Jaarlijks wordt in België ongeveer 100 miljard kg CO2 in de atmosfeer gebracht. Net geen vijfde hiervan wordt uitgestoten door de (petro)chemische industrie. De emissie van broeikasgassen kan dus drastisch verminderd worden door de energie-efficiëntie van deze processen te verhogen. Twee processen in het bijzonder worden onder de loep genomen: het eerste draagt bij tot de productie van onder andere PET-flessen, autobanden, winkeltassen, etc. Het tweede is nodig voor het leveren van aardgas. In dit geval is de gebruikte “loep” de Vlaamse Supercomputer, goed voor de gecombineerde rekenkracht van enkele duizenden laptops.
Als tussenstap in het maken van kunststoffen uit aardolie, moeten de grote moleculen in aardolie opgebroken worden in kleinere, reactieve moleculen die later op een gecontroleerde manier opnieuw met mekaar worden verbonden tot het alom bekende plastiek. Het opbreken van deze aardoliemoleculen gebeurt in een stoomkraker: buizen tot wel 100 m lang worden verwarmd tot rond de 900 °C in een XXL-format oven. Door de warmte worden de chemische bindingen in de aardoliemoleculen gebroken en worden waardevolle, kleinere moleculen gevormd zoals etheen en propeen. Het energieverbruik van zo’n oven is enorm: alle windmolens in de Belgische Noordzee zouden niet genoeg energie kunnen leveren om één installatie draaiende te houden. Net zoals een pizza zwart wordt als hij te lang in de oven staat, wordt er in het proces ook een harde, zwarte laag afgezet op de wand van de buis, genaamd ‘cokes’. Doordat deze laag moeilijk warmte doorlaat, verhoogt het energieverbruik en verlaagt de efficiëntie van de oven. De bedoeling is dus om de vorming van deze cokes te vertragen.
Een manier om de snelheid van cokesvorming te verminderen, is het aanpassen van de vorm van de reactor: de traditionele gladde buis wordt vergeleken met de nieuwere gevinde buis en geribde buis.
Dankzij de gestage opmars van supercomputers in het afgelopen decennium, zijn dure en tijdrovende experimenten niet langer de enige mogelijkheid om informatie te verzamelen. Met de huidige rekencapaciteit is het voor het eerst mogelijk om een enorme hoeveelheid informatie te verzamelen via simulaties met een uitstekende resolutie in de tijd (~ 1 µs) en ruimte (~ 1 µm). De invloed van het aanpassen van de vorm van de reactor op de stroming en de prestaties kan hiermee in detail bestudeerd worden.
Uit de berekeningen blijkt dat het minste cokes wordt gevormd in de geribde buis (33 % minder dan in de gladde buis). De keerzijde van de medaille is echter dat er meer energie nodig is om het gas door de reactor te persen, net omdat er obstakels zijn die stroming tegenhoudt. Dit is te vergelijken met fietsen op een net aangelegd asfalt fietspad of op een oude kasseiweg. Door de obstakels, de kasseien, kost het meer energie om vooruit te bewegen dan op een weg zonder obstakels. In het geval van een buis, wordt dit gekwantificeerd door de drukval, het verschil in druk tussen de inlaat en de uitlaat.
In de geribde buis is deze 115 % hoger dan in de gladde buis. Deze extra hoge drukval doet het positieve effect op de cokesvorming teniet. Een betere alternatief in dit geval is de gevinde buis, die een goed compromis levert tussen een verlaagde snelheid van cokesvorming (-15 %) en een beperkte toename in de drukval (+ 19%).
Ruw aardgas bevat na de winning te veel water om rechtstreeks via pijpleiding getransporteerd te worden. Het water kan immers bevriezen en de leiding blokkeren of de leiding beschadigen door roest. De meest gebruikte methode om het water te verwijderen, is het gas in contact te brengen met een oplosmiddel dat enkel het water opneemt en het gas doorlaat. Achteraf wordt het water gerecupereerd door het oplosmiddel op te warmen tot het water verdampt.
De gebruikte oplosmiddelen zijn niet milieuvriendelijk en bovendien kost het recupereren van het water veel energie. Daarom is er op zoek gegaan naar een alternatieve manier om water uit ruw aardgas te verwijderen. Het antwoord is een verrassende combinatie van twee fenomenen: de roterende beweging van lucht in een tornado en het vormen van een wolk van waterdruppeltjes als een jachtvliegtuig door de ‘geluidsmuur’ vliegt.
Het aardgas wordt zodanig versneld dat het water condenseert in druppeltjes. Door de roterende beweging, worden deze waterdruppeltjes weggeslingerd en zo gescheiden van het aardgas. Het droge gas kan vervolgens worden getransporteerd via pijplijn.
Drie Russische wetenschappers patenteerden in 2005 en 2014 twee versies van een apparaat gebaseerd op deze fenomenen onder de naam SUSTOR. Om te bewijzen dat dit apparaat wel degelijk werkt, hebben we opnieuw simulaties uitgevoerd op de Vlaamse Supercomputer. Op basis van de resultaten, werd het oorspronkelijke ontwerp gewijzigd om een maximale hoeveelheid water te verwijderen terwijl de drukval over het apparaat zo klein mogelijk blijft. Het resultaat is dus een geoptimaliseerd SUSTOR ontwerp dat klaar is voor experimentele testen.
De weg van een idee naar de realisatie in de industrie is lang en kronkelend. Een nieuw, innovatief idee moet eerst uitvoerig getest en gevalideerd worden om te komen tot een realisatie die voldoet aan alle criteria: ecologisch, economisch, grootschalig inzetbaar, enzovoort. Aangezien heel veel ideeën hieraan niet voldoen, moet dit pad zeer vaak bewandeld worden. Simulaties op supercomputers kunnen een fiets zijn om de weg sneller te begaan, zoals voor het SUSTOR apparaat. Ze kunnen ook dienen als GPS om aan te duiden in welke richting er het best wordt verdergegaan of welke onverwachte paden opportuniteiten kunnen bieden, zoals voor de stoomkraker. Uit duizenden paden kan een supercomputer ons helpen om dat te kiezen dat het meeste potentieel heeft om werkelijkheid te worden.
1. Ethene (Ethylene). http://www.essentialchemicalindustry.org/chemicals/ethene.html (22/09/2015),
2. Facts and Figures-Western European Market Review. http://www.petrochemistry.eu/about-petrochemistry/facts-and-figures.html (22/09/2015),
3. Propene (Propylene). http://www.essentialchemicalindustry.org/chemicals/propene.html (22/09/2015),
4. Koottungal, L., International Survey of Ethylene from Steam Crackers- 2015 Oil & Gas Journal 2015, 113, (7), 85-91.
5. George, D. L.; Bowles, E. B., Shale Gas Measurement and Associated Issues. Pipeline & Gas Journal 2011, 238, (7).
6. UOP Light Olefin Solutions for Propylene and Ethylene Production. http://www.uop.com/?document=uop-olefin-production-solutions-brochure&d… (22/09/2015),
7. Dijkmans, T.; Pyl, S. P.; Reyniers, M.-F.; Abhari, R.; Van Geem, K. M.; Marin, G. B., Production of bio-ethene and propene: alternatives for bulk chemicals and polymers. Green Chemistry 2013, 15, (11), 3064-3076.
