Kunnen bacteriën planten redden?

Charlotte
De Bruyn

Kunnen bacteriën planten redden?

De bekende ziekenhuisbacterie Pseudomonas aeruginosa maakt jaarlijks tal van mensen ziek maar wist u dat deze bacterie ook een positieve invloed kan uitoefenen op planten?  De masterthesis ‘De biosynthese, regulatie en secretie van cyclische lipopeptiden in fluorescerende Pseudomonas populaties’ onthult het geheim achter de reddingsactie van de Pseudomonas bacterie. 

De cocoyam plant

In Afrika, waar voedsel schaars is, wordt de knol van de cocoyam plant gebruikt als voedselbron. Nu wordt deze plant aangetast door de schimmelachtige Pythium myriotylum waardoor wortels van de plant wegrotten en opbrengsten tot 90% kunnen verminderen. Hierdoor stijgt de hongersnood en mede ook de nood aan een oplossing. Deze wordt aangeboden in de vorm van een bacterie die de groei van de schimmelachtige kan tegen gaan waardoor de plant kan floreren en monden gevoed kunnen worden.

Een bacterie met een mechanisme

De ziekenhuisbacterie Pseudomonas aeruginosa bevat een pompmechanisme waarmee antibiotica naar buiten gepompt worden. Hierdoor hebben antibiotica geen effect op de bacterie. Dit pompmechanisme is van belang om ook eigen aangemaakte stoffen naar buiten te pompen die de bacterie kunnen helpen in zijn groei of overleving. Zo maakt de Pseudomonas bacterie stoffen aan die ervoor zorgen dat de P. myriotylum niet meer kan groeien waardoor de cocoyam plant niet (verder) aangetast wordt.

Het probleem met de ziekenhuisbacterie is dat deze niet gebruikt kan worden in de grond. De bacterie zou er immers vermeerderen en er zich op de wortels van de plant hechten. Wanneer de plant opgegeten wordt, zou de mens besmet worden met de ziekenhuisbacterie. Dit is uiteraard niet gewenst. Om die reden werd er gezocht naar andere bacteriën die hetzelfde pompmechanisme bevatten maar die niet schadelijk zijn voor de mens. Pseudomonas CMR12a en CMR5c zijn hiervan voorbeelden die de wortelrot van de cocoyam plant tot de helft kunnen terugdringen. Beide bacteriën maken namelijk tal van stoffen aan die helpen de P. myriotilum te bestrijden. Eén van deze stoffen is ‘orfamide’ en werd in de thesis uitgebreid bestudeerd.

Van DNA tot orfamide

DNA is opgebouwd uit tal van genen en de aanmaak van orfamide gebeurt door de genen orfamide A, B en C. Indien deze genen niet aanwezig zijn in de bacterie, wordt er geen orfamide aangemaakt. De orfamide genen zorgen er namelijk voor dat de orfamide moleculen worden aangemaakt. Uit het onderzoek van de thesis blijkt dat deze genen echter eerst geactiveerd moeten worden door twee andere genen, namelijk luxUp en luxDown. Indien één of beide genen niet aanwezig zijn, wordt geen orfamide aangemaakt. Het belang hiervan is dat deze genen gebruikt kunnen worden om de aanmaak van orfamide te controleren.

Van binnenin naar buiten

Wanneer orfamide dan wordt aangemaakt door de bacterie is het pompmechanisme nodig om de orfamide buiten de bacterie te brengen. Dit pompmechanisme wordt eveneens aangemaakt door bepaalde genen, namelijk macA en macB. Na de activatie van de macA en macB genen, wordt het pompmechanisme aangemaakt dat ervoor zorgt dat orfamide bijna helemaal naar buiten wordt gepompt. Echter, een ander ‘helper’ pompmechanisme is nodig om orfamide helemaal naar buiten te pompen. Deze mechanismes blijken echter verschillend van bacterie tot bacterie. Pseudomonas CMR12a bevat het mechanisme NodT en OprM terwijl Pseudomonas CMR5c het mechanisme OprM en CmeC bevat. Uit het onderzoek is echter gebleken dat nog andere onbekende ‘helper’ mechanismes aanwezig zijn in de bacterie waardoor dit pompsysteem veel complexer is dan initieel gedacht. Ook heeft elk ‘helper’ mechanisme invloed op de andere mechanismes waardoor er variatie optreedt in de hoeveelheid orfamide die naar buiten wordt gepompt. Sommige pompen laten dus meer orfamide door dan anderen.

