for the synthesis of mesoporous materials: Inorganic, organic-inorganic hybrid and purely organic solids." Advances in Colloid and Interface Science 189: 21-41.

71.      Gu, D. and F. Schueth (2014). "Synthesis of non-siliceous mesoporous oxides." Chemical Society Reviews 43(1): 313-344.

72.      Chen, D. and R. A. Caruso (2013). "Recent Progress in the Synthesis of Spherical Titania Nanostructures and Their Applications." Advanced Functional Materials 23(11): 1356-1374.

73.      Mahoney, L. and R. T. Koodali (2014). "Versatility of Evaporation-Induced Self-Assembly (EISA) Method for Preparation of Mesoporous TiO2 for Energy and Environmental Applications." Materials 7(4): 2697-2746.

74.      Nagappa, B. and G. T. Chandrappa (2007). "Mesoporous nanocrystalline magnesium oxide for environmental remediation." Microporous and Mesoporous Materials 106(1-3): 212-218.

75.      Rezaei, M., et al. (2011). "Preparation of nanocrystalline MgO by surfactant assisted precipitation method." Materials Research Bulletin 46(10): 1632-1637.

76.      Simanjuntak, F. S. H., et al. (2014). "Surfactant-assisted synthesis of MgO: Characterization and catalytic activity on the transesterification of dimethyl carbonate with glycerol." Applied Catalysis a-General 484: 33-38.

77.      Wang, G., et al. (2008). "P123-assisted hydrothermal synthesis and characterization of rectangular parallelepiped and hexagonal prism single-crystalline MgO with three-dimensional wormholelike mesopores." Inorganic Chemistry 47(10): 4015-4022.

78.      Callister, W. D. and D. G. Rethwisch (2009). Materials Science and Engineering: An Introduction, John Wiley & Sons Canada, Limited.

79.      Schaubroeck, J. (2012). Instrumentele analyse I.

80.      Jones, F.W., (1937). "The measurement of particle size by the X-ray method."

81.      KD, V.-P. (2000). "Scanning Electron Microscopy: an introduction." Elsevier science Ltd.

82.      Joy, D. C. (1991). "The theory and practice of high-resolution scanning electron-microscopy." Ultramicroscopy 37(1-4): 216-233.

83.      Joy, D. C. and J. B. Pawley (1992). " high-resolution scanning electronmicroscopy." Ultramicroscopy 47(1-3): 80-100.

84.      FEI (2010). An introduction to electron microscopy.

85.      KD, V.-P. (2000). "TEM: an introduction." Elsevier science Ltd.

86.      Leofanti, G., et al. (1998). "Surface area and pore texture of catalysts." Catalysis Today 41(1-3): 207-219.

87.      .“Fundamentals and Practice of XRF Analysis.” 2013, from

88.      Owen, T. (2000). Fundamentals of UV-visible spectroscopy. Germany, Agilent Technologies.

89.      Mitchell, M. B. (1993). "Fundamentals and applications of diffuse-reflectance infrared fourier-transform (DRIFT) spectroscopy." Advances in Chemistry Series(236): 351-375.

90.      Suzuki, E. M. and W. R. Gresham (1986). "Forensic-science applications of diffuse reflectance infrared fourier-transform spectroscopy (DRIFTS). 1. Principles, sampling methods and advantages." Journal of Forensic Sciences 31(3): 931-952.

91.      Schaubroeck, J. (2012). Analytische Chemie, Chemische Analyse.

92.      Yan, L., et al. (2002). "Formation of rod-like Mg(OH)2 nanocrystallites under hydrothermal conditions and the conversion to MgO nanorods by thermal dehydration." Materials Chemistry and Physics 76(2): 119-122.

93.      Dhaouadi, H., et al. (2011). "Mg(OH)2 Nanorods Synthesized by A Facile Hydrothermal Method in the Presence of CTAB." Nano-Micro Letters 3(3): 153-159.

94.      Cui, H., et al. (2014). "Synthesis and characterization of mesoporous MgO by template-free hydrothermal method." Materials Research Bulletin 50: 307-311.

95.      Ding, Y., et al. (2001). "Nanoscale magnesium hydroxide and magnesium oxide powders: Control over size, shape, and structure via hydrothermal synthesis." Chemistry of Materials 13(2): 435-440.

96.      Lee, S.-D., et al. (2014). "Catalytic performance of ion-exchanged montmorillonite with quaternary ammonium salts for the glycerolysis of urea." Catalysis Today 232: 127-133.

Download scriptie (4.31 MB)
Universiteit of Hogeschool
Universiteit Gent
Thesis jaar