8. Picciotti, M., Ethylene Technologies-1: Novel ethylene technologies developing, but steam cracking remains king. Oil and Gas Journal 1997, 95, (25).
9. DuBose, B., UOP sees methanol-to-olefins as solution to rising global propylene gap. In Hydrocarbon Processing, 2015.
10. Zimmermann, H.; Walzl, R., Propene. In Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA: 2000.
11. Green, M. M.; Wittcoff, H. A., How Petroleum is Converted into Useful Materials: Cabocations and Free Radicals are the Keys. In Organic Chemistry Principles and Industrial Practice, Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2003; pp 4-5.
12. Burton, W. M. Manufacture of Gasolene. US1049667 (A), 1913.
13. Porter, F.; Duncan, J. M. Process for the manufacture of ethylene. US2185566 (A), 1940.
14. Porter, F. Process for the manufacture of ethylene. US2245819 (A), 1941.
15. The Linde Group Steamcracking Technology. http://www.linde-engineering.com/en/process_plants/chemical_and_petroch… (23/09/2015),
16. Van Geem, K. M.; Heynderickx, G. J.; Marin, G. B., Effect of radial temperature profiles on yields in steam cracking. AIChE Journal 2004, 50, (1), 173-183.
17. Buffenoir, M. H.; Aubry, J.-M.; Hurstel, X., Large Ethylene Plants Present Unique Design, Construction Challenges. Oil and Gas Journal 2004, 102, (3).
18. Ethylene Furnaces. http://www.lindeus-engineering.com/internet.le.le.usa/en/images/LENA%20…
19. The Largest Productivity Ethylene Cracking Furnace in the World Started Operation. In Wison Engineering: 2011.
20. Petrochemical Processing. In The Linde Group.
21. Zimmermann, H.; Walzl, R., Ethylene. In Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA: 2000.
22. Nowowiejski, G.; Reid, J. A., An Overview of Oxygenates in Olefins Units in Relation to Corrosion, Fouling, Product Specifications and Safety. In American Institute of Chemical Engineers 2003 Spring National Meeting, New Orleans, LA, 2003.
23. Geen, D. W.; Perry, R. H., Physical and Chemical Data. In Perry's Chemical Engineers' Handbook, 8 th ed.; McGraw-Hill Companies, Inc.: 2008; pp 2.1-2.517.
24. Towfighi, J.; Sadrameli, M.; Niaei, A., Coke Formation Mechanisms and Coke Inhibiting Methods in Pyrolysis Furnaces. Journal of chemical engineering of Japan 2002, 35, (10), 923-937.
25. Zhou, J.; Wang, Z.; Luan, X.; Xu, H., Anti-coking property of the SiO2/S coating during light naphtha steam cracking in a pilot plant setup. Journal of Analytical and Applied Pyrolysis 2011, 90, (1), 7-12.
26. Muñoz Gandarillas, A. E.; Van Geem, K. M.; Reyniers, M.-F.; Marin, G. B., Coking Resistance of Specialized Coil Materials during Steam Cracking of Sulfur-Free Naphtha. Industrial & Engineering Chemistry Research 2014, 53, (35), 13644-13655.
27. Muñoz Gandarillas, A. E.; Van Geem, K. M.; Reyniers, M.-F.; Marin, G. B., Influence of the Reactor Material Composition on Coke Formation during Ethane Steam Cracking. Industrial & Engineering Chemistry Research 2014, 53, (15), 6358-6371.
28. Wang, J.; Reyniers, M.-F.; Marin, G. B., Influence of Dimethyl Disulfide on Coke Formation during Steam Cracking of Hydrocarbons. Industrial & Engineering Chemistry Research 2007, 46, (12), 4134-4148.
29. Dhuyvetter, I.; Reyniers, M.-F.; Froment, G. F.; Marin, G. B.; Viennet, D., The Influence of Dimethyl Disulfide on Naphtha Steam Cracking. Industrial & Engineering Chemistry Research 2001, 40, (20), 4353-4362.
30. Wang, J.; Reyniers, M.-F.; Van Geem, K. M.; Marin, G. B., Influence of Silicon and Silicon/Sulfur-Containing Additives on Coke Formation during Steam Cracking of Hydrocarbons. Industrial & Engineering Chemistry Research 2008, 47, (5), 1468-1482.
31. Schietekat, C. M.; Van Goethem, M. W.; Van Geem, K. M.; Marin, G. B., Swirl flow tube reactor technology: An experimental and computational fluid dynamics study. Chemical Engineering Journal 2014, 238, 56-65.
32. Torigoe, T.; Hamada, K.; Inui, M.; Yoshitake, A., Mixing element of radiant tube (MERT) offers new concept for ethylene cracking. Abstracts of Papers of the American Chemical Society 1998, 215, U609-U609.
33. Torigoe, T.; Hamada, K.; Furuta, M.; Sakashita, M.; Otsubo, K.; Tomita, M.; Aiche; Aiche, A., Mixing element radiant tube (MERT) improves cracking furnace performance. In 11th Ethylene Producers Conference, Proceedings, 1999; Vol. 8, pp 126-141.
34. Inui, M.; Hamada, K.; Otsubo, K. Cracking tube having helical fins. US7799963 (B2), 2010.
35. Heynderickx, G., Simulation and comparison of the run length of an ethane cracking furnace with reactor tubes of circular and elliptical cross sections. 1998.
36. Van Geem, K. M.; Schietekat, C. M.; Van Cauwenberge, D.; Marin, G. B., Steam Cracking Reactor Technology: The Good, the Bad and the Ugly. In AIChE Spring Meeting, San Antonio, Texas, 2013.
37. Schietekat, C. M.; Van Cauwenberge, D. J.; Geem, K. M.; Marin, G. B., Computational fluid dynamics‐based design of finned steam cracking reactors. AIChE Journal 2014, 60, (2), 794-808.
38. Zhu, M. Large eddy simulation of thermal cracking in petroleum industry. Université de Toulouse, 2015.
39. Van Cauwenberge, D. J.; Schietekat, C. M.; Floré, J.; Van Geem, K. M.; Marin, G. B., CFD-based design of 3D pyrolysis reactors: RANS vs. LES. Chemical Engineering Journal 2015.
40. Caro, C. G.; Birch, P. L.; Tallis, W. Helical piping for an olefin production furnace. CA2580956 (C), 2013.
41. Caro, C. G.; Birch, P. L.; Tallis, W. Piping. USRE43650 (E1) 2012.
42. Caro, C. G.; Seneviratne, A.; Heraty, K. B.; Monaco, C.; Burke, M. G.; Krams, R.; Chang, C. C.; Coppola, G.; Gilson, P., Intimal hyperplasia following implantation of helical-centreline and straight-centreline stents in common carotid arteries in healthy pigs: influence of intraluminal flow†. Journal of The Royal Society Interface 2013, 10, (89).
43. Doorly, D. J.; Caro, C. G.; Mclean, M. A. Stents for blood vessels. 1999.
44. González, T.; Netusil, M.; Ditl, P. Raw Gas Dehydration on Supersonic Swirling Separator - Odwadnianie Gazu Naturalnego w Naddzwiekowym Oddzielaczu Mieszajacym; Politechniki Krokowskiej: 2012.