Het nut van orfamide

Om na te gaan of de Pseudomonas bacteriën een rol spelen in de bestrijding van de schimmelachtige, werden de bacteriën in de grond gebracht bij de cocoyam plant in de nabijheid van P. myriotilum. Opmerkzaam, de planten worden niet tot zeer weinig aangetast. Dit betekent dat de schimmelachtige geen tot weinig effect heeft op de plant. De bacteriën brengen dus via hun pompsysteem de eigen aangemaakte moleculen naar buiten, die helpen de schimmelachtige tegen te gaan. De vraag is nu of de molecule orfamide hierin een significante rol speelt. Uit dit onderzoek blijkt van niet. Alhoewel orfamide apart wel enige activiteit vertoont tegen de schimmelachtige, maken de Pseudomonas bacteriën vele andere stoffen aan die helpen de schimmelachtige tegen te gaan. Orfamide heeft dus een verwaarloosbaar effect wanneer de andere stoffen aanwezig zijn. Toch zou orfamide op een andere manier kunnen bijdragen aan de bescherming van de cocoyam plant. Hiervoor is echter verder onderzoek vereist.

De toekomst van de Pseudomonas

Het onderzoek naar de pompmechanismen van de Pseudomonas bacteriën is van groot belang daar ze een rol kunnen spelen in het helpen van planten. Door beter te begrijpen hoe deze mechanismen werken en waardoor ze beïnvloed worden, kunnen de bacteriën zodanig gemanipuleerd worden dat ze optimaal gebruikt worden in de landbouw. Zo kunnen deze Pseudomonas bacteriën bijdragen aan een wereld met meer voedselopbrengsten en minder hongersnood.

Bibliografie

Anjaiah V, Koedam N, Nowak-thompson B, Loper JE, Höfte M, Tambong JT, Cornelis P. 1998. Involvement of phenazines and anthranilate in the antagonism of Pseudomonas aeruginosa PNA1 and Tn5 derivatives toward Fusarium spp. and Pythium spp. Am. Phytopathol. Soc. 11:847–854.

Pseudomonas Genome Database. 2014. . http://www.pseudomonas.com/strain/show?id=2466.

Bender CL, Alarcón-Chaidez F, Gross DC. 1999. Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol. Mol. Biol. Rev. 63:266–292.

Berti AD, Greve NJ, Christensen QH, Thomas MG. 2007. Identification of a biosynthetic gene cluster and the six associated lipopeptides involved in swarming motility of Pseudomonas syringae pv. tomato DC3000. J. Bacteriol. 189:6312–6323. http://jb.asm.org/cgi/doi/10.1128/JB.00725-07.

von Bodman SB, Majerczak DR, Coplin DL. 1998. A negative regulator mediates quorum-sensing control of exopolysaccharide production in Pantoea stewartii subsp. stewartii. Proc. Natl. Acad. Sci. U. S. A. 95:7687–7692.

Botelho GR, Mendonça-Hagler LC. 2006. Fluorescent Pseudomonads associated with the rhizosphere of crops - An overview. Brazilian J. Microbiol. 37:401–416.

Van Den Broek D, Bloemberg G V., Lugtenberg B. 2005. The role of phenotypic variation in rhizosphere Pseudomonas bacteria. Environ. Microbiol. 7:1686–1697.