45. Wang, X.; Economides, M., Natural Gas Processing. In Advanced Natural Gas Engineering, Gulf Publishing Company: Houston, Texas, 2009; pp 115-170.
46. Foss, M. M. Interstate Natural Gas-Quality Specifiations and Interchangeability; Bureau of Economic Geology - The University of Texas: Austin, TX, 2004; p 52.
47. TransCanada, Gas Quality Specifications. In 2016.
48. Fumo, N.; Goswami, D. Y., Study of an aqueous lithium chloride desiccant system: air dehumidification and desiccant regeneration. Solar Energy 2002, 72, (4), 351-361.
49. Baker, R. W.; Lokhandwala, K., Natural Gas Processing with Membranes: An Overview. Industrial & Engineering Chemistry Research 2008, 47, (7), 2109-2121.
50. Netusil, M.; Ditl, P., Natural Gas Dehydration. In Natural Gas-Extration to End-Use, Gupta, S. B., Ed. InTech: 2012; pp 3-22.
51. Borissov, A.; Mirzoev, G.; Shtern, V. Supersonic Swirling Separator 2 (Sustor2). US 20120180668 A1, 2012.
52. Alferov, V. I.; Baguirov, L. A.; Feygin, V. I.; Arbatov, A. A.; Imaev, S. Z.; Dmitriev, L. M.; Rezunenko, V. I. Vortex tube for liquefaction and separation of components in a gas mixture. WO2000/023757 (A1), 2000.
53. Van Holten, T. Method and device for separating a gas from a gas mixture. EP0496128 (A1), 1992.
54. Tjeenk, W. C. A. Method for removing condensables from a natural gas stream, at a wellhead, downstream of the wellhead choke. WO0040834 (A1), 2000.
55. Betting, M.; Epsom, H., Supersonic Separator Gains Market Acceptance. World Oil 2007, pp 197-200.
56. Betting, M.; Epsom, H., Separation Goes Supersonic. Exploration & Production 2007.
57. Twister B.V., Factsheet 1 How Does Twister Work? In.
58. Schinkelshoek, P.; Epsom, H., Supersonic Gas Conditioning-Commercialisation of Twister Technology. In GPA, Grapevine, Texas, USA, 2008.
59. Shtern, V.; Mirzoev, G.; Borissov, A. SUSTOR-Business Plan; 2013.
60. Laval, C. C. Separator for Use in Boreholes of Limited Diameter. US4148735 (A), 1979.
61. Twister B.V. Experience. http://twisterbv.com/products-services/twister-supersonic-separator/exp… (28/04/2016),
62. Feygin, V. I.; Imayev, S.; Alfyorov, V., Supersonic Gas Technologies. In TransLang Technologie Ltd.: Calgary, Canada.
63. Borissov, A.; Mirzoev, G.; Shtern, V. SUSTOR1-Provisional. 60/595001, 2005.
64. Shtern, V.; Borissov, A. Cold Flow in a Vortex Nozzle; SUSTOR: 2015.
65. Tenenbaum, D. J. Tornadoes Strike Again. How Do They Work? http://whyfiles.org/2014/tornadoes-strike-again-how-do-they-work/ (25/04/2016),
66. Geen, D. W.; Perry, R. H., Fluid and Particle Dynamics. In Perry's Chemical Engineers' Handbook, 8 th ed.; McGraw-Hill Companies, Inc.: 2008; pp 6.1-6.56.
67. Welty, J. R.; Wicks, C. E.; Wilson, R. E.; Rorrer, G. L., Differential Equations of Fluid Flow. In Fundamentals of Momentum, Heat, and Mass Transfer, John Wiley and Sons, Inc.: , 2008; pp 99-112.
68. Welty, J. R.; Wicks, C. E.; Wilson, R. E.; Rorrer, G. L., Differential Equations of Heat Transfer. In Fundamentals of Momentum, Heat, and Mass Transfer, John Wiley and Sons, Inc.: , 2008; pp 217-223.
69. Welty, J. R.; Wicks, C. E.; Wilson, R. E.; Rorrer, G. L., Shear Stress in Laminar Flow. In Fundamentals of Momentum, Heat, and Mass Transfer, John Wiley and Sons, Inc.: , 2008; pp 81-91.
70. Andersson, B.; Andersson, R.; Hakansson, L.; Mortensen, M.; Sudiyo, R.; Wachem, B. v., Turbulent-Flow Modelling. In Computational Fluid Dynamics for Engineers, Cambridge University Press: 2012; pp 62-112.
71. Schietekat, C. Computational Fluid Dynamics-based Design of Steam Cracking Reactors. Universiteit Gent, 2015.
72. Zhang, Y.; Qian, F.; Schietekat, C. M.; Van Geem, K. M.; Marin, G. B., Impact of flue gas radiative properties and burner geometry in furnace simulations. AIChE Journal 2015, 61, (3), 936-954.
73. Hu, G.; Schietekat, C. M.; Zhang, Y.; Qian, F.; Heynderickx, G.; Van Geem, K. M.; Marin, G. B., Impact of radiation models in coupled simulations of steam cracking furnaces and reactors. Industrial & Engineering Chemistry Research 2015, 54, (9), 2453-2465.
74. Hu, G.; Wang, H.; Qian, F.; Van Geem, K. M.; Schietekat, C. M.; Marin, G. B., Coupled simulation of an industrial naphtha cracking furnace equipped with long-flame and radiation burners. Computers & Chemical Engineering 2012, 38, 24-34.
75. Ghasemian, M.; Nejat, A., Aero-acoustics prediction of a vertical axis wind turbine using Large Eddy Simulation and acoustic analogy. Energy 2015, 88, 711-717.
76. Clements, A. G.; Black, S.; Szuhánszki, J.; Stęchły, K.; Pranzitelli, A.; Nimmo, W.; Pourkashanian, M., LES and RANS of air and oxy-coal combustion in a pilot-scale facility: Predictions of radiative heat transfer. Fuel 2015, 151, 146-155.
77. Mahesh, K.; Constantinescu, G.; Apte, S.; Iaccarino, G.; Ham, F.; Moin, P., Large-eddy simulation of reacting turbulent flows in complex geometries. Journal of Applied Mechanics 2006, 73, (3), 374-381.
78. Robert, A.; Richard, S.; Colin, O.; Poinsot, T., LES study of deflagration to detonation mechanisms in a downsized spark ignition engine. Combustion and Flame 2015, 162, (7), 2788-2807.
79. Quillatre, P.; Vermorel, O.; Poinsot, T.; Ricoux, P., Large Eddy Simulation of Vented Deflagration. Industrial & Engineering Chemistry Research 2013, 52, (33), 11414-11423.
80. Xu, X.; Lee, J. S.; Pletcher, R. H., A compressible finite volume formulation for large eddy simulation of turbulent pipe flows at low Mach number in Cartesian coordinates. Journal of Computational Physics 2005, 203, (1), 22-48.
81. Lampitella, P.; Colombo, E.; Inzoli, F., A dynamic mixed subgrid-scale model for large eddy simulation on unstructured grids: application to turbulent pipe flows. Journal of Physics: Conference Series 2014, 501, (1), 012020.
82. Ramaj, V.; Dhori, A.; Dhoska, K.; Koleci, A.; Konjusha, E., CFD Code Turbulence Models Validation for Turbulent Flows Over a Wavy Surface. Annals of DAAAM for 2010 & Proceedings of the 21st International DAAAM Symposium 2010, 21.
83. Tennekes, H.; Lumley, J. L., A first course in turbulence. Cambridge (Mass.) : MIT press: 1972.
84. Welty, J. R.; Wicks, C. E.; Wilson, R. E.; Rorrer, G. L., Viscous Flow. In Fundamentals of Momentum, Heat, and Mass Transfer, John Wiley and Sons, Inc.: , 2008; pp 137-167.
85. Richardson, L. F., Weather Prediction by Numerical Process. Cambridge University Press: 1922; p 262.
86. Kolmogorov, A. N. In The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Dokl. Akad. Nauk SSSR, 1941; 1941; pp 299-303.
87. Kolmogorov, A. N. In Dissipation of energy in locally isotropic turbulence, Dokl. Akad. Nauk SSSR, 1941; 1941; pp 16-18.
88. Pope, S. B., The Statistical Description of Turbulent Flows. In Turbulent Flows, Cambridge University Press: 2000; pp 34-82.
89. Pope, S. B., The Scales of Turbulent Motion. In Turbulent Flows, Cambridge University Press: 2000; pp 34-82.
90. Obukhov, A. In On the distribution of energy in the spectrum of turbulent flow, Dokl. Akad. Nauk SSSR, 1941; 1941; pp 22-24.
91. Pope, S. B., Wall Flows. In Turbulent Flows, Cambridge University Press: 2000; pp 264-332.
92. Holman, J. P., Principles of Convection. In Heat Transfer, 10 ed.; The McGraw-Hill Companies, Inc.: 2010; pp 215-276.
93. Jeong, J.; Hussain, F.; Schoppa, W.; Kim, J., Coherent structures near the wall in a turbulent channel flow. Journal of Fluid Mechanics 1997, 332, 185-214.
94. Le, A.-T.; Coleman, G. N.; Kim, J., Near-wall turbulence structures in three-dimensional boundary layers. International Journal of Heat and Fluid Flow 2000, 21, (5), 480-488.
95. Schoppa, W.; Hussain, F., Coherent structure dynamics in near-wall turbulence. Fluid Dynamics Research 2000, 26, (2), 119-139.
96. de Villiers, E. The Potential of Large Eddy Simulation for the Modeling of Wall Bounded Flows. Imperial College of Science, Technology and Medicine, 2006.
97. Moin, P.; Kim, J., Numerical investigation of turbulent channel flow. NASA Ames Research Center 1981.
98. Moin, P.; Kim, J., Numerical investigation of turbulent channel flow. Journal of fluid mechanics 1982, 118, 341-377.
99. Saddoughi, S. G.; Veeravalli, S. V., Local isotropy in turbulent boundary layers at high Reynolds number. Journal of Fluid Mechanics 1994, 268, 333-372.
100. Townsend, A. A., The structure of turbulent shear flow. Cambridge university press: 1980.
101. Boussinesq, J., Essai sur la théorie des eaux courantes. In Mémoires présentés par divers savants a l'académie des sciences de l'Institut National de France, Imprimerie nationale: 1877; Vol. 23, 24, p 772.
102. Versteeg, H. K.; Malalasekera, W., Turbulence and its Modelling. In An Introduction to Computational Fluid Dynamics, Pearson Education Limited: Harlow, 2007; pp 40-114.
103. Leonard, A. In Energy cascade in large-eddy simulations of turbulent fluid flows, Turbulent Diffusion in Environmental Pollution, 1974; 1974; pp 237-248.
104. Ferziger, J. H., Large Eddy Numerical Simulations of Turbulent Flows. AIAA Journal 1977, 15, (9), 1261-1267.
105. Smagorinsky, J., General Circulation Experiments with the Primitive Equations. Monthly Weather Review 1963, 91, (3), 99-164.
106. Lilly, D. K., On the application of the eddy viscosity concept in the inertial sub-range of turbulence. National Center for Atmospheric Research: 1966.
107. Peyret, R., Introduction to high-order approximation methods for computational fluid dynamics. In Advanced Turbulent Flow Computations, Springer: 2000; pp 1-79.
108. Chen, Q. Y.; Zhai, Z. J., The use of Computational Fluid Dynamics tools for Indoor Environmental Design. In Advanced Building Simulation, Malkawi, A. M.; Augenbroe, G., Eds. Spon Press Taylor and Francis Group: 2003.
109. Deardorff, J. W., A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. Journal of Fluid Mechanics 1970, 41, (02), 453-480.
110. Lilly, D. K. In The representation of small scale turbulence in numerical simulation experiments, IBM Scientific Computing Symposium on environmental sciences, 1967; 1967; pp 195-210.
111. Rogallo, R. S.; Moin, P., Numerical simulation of turbulent flows. Annual Review of Fluid Mechanics 1984, 16, (1), 99-137.
112. Nicoud, F.; Ducros, F., Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbulence Combust 1999, 62, (3), 183-200.
113. Schumann, U., Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. Journal of Computational Physics 1975, 18, (4), 376-404.
114. Chapman, D. K., Computational aerodynamics development and outlook. AIAA journal 1979, 17, (12), 1293-1313.
115. Choi, H.; Moin, P., Grid-point requirements for large eddy simulation: Chapman’s estimates revisited. Physics of Fluids (1994-present) 2012, 24, (1), 011702.
116. Piomelli, U.; Balaras, E., Wall-layer models for large-eddy simulations. Annual review of fluid mechanics 2002, 34, (1), 349-374.
117. Grötzbach, G., Direct numerical and large eddy simulation of turbulent channel flows. Encyclopedia of Fluid Mechanics. West Orange NJ 1987, 13.
118. Cabot, W.; Moin, P., Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow. Flow Turbulence Combust 2000, 63, (1-4), 269-291.
119. Johnson, D. A.; King, L., A mathematically simple turbulence closure model for attached and separated turbulent boundary layers. AIAA journal 1985, 23, (11), 1684-1692.
120. Spalart, P.; Jou, W.; Strelets, M.; Allmaras, S., Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. Advances in DNS/LES 1997, 1, 4-8.
121. Spalart, P. R.; Allmaras, S. R., A one-equation turbulence model for aerodynamic flows. 1992.
122. Mason, P. J.; Thomson, D., Stochastic backscatter in large-eddy simulations of boundary layers. Journal of Fluid Mechanics 1992, 242, 51-78.
123. Nicoud, F.; Winckelmans, G.; Carati, D.; Baggett, J.; Cabot, W., Boundary conditions for LES away from the wall. CTR, ARTICLE of the Summer Program 1998, 413-422.
124. Redjem-Saad, L.; Ould-Rouiss, M.; Lauriat, G., Direct numerical simulation of turbulent heat transfer in pipe flows: Effect of Prandtl number. International Journal of Heat and Fluid Flow 2007, 28, (5), 847-861.