Brooun A, Tomashek JJ, Lewis K. 1999. Purification and ligand binding of EmrR , a regulator of a multidrug transporter. J. Bacteriol. 181:5131–5133.

de Bruijn I, de Kock MJD, de Waard P, van Beek T a., Raaijmakers JM. 2008. Massetolide A biosynthesis in Pseudomonas fluorescens. J. Bacteriol. 190:2777–2789.

de Bruijn I, Raaijmakers JM. 2009a. Diversity and functional analysis of LuxR-type transcriptional regulators of cyclic lipopeptide biosynthesis in Pseudomonas fluorescens. Appl. Environ. Microbiol. 75:4753–4761.

de Bruijn I, Raaijmakers JM. 2009b. Regulation of cyclic lipopeptide biosynthesis in Pseudomonas fluorescens by the ClpP Protease. J. Bacteriol. 191:1910–1923.

de Bruijn I, de Kock MJD, Yang M, de Waard P, van Beek T a., Raaijmakers JM. 2007. Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Mol. Microbiol. 63:417–428.

Campbell R. 1989. Biological control of microbial plant pathogens. Cambridge University Press 218 p.

Caswell CC, Gaines JM, Roop RM. 2012. The RNA chaperone Hfq independently coordinates expression of the VirB type IV secretion system and the LuxR-type regulator BabR in Brucella abortus 2308. J. Bacteriol. 194:3–14.

Chin-A-Woeng TFC, Bloemberg G V., Lugtenberg BJJ. 2003. Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol. 157:503–523.

Cho H, Kang H. 2012. The PseEF efflux system is a virulence factor of Pseudomonas syringae pv. syringae. J. Microbiol. 50:79–90.

Costa TRD, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A, Trokter M, Waksman G. 2015. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat. Rev. Microbiol. 13:343–359. http://dx.doi.org/10.1038/nrmicro3456.

Cui X, Harling R, Mutch P, Darling D. 2005. Identification of N-3-hydroxyoctanoyl-homoserine lactone production in Pseudomonas fluorescens 5064, pathogenic to broccoli, and controlling biosurfactant production by quorum sensing. Eur. J. Plant Pathol. 111:297–308.

D’aes J, Hua Hoang KG, De Maeyer K, Pannecoucque J, Forrez I, Ongena M, Dietrich LEP, Thomashow LS, Mavrodi D V., Höfte M. 2011. Biological control of Rhizoctonia root rot on bean by phenazine- and cyclic lipopeptide-producing Pseudomonas CMR12a. Am. Phytopathol. Soc. 101:996–1004.

D’aes J, Kieu NP, Léclère V, Tokarski C, Olorunleke FE, De Maeyer K, Jacques P, Höfte M, Ongena M. 2014. To settle or to move? The interplay between two classes of cyclic lipopeptides in the biocontrol strain Pseudomonas CMR12a. Environ. Microbiol. 16:2282–2300.

D’aes J, De Maeyer K, Pauwelyn E, Höfte M. 2010. Biosurfactants in plant-Pseudomonas interactions and their importance to biocontrol. Environ. Microbiol. Rep. 2:359–372.

Daugelavicius R, Buivydas A, Sencilo A, Bamford DH. 2010. Assessment of the activity of RND-type multidrug efflux pumps in Pseudomonas aeruginosa using tetraphenylphosphonium ions. Int. J. Antimicrob. Agents 36:234–238.

Daury L, Orange F, Taveau J, Verchère A. 2016. Tripartite assembly of RND multidrug efflux pumps. Nat. Commun. 7:1–30.

Dubern JF, Coppoolse ER, Stiekema WJ, Bloemberg G V. 2008. Genetic and functional characterization of the gene cluster directing the biosynthesis of putisolvin I and II in Pseudomonas putida strain PCL1445. Microbiology 154:2070–2083.

Dubern JF, Lugtenberg BJJ, Bloemberg G V. 2006. The ppuI-rsaL-ppuR quorum-sensing system regulates biofilm formation of Pseudomonas putida PCL1445 by controlling biosynthesis of the cyclic lipopeptides putisolvins I and II. J. Bacteriol. 188:2898–2906.

Dubern J-F, Lagendijk EL, Lugtenberg BJJ, Bloemberg G V. 2005. The heat shock genes dnaK, dnaJ, and grpE are involved in regulation of putisolvin biosynthesis in Pseudomonas putida PCL1445. J. Bacteriol. 187:5967–5976.

Duffy BK, Défago G. 1997. Zinc improves biocontrol of Fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis. Phytopathology 87:1250–1257.