125. Moin, P.; Mahesh, K., Direct numerical simulation: a tool in turbulence research. Annual review of fluid mechanics 1998, 30, (1), 539-578.
126. Lumley, J. L., Whither Turbulence? Turbulence at the Crossroads. In Lecture Notes in Physics, Araki, H.; Ehlers, J.; Hepp, K.; Kippenhahn, R.; Ruelle, D.; Weidenmuller, H. A.; Wess, J.; Zittartz, J., Eds. Springer-Verlag: 1989.
127. Asen, P. O.; Kreiss, G.; Rempfer, D., Direct numerical simulations of localized disturbances in pipe Poiseuille flow. Computers & Fluids 2010, 39, (6), 926-935.
128. Boersma, B. J., Direct numerical simulation of turbulent pipe flow up to a Reynolds number of 61,000. Journal of Physics: Conference Series 2011, 318, (4), 042045.
129. El Khoury, G. K.; Schlatter, P.; Noorani, A.; Fischer, P.; Brethouwer, G.; Johansson, A. V., Direct Numerical Simulation of Turbulent Pipe Flow at Moderately High Reynolds Numbers. Flow Turbulence Combust 2013, 91, (3), 475-495.
130. Jaszczur, M., DNS benchmark solution of the fully developed turbulent channel flow with heat transfer. Journal of Physics: Conference Series 2014, 530, (1), 012022.
131. Ghosh, S.; Sesterhenn, J.; Friedrich, R., DNS and LES of compressible turbulent pipe flow with isothermal wall. In Direct and Large-Eddy Simulation VI, Springer: 2006; pp 721-728.
132. Chin, C.; Monty, J. P.; Ooi, A., Reynolds number effects in DNS of pipe flow and comparison with channels and boundary layers. International Journal of Heat and Fluid Flow 2014, 45, 33-40.
133. Del Alamo, J. C.; Jimenez, J.; Zandonade, P.; Moser, R. D., Scaling of the energy spectra of turbulent channels. Journal of Fluid Mechanics 2004, 500, 135-144.
134. Li, Q.; Schlatter, P.; Brandt, L.; Henningson, D. S., DNS of a spatially developing turbulent boundary layer with passive scalar transport. International Journal of Heat and Fluid Flow 2009, 30, (5), 916-929.
135. El Khoury, G. K.; Schlatter, P.; Brethouwer, G.; Johansson, A. V., Turbulent pipe flow: Statistics, Re -dependence, structures and similarities with channel and boundary layer flows. Journal of Physics: Conference Series 2014, 506, (1), 012010.
136. Orszag, S. A.; Patterson Jr, G., Numerical simulation of three-dimensional homogeneous isotropic turbulence. Physical Review Letters 1972, 28, (2), 76.
137. Bell, G. In A Seymour Cray Perspective, Seymour Cray Lecture Series, University of Minnesota, 1997; University of Minnesota, 1997.
138. Fasui, A. A.; Olteanu, A.-C.; Tapus, N. In On using Grid and distributed computing for mobile applications, Systems and Computer Science (ICSCS), 2013 2nd International Conference on, 2013; IEEE: 2013; pp 92-97.
139. TOP500 The List - November 2015. http://www.top500.org/lists/2015/11/ (16/01/2016),
140. Feiereisen, W. J.; Reynolds, W. C.; Ferziger, J. H. Numerical simulation of a compressible homogeneous, turbulent shear flow. Stanford University, 1981.
141. Blaisdell, G.; Mansour, N.; Reynolds, W., Compressibility effects on the growth and structure of homogeneous turbulent shear flow. Journal of Fluid Mechanics 1993, 256, 443-485.
142. Lee, S.; Lele, S. K.; Moin, P., Eddy shocklets in decaying compressible turbulence. Physics of Fluids A: Fluid Dynamics (1989-1993) 1991, 3, (4), 657-664.
143. Coleman, G. N.; Kim, J.; Moser, R., A numerical study of turbulent supersonic isothermal-wall channel flow. Journal of Fluid Mechanics 1995, 305, 159-183.
144. Rai, M. M.; Gatski, T. B.; Erlebacher, G., AlAA 9590583 Direct Simulation of Spatially Evolving Compressible Turbulent Boundary Layers. 1995.
145. Brauckmann, H. J.; Eckhardt, B., Direct numerical simulations of local and global torque in Taylor–Couette flow up to Re= 30 000. Journal of Fluid Mechanics 2013, 718, 398-427.
146. Hawkes, E. R.; Chatakonda, O.; Kolla, H.; Kerstein, A. R.; Chen, J. H., A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence. Combustion and Flame 2012, 159, (8), 2690-2703.
147. Chen, J. H.; Choudhary, A.; de Supinski, B.; DeVries, M.; Hawkes, E. R.; Klasky, S.; Liao, W. K.; Ma, K. L.; Mellor-Crummey, J.; Podhorszki, N.; Sankaran, R.; Shende, S.; Yoo, C. S., Terascale direct numerical simulations of turbulent combustion using S3D. Computational Science & Discovery 2009, 2, (1), 015001.
148. Desoutter, G.; Habchi, C.; Cuenot, B.; Poinsot, T., DNS and modeling of the turbulent boundary layer over an evaporating liquid film. International Journal of heat and Mass Transfer 2009, 52, 6028-6041.
149. Saha, S.; Ooi, A. S. H.; Blackburn, H. M., Validation Criteria for DNS of Turbulent Heat Transfer in Pipe Flow. Procedia Engineering 2014, 90, 599-604.
150. Mims, C. Moore's Law Over, Supercomputing "In Triage," Says Expert. http://www.technologyreview.com/view/427891/moores-law-over-supercomput… (16/01/2016),
151. Speziale, C. G. Analytical methods for the development of Reynolds stress closures in turbulence; DTIC Document: 1990.
152. Moore, G. E., Cramming more components onto integrated circuits. Proceedings of the IEEE 1998, 86, (1), 82-85.
153. Moser, R. D.; Moin, P., The effects of curvature in wall-bounded turbulent flows. Journal of Fluid Mechanics 1987, 175, 479-510.
154. Rogers, M. M.; Moin, P.; Reynolds, W. C. The structure and modeling of the hydrodynamic and passive scalar fields in homogeneous turbulent shear flow. Stanford University, California, 1986.
155. Spalart, P. R., Direct simulation of a turbulent boundary layer up to R θ= 1410. Journal of Fluid Mechanics 1988, 187, 61-98.
156. Kim, J.; Moin, P.; Moser, R., Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of Fluid Mechanics 1987, 177, 133-166.
157. Le, H.; Moin, P.; Kim, J., Direct numerical simulation of turbulent flow over a backward-facing step. Journal of fluid mechanics 1997, 330, 349-374.
158. Akselvoll, K.; Moin, P., Large-eddy simulation of turbulent confined coannular jets. Journal of Fluid Mechanics 1996, 315, 387-411.
159. Mahesh, K.; Lele, S. K.; Moin, P., The influence of entropy fluctuations on the interaction of turbulence with a shock wave. Journal of Fluid Mechanics 1997, 334, 353-379.
160. Chin, C.; Ooi, A.; Marusic, I.; Blackburn, H., The influence of pipe length on turbulence statistics computed from direct numerical simulation data. Physics of Fluids 2010, 22, (11), 115107.
161. Niu, Z.; Jiao, K.; Zhang, F.; Du, Q.; Yin, Y., Direct numerical simulation of two-phase turbulent flow in fuel cell flow channel. Int. J. Hydrog. Energy 2016.
162. Ferziger, J. H.; Peric, M., Finite Difference Methods. In Computational Methods for Fluid Dynamics, 3rd ed.; Springer-Verlag: Berlin, 2002; pp 39-70.
163. Spencer, S.; Peiró, J., Finite Difference, Finite Element and Finite Volume Methods for Partial Differential Equations. In Handbook of Materials Modeling. Volume I: Methods and Models, Springer: 2005.
164. Lele, S. K., Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics 1992, 103, (1), 16-42.
165. Hirsh, R. S., Higher order accurate difference solutions of fluid mechanics problems by a compact differencing technique. Journal of Computational Physics 1975, 19, (1), 90-109.
166. Liniger, W.; Willoughby, R. A., Efficient Integration Methods for Stiff Systems of Ordinary Differential Equations. SIAM Journal on Numerical Analysis 1970, 7, (1), 47-66.
167. Lermusiaux, P., Lecture 18: Finite Volume Methods. In MIT open courseware: 2011.
168. Welty, J. R.; Wicks, C. E.; Wilson, R. E.; Rorrer, G. L., Conservation of Mass: Control-Volume Approach. In Fundamentals of Momentum, Heat, and Mass Transfer, John Wiley and Sons, Inc.: , 2008; pp 34-42.
169. Welty, J. R.; Wicks, C. E.; Wilson, R. E.; Rorrer, G. L., Newton's Secon Law of Motion: Control-Volume Approach. In Fundamentals of Momentum, Heat, and Mass Transfer, John Wiley and Sons, Inc.: , 2008; pp 43-62.
170. Welty, J. R.; Wicks, C. E.; Wilson, R. E.; Rorrer, G. L., Conservation of Energy: Control-Volume Approach. In Fundamentals of Momentum, Heat, and Mass Transfer, John Wiley and Sons, Inc.: , 2008; pp 63-80.
171. Chen, L., Finite Volume Methods. In University of California-Irvine.
172. Cebeci, T.; Shao, J. P.; Kafyeke, F.; Laurendeau, E., Numerical Methods for Model Hyperbolic Equations. In Computational Fluid Dynamics For Engineers, Horizons Publishing Inc.: Long Beach, California, 2005; pp 141-178.
173. Ferziger, J. H.; Peric, M., Finite Volume Methods. In Computational Methods for Fluid Dynamics, 3rd ed.; Springer-Verlag: Berlin, 2002; pp 71-90.
174. Andersson, B.; Andersson, R.; Hakansson, L.; Mortensen, M.; Sudiyo, R.; Wachem, B. v., Numerical Aspects of CFD. In Computational Fluid Dynamics for Engineers, Cambridge University Press: 2012; pp 24-61.
175. Ferziger, J. H.; Peric, M., Solution of the Navier-Stokes Equations. In Computational Methods for Fluid Dynamics, 3rd ed.; Springer-Verlag: Berlin, 2002; pp 157-216.
176. Gilat, A.; Subramaniam, V., Numerical Differentiation. In Numerical Methods An introduction with Applications Using Matlab, John Wiley & Sons, Inc.: 2011; pp 211-248.
177. Hussaini, M. Y.; Zang, T. A., Spectral Methods in Fluid Dynamics. Annual Review of Fluid Mechanics 1987, 1, (19), 339-367.
178. Canuto, C.; Quarteroni, A.; Hussaini, M. Y.; Zang, T. A., Polynomial Approximation. In Spectral methods : fundamentals in single domains, Springer-Verlag: 2006; pp 39-116.
179. Kreiss, H.-O.; Oliger, J., Stability of the Fourier method. SIAM Journal on Numerical Analysis 1979, 16, (3), 421-433.
180. Canuto, C.; Quarteroni, A.; Hussaini, M. Y.; Zang, T. A., Basic Approaches to Constructing Spectral Methods. In Spectral methods : fundamentals in single domains, Springer-Verlag: 2006; pp 117-165.
181. Osgood, B. G., n-Dimensional Fourier Transform. In EE261 - The Fourier Transform and its Applications, Stanford Engineering Everywhere: pp 365-402.
182. Patera, A. T., A spectral element method for fluid dynamics: Laminar flow in a channel expansion. Journal of Computational Physics 1984, 54, (3), 468-488.
183. Babuška, I.; Banerjee, U.; Osborn, J. E., Generalized finite element methods—main ideas, results and perspective. International Journal of Computational Methods 2004, 1, (01), 67-103.
184. Limiton An Introduction to Spectral Element Method. http://limiton.cn/upfile/SEM.pdf
185. Bakker, A. Lecture 5 -Solution Methods: Applied Computational Fluid Dynamics. http://www.bakker.org/dartmouth06/engs150/05-solv.pdf
186. Thom, A., The Flow Past Circular Cylinders at Low Speeds. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 1933, 141, (845), 651-669.
187. Torrance, K. E., Comparison of finite-difference computations of natural convection. Journal of Research of the National Bureau of Standards 1968, 72, (4), 281-301.
188. Ferziger, J. H.; Peric, M., Methods for Unsteady Problems. In Computational Methods for Fluid Dynamics, 3rd ed.; Springer-Verlag: Berlin, 2002; pp 135-156.
189. Gilat, A.; Subramaniam, V., Ordinary Differential Equations: Initial Value Problems. In Numerical Methods An introduction with Applications Using Matlab, John Wiley & Sons, Inc.: 2011; pp 293-376.
190. Ferziger, J. H.; Peric, M., Basic Concepts of Fluid Flow. In Computational Methods for Fluid Dynamics, 3rd ed.; Springer-Verlag: Berlin, 2002; pp 1-21.
191. Versteeg, H. K.; Malalasekera, W., Solution algorithms for pressure-velocity coupling in steady flows. In An Introduction to Computational Fluid Dynamics, Pearson Education Limited: Harlow, 2007; pp 179-211.
192. Iaccarino, G., Solution Methods for the Incompressible Navier Stokes Equations. In Stanford University: 2004.
193. Patankar, S. V.; Spalding, D. B., A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer 1972, 15, (10), 1787-1806.
194. Issa, R. I., Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics 1986, 62, (1), 40-65.
195. Ahn, J.; Lee, J. H.; Lee, J.; Kang, J. H.; Sung, H. J., Direct numerical simulation of a 30R long turbulent pipe flow at Re-tau=3008. Physics of Fluids 2015, 27, (6), 14.
196. Boersma, B., Large Scale Motions in the Direct Numerical Simulation of Turbulent Pipe Flow. In Direct and Large-Eddy Simulation IX, Springer: 2015; pp 243-249.
197. Chiva, J.; Lehmkuhl, O.; Ventosa, J.; Oliva, A., Direct Numerical Simulation of Low-Mach Turbulent Natural Convection Flow in an Open Cavity of Aspect Ratio 4. In Direct and Large-Eddy Simulation IX, Springer: 2015; pp 345-352.