Egland KA, Greenberg EP. 2000. Conversion of the Vibrio fischeri transcriptional activator , LuxR , to a repressor. J. Bacteriol. 182:805–811.

Evans K, Poole K. 1999. The MexA-MexB-OprM multidrug efflux system of Pseudomonas aeruginosa is growth-phase regulated. FEMS Microbiol. Lett. 173:35–39.

Finking R, Marahiel M a. 2004. Biosynthesis of Nonribosomal Peptides. Annu. Rev. Microbiol. 58:453–488.

Fogliano V, Ballio A, Gallo M, Woo S, Scala F, Lorito M. 2002. Pseudomonas lipodepsipeptides and fungal cell wall-degrading enzymes act synergistically in biological control. Mol. plant-microbe Interact. 15:323–333.

Fuqua C, Greenberg EP. 1998. Self perception in bacteria: quorum sensing with acylated homoserine lactones. Curr. Opin. Microbiol. 1:183–189.

Gardener BBM. 2007. Diversity and ecology of biocontrol Pseudomonas spp . in agricultural systems. Am. Phytopathol. Soc. 97:221–226.

Garrido-Sanz D, Meier-Kolthoff JP, Göker M, Martín M, Rivilla R, Redondo-Nieto M. 2016. Genomic and genetic diversity within the Pseudomonas fluorescens complex. PLoS One 11:1–30.

Golstein PE, Boom A, Van Geffel J, Jacobs P, Masereel B, Beauwens R. 1999. P-glycoprotein inhibition by glibenclamide and related compounds. Pflugers Arch. Eur. J. Physiol. 437:652–660.

Gomila M, Pena A, Mulet M, Lalucat J, Garcia-Valdes E. 2015. Phylogenomics and systematics in Pseudomonas. Front. Microbiol. 6:1–13.

Grewal SI, Han B, Johnstone K. 1995. Identification and characterization of a locus which regulates multiple functions in Pseudomonas tolaasii, the cause of brown blotch disease of Agaricus bisporus. J. Bacteriol. 177:4658–68.

Gross DC. 1985. Regulation of syringomycin synthesis in Pseudomonas syringae pv. syringae and defined conditions for its production. J. Appl. Bacteriol. 58:167–74.

Gross H, Loper JE. 2009. Genomics of secondary metabolite production by Pseudomonas spp. Nat. Prod. Rep. 26:1408–1446.

Gross H, Stockwell VO, Henkels MD, Nowak-Thompson B, Loper JE, Gerwick WH. 2007. The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters. Chem. Biol. 14:53–63.

Hamley IW. 2015. Lipopeptides: from self-assembly to bioactivity. Chem. Commun. 51:8574–8583.

Heeb S, Haas D. 2001. Regulatory roles of the GacS / GacA two-component system in plant-associated and other gram-negative bacteria. Mol. Plant-Microbe Interact. 14:1351–1363.

Höfte M, Altier N. 2010. Fluorescent pseudomonads as biocontrol agents for sustainable agricultural systems. Res. Microbiol. 161:464–471.

Horio M, Gottesman MM, Pastan I. 1988. ATP-dependent transport of vinblastine in vesicles from human multidrug-resistant cells. Proc. Natl. Acad. Sci. U. S. A. 85:3580–3584.

Howell CR, Stipanovic RD. 1979. Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 69:480–482.

Hrabak EM, Willis DK. 1992. The lemA gene required for pathogenicity of Pseudomonas syringae pv. syringae on bean is a member of a family of two-component regulators. J. Bacteriol. 174:3011–3020.

Hua GKH, Höfte M. 2015. The involvement of phenazines and cyclic lipopeptide sessilin in biocontrol of Rhizoctonia root rot on bean (Phaseolus vulgaris) by Pseudomonas sp. CMR12a is influenced by substrate composition. Plant Soil 388:243–253.

Jang JY, Yang SY, Kim YC, Lee CW, Park MS, Kim JC, Kim IS. 2013. Identification of orfamide A as an insecticidal metabolite produced by Pseudomonas protegens F6. J. Agric. Food Chem. 61:6786–6791.

Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger U, Wirthner P, Haas D, Defago G. 1992. Suppression of root disease by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol. Plant-Microbe Interact. <Go to ISI>://A1992GZ72200001.

Kinscherf TG, Willis DK. 2002. Global regulation by gidA in Pseudomonas syringae. J. Bacteriol. 184:2281–6. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=134964&tool=p….

Kitten T, Kinscherf TG, McEvoy JL, Willis DK. 1998. A newly identified regulator is required for virulence and toxin production in Pseudomonas syringae. Mol. Microbiol. 28:917–929.

Kobayashi N, Nishino K, Yamaguchi A. 2001. Novel macrolide-specific ABC-type effux transporter in Escherichia coli. J. Bacteriol. 183:5639–5644.

Koch B, Nielsen TH, Sorensen D, Andersen JB, Christophersen C, Molin S, Givskov M, Sorensen J, Nybroe O. 2002. Lipopeptide production in Pseudomonas sp. strain DSS73 is regulated by components of sugar beet seed exudate via the Gac two-component regulatory system. Appl. Environ. Microbiol. 68:4509–4516.

Kourtesi C, Ball AR, Huang Y, Jachak SM, Vera DM a, Khondkar P, Gibbons S, Hamblin MR, Tegos GP. 2013. Microbial efflux systems and inhibitors: approaches to drug discovery and the challenge of clinical implementation. Open Microbiol. J. 7:34–52.

De La Fuente L, Landa BB, Weller DM. 2006. Host crop affects rhizosphere colonization and competitiveness of 2,4-Diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 96:751–62. http://www.ncbi.nlm.nih.gov/pubmed/18943149.

De Leij FAAM, Thomas CE, Bailey MJ, Whipps JM, Lynch JM. 1998. Effect of insertion site and metabolic load on the environmental fitness of a genetically modified Pseudomonas fluorescens isolate. Appl. Environ. Microbiol. 64:2634–2638.

Li J, Zhang Y. 2014. Relationship between promoter sequence and its strength in gene expression. Eur. Phys. J. E 37:1–6.

Li W, Rokni-Zadeh H, De Vleeschouwer M, Ghequire MGK, Sinnaeve D, Xie G-L, Rozenski J, Madder A, Martins JC, De Mot R. 2013. The antimicrobial compound xantholysin defines a new group of Pseudomonas cyclic lipopeptides. PLoS One 8:1–16.

Li XZ, Nikaido H, Poole K. 1995. Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 39:1948–1953.

Lim SP, Roongsawang N, Washio K, Morikawa M. 2009. Flexible exportation mechanisms of arthrofactin in Pseudomonas sp. MIS38. J. Appl. Microbiol. 107:157–166.

Lindow SE, Brandl MT. 2003. Microbiology of the phyllosphere. Appl. Environ. Microbiol. 69:1875–1883.

Lu S-E, Doule JD, Gross D. 2003. Characterization of the argA gene required for arginine biosynthesis and syringomycin production by Pseudomonas syringae pv. syringae. Appl. Environ. Microbiol. 69:7272–7280.

Lu S-E, Scholz-Schroeder BK, Gross DC. 2002a. Characterization of the salA, syrF, and syrG regulatory genes located at the right border of the syringomycin gene cluster of Pseudomonas syringae pv. syringae. Mol. Plant. Microbe. Interact. 15:43–53.

Lu S-E, Scholz-Schroeder BK, Gross DC. 2002b. Characterization of the salA, syrF, and syrG regulatory genes located at the right border of the syringomycin gene cluster of Pseudomonas syringae pv. syringae. Mol. Plant. Microbe. Interact. 15:43–53.

Ludwig-Müller J. 2015. Plants and endophytes: equal partners in secondary metabolite production? Biotechnol. Lett. 27:1325–1334.

Ma Z, Geudens N, Kieu NP, Sinnaeve D, Ongena M, Höfte M. 2016. Biosynthesis, chemical structure and structure-activity relationship of orfamide lipopeptides produced by Pseudomonas protegens and related species. Front. Microbiol.:1–24.