198. Ghosh, S.; Foysi, H.; Friedrich, R., Compressible turbulent channel and pipe flow: similarities and differences. Journal of Fluid Mechanics 2010, 648, 155-181.
199. OpenFOAM Features. http://www.openfoam.org/features/index.php (7/11/2015),
200. Cash, J. R.; Karp, A. H., A variable order Runge-Kutta method for initial value problems with rapidly varying right-hand sides. ACM Transactions on Mathematical Software (TOMS) 1990, 16, (3), 201-222.
201. Shampine, L. F.; Gordon, M. K., Computer solution of ordinary differential equations: the initial value problem. WH Freeman San Francisco: 1975.
202. Ferziger, J. H.; Peric, M., Efficiency and Accuracy Improvement. In Computational Methods for Fluid Dynamics, 3rd ed.; Springer-Verlag: Berlin, 2002; pp 329-367S.
203. OpenFOAM-Parallel Computing. http://www.openfoam.org/features/parallel-computing.php (29/01/2016),
204. Zhang, F.; Bonart, H.; Zirwes, T.; Habisreuther, P.; Bockhorn, H.; Zarzalis, N., Direct Numerical Simulation of Chemically Reacting Flows with the Public Domain Code OpenFOAM. In High Performance Computing in Science and Engineering ‘14, Springer: 2015; pp 221-236.
205. Cantera. http://www.cantera.org/docs/sphinx/html/index.html# (29/01/2016),
206. Weiß, M.; Zarzalis, N.; Suntz, R., Experimental study of Markstein number effects on laminar flamelet velocity in turbulent premixed flames. Combustion and Flame 2008, 154, (4), 671-691.
207. van Haren, S. W. Testing DNS Capability of OpenFOAM and STAR-CCM+. Delft University of Technology, 2011.
208. Eggels, J. G. M.; Unger, F.; Weiss, M. H.; Westerweel, J.; Adrian, R. J.; Friedrich, R.; Nieuwstadt, F. T. M., Fully-Developed Turbulent Pipe-Flow - a Comparison between Direct Numerical-Simulation and Experiment. Journal of Fluid Mechanics 1994, 268, 175-209.
209. Fukagata, K.; Kasagi, N., Highly Energy-Conservative Finite Difference Method for the Cylindrical Coordinate System. Journal of Computational Physics 2002, 181, (2), 478-498.
210. Fukushima, N.; Fukagata, K.; Kasagi, N.; Noguchi, H.; Tanimoto, K. In Numerical and experimental study on turbulent thermal mixing in a T-junction flow, The 6th ASME-JSME Thermal Engineering Joint Conference, 2003; 2003; pp 16-20.
211. Nek5000. https://nek5000.mcs.anl.gov/about/ (08/02/2016),
212. Fischer, P. NEK5000 Documentation, 2015.
213. Lenaers, P.; Li, Q.; Brethouwer, G.; Schlatter, P.; Örlü, R., Rare backflow and extreme wall-normal velocity fluctuations in near-wall turbulence. Physics of Fluids (1994-present) 2012, 24, (3), 035110.
214. Schlatter, P.; Orlu, R.; Li, Q.; Brethouwer, G.; Fransson, J. H.; Johansson, A. V.; Alfredsson, P. H.; Henningson, D. S., Turbulent boundary layers up to retheta= 2500 studied through simulation and experiment. Physics of fluids 2009, 21, (5), 51702.
215. Sprague, M. A. In A comparison of Nek5000 and OpenFOAM for DNS of turbulent channel flow, Nek5000 Users Meeting, Argonne National Lab, 2010; Argonne National Lab, 2010.
216. Hawkes, E. R.; Sankaran, R.; Sutherland, J. C.; Chen, J. H., Direct Numerical Simulations of Turbulent Nonpremixed Combustion: Fundamental Insights Towards Predictive Models. In Sandia National Laboratories: Livermore, California.
217. Grout, R. W.; Sankaran, R.; Levesque, J. M.; Woolley, C.; Posey, S.; Chen, J. H. In S3D Direct Numerical Simulation: Preparation for the 10-100 PF era, Scientific Computing GTC, San Jose, USA, 2012; San Jose, USA, 2012.
218. Levesque, J. M.; Sankaran, R.; Grout, R.; Ieee, Hybridizing S3D into an Exascale Application using OpenACC An approach for moving to Multi-Petaflops and Beyond. In 2012 International Conference for High Performance Computing, Networking, Storage and Analysis, Ieee: New York, 2012.
219. Owens, J. D.; Houston, M.; Luebke, D.; Green, S.; Stone, J. E.; Phillips, J. C., GPU computing. Proceedings of the IEEE 2008, 96, (5), 879-899.
220. Lyons, K. M., Toward an understanding of the stabilization mechanisms of lifted turbulent jet flames: experiments. Progress in Energy and Combustion Science 2007, 33, (2), 211-231.
221. Chen, Y.-C.; Mansour, M. S. In Investigation of flame broadening in turbulent premixed flames in the thin-reaction-zones regime, Symposium (International) on Combustion, 1998; Elsevier: 1998; pp 811-818.
222. Dinkelacker, F.; Soika, A.; Most, D.; Hofmann, D.; Leipertz, A.; Polifke, W.; Döbbeling, K. In Structure of locally quenched highly turbulent lean premixed flames, Symposium (International) on Combustion, 1998; Elsevier: 1998; pp 857-865.
223. Chevalier, M.; Schlatter, P.; Lundbladh, A.; Henningson, D. S. SIMSON a Pseudo-Spectral Solver for Incompressible Boundary Layer Flows; KTH Engineering Sciences: Stockholm, Sweden, 2007.
224. Crank, J.; Nicolson, P. In A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type, Mathematical Proceedings of the Cambridge Philosophical Society, 1947; Cambridge Univ Press: 1947; pp 50-67.
225. Lenaers, P.; Li, Q.; Brethouwer, G.; Schlatter, P.; Örlü, R., Negative streamwise velocities and other rare events near the wall in turbulent flows. Journal of Physics: Conference Series 2011, 318, (2), 022013.
226. Momentum Thickness. http://www.cfdsupport.com/OpenFOAM-Training-by-CFD-Support/node267.html (09/02/2016),
227. Schlatter, P.; Örlü, R., Assessment of direct numerical simulation data of turbulent boundary layers. Journal of Fluid Mechanics 2010, 659, 116-126.
228. Westfall, P. H., Kurtosis as peakedness, 1905–2014. rip. The American Statistician 2014, 68, (3), 191-195.
229. Ohlsson, J.; Schlatter, P.; Mavriplis, C.; Henningson, D. S., The Spectral-Element and Pseudo-Spectral Methods: A Comparative Study. In Spectral and High Order Methods for Partial Differential Equations: Selected papers from the ICOSAHOM '09 conference, June 22-26, Trondheim, Norway, Hesthaven, S. J.; Rønquist, M. E., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 2011; pp 459-467.
230. Moser, R. D.; Kim, J.; Mansour, N. N., Direct numerical simulation of turbulent channel flow up to Re= 590. Phys. Fluids 1999, 11, (4), 943-945.
231. Popinet, S., Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. Journal of Computational Physics 2003, 190, (2), 572-600.