De Maeyer K, D’aes J, Hua GKH, Perneel M, Vanhaecke L, Noppe H, Hofte M. 2011. N-Acylhomoserine lactone quorum-sensing signalling in antagonistic phenazine-producing Pseudomonas isolates from the red cocoyam rhizosphere. Microbiology 157:459–472.

Marahiel M a, Stachelhaus T, Mootz HD. 1997. Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem. Rev. 97:2651–2674. http://www.ncbi.nlm.nih.gov/pubmed/11851476.

Marquez B. 2005. Bacterial efflux systems and efflux pumps inhibitors. Biochimie 87:1137–1147.

Maurhofer M, Keel C, Schnider U, Voisard C, Haas D, Defago G. 1992. Influence of enhanced antibiotic production in Pseudomonas fluorescens strain CHA0 on its disease suppressive capacity. Phytopathology.

Mazzola M, de Bruijn I, Cohen MF, Raaijmakers JM. 2009. Protozoan-induced regulation of cyclic lipopeptide biosynthesis is an effective predation defense mechanism for Pseudomonas fluorescens. Appl. Environ. Microbiol. 75:6804–6811.

McSpadden Gardener BB, Gutierrez LJ, Joshi R, Edema R, Lutton E. 2005. Distribution and biocontrol potential of phlD+ Pseudomonads in Corn and Soybean fields. Phytopathology 95:715–724.

Mnif I, Ghribi D. 2015. Lipopeptides biosurfactants: mean classes and new insights for industrial, biomedical, and environmental applications. Biopolymers 104:129–147.

Mulet M, Lalucat J, García-Valdés E. 2010. DNA sequence-based analysis of the Pseudomonas species. Environ. Microbiol. 12:1513–1530.

“Multiple Primer Analyser.” Multiple Primer Analyzer. https://www.thermofisher.com/be/en/home/brands/thermo-scientific/molecu….

“NCBI.” National Center for Biotechnology Information. http://www.ncbi.nlm.nih.gov/.

Neidig N, Paul RJ, Scheu S, Jousset A. 2011. Secondary metabolites of Pseudomonas fluorescens CHA0 drive complex non-trophic interactions with bacterivorous nematodes. Microb. Ecol. 61:853–859.

Neu TR. 1996. Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol. Rev. 60:151–166.

Nielsen MN, Sørensen J, Fels J, Pedersen HC. 1998. Secondary metabolite- and endochitinase-dependent antagonism toward plant-pathogenic microfungi of Pseudomonas fluorescens isolates from sugar beet rhizosphere. Appl. Environ. Microbiol. 64:3563–3569.

Nielsen TH, Thrane C, Christophersen C, Anthoni U, Sørensen J. 2000. Structure, production characteristics and fungal antagonism of tensin - a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J. Appl. Microbiol. 89:992–1001.

Nielsen TH, Christophersen C, Anthoni U, Sørensen J. 1999. Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J. Appl. Microbiol. 86:80–90.

Nielsen TH, Sørensen D, Tobiasen C, Andersen JB, Christophersen C, Givskov M, Sørensen J. 2002. Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Appl. Environ. Microbiol. 68:3416–3423.

Nikaido H. 1989. Outer membrane barrier as a mechanism of antimicrobial resistance. Antimicrob. Agents Chemother. 33:1831–1836.

Lo Nostro P, Ninham BW, Lo Nostro A, Pesavento G, Fratoni L, Baglioni P. 2005. Specific ion effects on the growth rates of Staphylococcus aureus and Pseudomonas aeruginosa. Phys. Biol. 2:1–7.

Olorunleke FE, Kieu NP, Höfte M. 2014. Recent advances in Pseudomonas biocontrol 1-27 p.

Olorunleke F, Hua H, Kieu P, Ma Z, Höfte M. 2007. Interplay between orfamides, sessilins and phenazines in the control of Rhizoctonia diseases by Pseudomonas sp. CMR12a. Environ. Microbiol. Environ. Microbiol. Reports:1–25.

Pagès JM, Masi M, Barbe J. 2005. Inhibitors of efflux pumps in Gram-negative bacteria. Trends Mol. Med. 11:382–389.