232. Samet, H., Applications of Spatial Data Structures. Addison-Wesley: Maryland, 1990.
233. Brown, D. L.; Cortez, R.; Minion, M. L., Accurate Projection Methods for the Incompressible Navier–Stokes Equations. Journal of Computational Physics 2001, 168, (2), 464-499.
234. Fuster, D.; Agbaglah, G.; Josserand, C.; Popinet, S.; Zaleski, S., Numerical simulation of droplets, bubbles and waves: state of the art. Fluid dynamics research 2009, 41, (6), 065001.
235. Agbaglah, G., Simulation of atomization processes in conditions close to experiments. In 2009.
236. Agbaglah, G.; Delaux, S.; Fuster, D.; Hoepffner, J.; Josserand, C.; Popinet, S.; Ray, P.; Scardovelli, R.; Zaleski, S., Parallel simulation of multiphase flows using octree adaptivity and the volume-of-fluid method. Comptes Rendus Mecanique 2011, 339, (2), 194-207.
237. Comas, J. T. Numerical Simulations of Multiphase Flows-Atomization. Université Pierre et Marie Curie, Paris, 2014.
238. Greenshields, C. J., OpenFOAM: The Open Source CFD Toolbox User Guide. OpenFOAM Foundation Ltd.: 2015; p 230.
239. Rodrigues, M. A.; Padrela, L.; Geraldes, V.; Santos, J.; Matos, H. A.; Azevedo, E. G., Theophylline polymorphs by atomization of supercritical antisolvent induced suspensions. The Journal of Supercritical Fluids 2011, 58, (2), 303-312.
240. Fox, R. O., Turbulent Reacting Flows. In Computational Models for Turbulent Reacting Flows, Cambridge University Press: 2003; pp 1-26.
241. Ducros, F.; Nicoud, F.; Poinsot, T. In Wall-adapting local eddy-viscosity models for simulations in complex geometries, International Conference on Computational Conference, 1998; 1998; pp 293-300.
242. Van Cauwenberge, D. J.; Vandewalle, L. A.; Reyniers, P. A.; Van Geem , K. M.; Marin, G. B., Periodic Reactive Flow Simulation: Proof of Concept for Steam Cracking Coils. AIChE Journal 2016, In preparation.
243. Moin, P.; Squires, K.; Cabot, W.; Lee, S., A dynamic subgrid‐scale model for compressible turbulence and scalar transport. Physics of Fluids A 1991, 3, (11), 2746-2757.
244. Gao, C. W.; Allen, J. W.; Green, W. H.; West, R. H., Reaction Mechanism Generator: Automatic construction of chemical kinetic mechanisms. Computer Physics Communications 2016, 203, 212-225.
245. Reyniers, P. A.; Schietekat, C. M.; Van Cauwenberge, D. J.; Vandewalle, L. A.; Van Geem, K. M.; Marin, G. B., Necessity and Feasibility of 3D Simulations of Steam Cracking Reactors. Industrial & Engineering Chemistry Research 2015, 54, (49), 12270-12282.
246. Kravchenko, A. G.; Moin, P., On the Effect of Numerical Errors in Large Eddy Simulations of Turbulent Flows. Journal of Computational Physics 1997, 131, (2), 310-322.
247. Heynderickx, G. J.; Oprins, A. J.; Marin, G. B.; Dick, E., Three‐dimensional flow patterns in cracking furnaces with long‐flame burners. AIChE journal 2001, 47, (2), 388-400.
248. Karypis, G.; Kumar, V., A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on scientific Computing 1998, 20, (1), 359-392.
249. Chen, N. H., An explicit equation for friction factor in pipe. Industrial & Engineering Chemistry Fundamentals 1979, 18, (3), 296-297.
250. Masoumi, M. E.; Sadrameli, S. M.; Towfighi, J.; Niaei, A., Simulation, optimization and control of a thermal cracking furnace. Energy 2006, 31, (4), 516-527.
251. Van Geem, K. M.; Reyniers, M.-F.; Marin, G. B., Two Severity Indices for Scale-Up of Steam Cracking Coils. Industrial & Engineering Chemistry Research 2005, 44, (10), 3402-3411.
252. Plehiers, P. M. Rigoreuze Modellen voor de Simulatie van Fornuizen voor de Thermische Kraking van Lichte Koolwaterstoffen. Rijksuniversiteit Gent, 1989.
253. Sundaram, K.; Froment, G., Kinetics of coke deposition in the thermal cracking of propane. Chem. Eng. Sci. 1979, 34, (5), 635-644.
254. Albright, L. F.; Marek, J. C., Coke formation during pyrolysis: roles of residence time, reactor geometry, and time of operation. Industrial & Engineering Chemistry Research 1988, 27, (5), 743-751.
255. Vandewalle, L. A.; Dedeyne, J. N.; Van Cauwenberge, D. J.; Van Geem, K. M.; Marin, G. B., Computational Fluid Dynamic Design of Steam Cracking Reactors: Extrusion Method for Simulation of Dynamic Coke Layer Growth. In AIChE Spring Meeting, Houston, TX, 2016.
256. Poinsot, T.; Rudgyard, M.; Schönfeld, T., The AVBP HandBook. CERFACS: 2011.
257. Baehr, H. D., Stationäre Flieβprozesse. In Thermodynamik: Eine Einführung in die Grundlagen und ihre Technischen Andwendungen, Fünfte Auflage ed.; Springer-Verlag: Berlin, 1981; pp 232-292.
258. Lin, Z.; Junming, F.; Jia, Z.; Li, Q.; Luling, L., Formula calculation methods of water content in sweet natural gas and their adaptability analysis. Natural Gas Industry B 2014, 1, (2), 144-149.
259. Arina, R., Numerical simulation of near-critical fluids. Applied Numerical Mathematics 2004, 51, (4), 409-426.
260. Karimi, A.; Abdi, M. A., Selective dehydration of high-pressure natural gas using supersonic nozzles. Chemical Engineering and Processing: Process Intensification 2009, 48, (1), 560-568.
261. Wen, C.; Cao, X.; Yang, Y., Swirling flow of natural gas in supersonic separators. Chemical Engineering and Processing: Process Intensification 2011, 50, (7), 644-649.
262. Jassim, E.; Abdi, M. A.; Muzychka, Y., Computational Fluid Dynamics Study for Flow of Natural Gas through High-pressure Supersonic Nozzles: Part 1. Real Gas Effects and Shockwave. Petroleum Science and Technology 2008, 26, (15), 1757-1772.
263. Xiao, Q.; Tsai, H.-M.; Papamoschou, D., Numerical investigation of supersonic nozzle flow separation. AIAA journal 2007, 45, (3), 532-541.
264. Papamoschou, D.; Zill, A.; Johnson, A., Supersonic flow separation in planar nozzles. Shock waves 2009, 19, (3), 171-183.
265. Malik, A.; Van Geem, K. Preliminary Comutational Fluid Dynamics Analysis of SUSTOR2; Ghent University: Ghent, 10/8/2015, 2015; p 33.
266. Lu, T.; Law, C. K., Systematic approach to obtain analytic solutions of quasi steady state species in reduced mechanisms. The Journal of Physical Chemistry A 2006, 110, (49), 13202-13208.