Perneel M, Heyrman J, Adiobo A, De Maeyer K, Raaijmakers JM, De Vos P, Höfte M. 2007. Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity. J. Appl. Microbiol.:1–14.

Perneel M, Tambong JT, Adiobo A, Floren C, Saborio F, Levesque A, Höfte M. 2006. Intraspecific variability of Pythium myriotylum isolated from cocoyam and other host crops. Mycol. Res. 110:583–593.

Perneger T V. 1998. What’s wrong with Bonferroni adjustments. Educ. debate 316:1236–1238.

“Primer3.” Primer3. http://bioinfo.ut.ee/primer3-0.4.0/. Bron geraadpleegd op 03/11/2015 & 22/02/2016.

Raaijmakers JM, de Bruijn I, de Kock MJD. 2006. Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol. Plant. Microbe. Interact. 19:699–710.

Rich JJ, Kinscherf TG, Kitten T, Willis DK. 1994. Genetic evidence that the gacA gene encodes the cognate response regulator for the lemA sensor in Pseudomonas syringae. J. Bacteriol. 176:7468–7475.

Rodrigues L, Banat IM, Teixeira J, Oliveira R. 2006. Biosurfactants: potential applications in medicine. J. Antimicrob. Chemother. 57:609–618.

Ron EZ, Rosenberg E. 2001. Natural roles of biosurfactants. Environ. Microbiol. 3:229–236.

Roongsawang N, Hase K, Haruki M, Imanaka T, Morikawa M, Kanaya S. 2003. Cloning and characterization of the gene cluster encoding arthrofactin synthetase from Pseudomonas sp. MIS38. Chem. Biol. 10:869–980.

Roongsawang N, Washio K, Morikawa M. 2011. Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. Int. J. Mol. Sci. 12:141–172.

Schröder H, Langer T, Hartl FU, Bukau B. 1993. DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J. 12:4137–4144.

Sesto N, Wurtzel O, Archambaud C, Sorek R, Cossart P. 2012. The excludon: a new concept in bacterial antisense RNA-mediated gene regulation. Nat. Rev. Microbiol. 11:75–82.

Soetaert W. 2014. Cursus Industriële biotechnologie UGent. In: . Ind. Biotechnol., pp. 1–100.

Song C, Aundy K, van de Mortel J, Raaijmakers JM. 2014. Discovery of new regulatory genes of lipopeptide biosynthesis in Pseudomonas fluorescens. FEMS Microbiol. Lett. 356:166–75.

Song C, Sundqvist G, Malm E, de Bruijn I, Kumar A, van de Mortel J, Bulone V, Raaijmakers JM. 2015. Lipopeptide biosynthesis in Pseudomonas fluorescens is regulated by the protease complex ClpAP. BMC Microbiol. 15:367.

Stutz EW, Défago G, Kern H. 1986. Naturally occurring fluorescent Pseudomonads involved in suppression of black root rot of Tobacco. Phytopathology 76:181.

Sun J, Deng Z, Yan A. 2014. Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochem. Biophys. Res. Commun. 453:254–267.

Sung-Chyr L. 1996. Biosurfactants: recent advances. J. Chem. Tech. Biotechnol. 66:109–120.

Takeuchi K, Noda N, Someya N. 2014. Complete genome sequence of the biocontrol strain Pseudomonas protegens Cab57 discovered in Japan reveals strain-specific diversity of this species. PLoS One 9:1–13.

Tambong JT, Höfte M. 2001. Phenazines are involved in biocontrol of Pythium myriotylum on cocoyam by Pseudomonas aeruginosa PNA1. Eur. J. Plant Pathol. 107:511–521.

Tambong JT, Poppe J, Höfte M. 1999. Pathogenicity, electrophoretic characterisation and in planta detection of the cocoyam root rot disease pathogen, Pythium myriotylum. Eur. J. Plant Pathol. 105:597–607.

Thomashow LS, Weller DM. 1988. Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J. Bacteriol. 170:3499–3508.

Tran H, Kruijt M, Raaijmakers JM. 2007. Diversity and activity of biosurfactant-producing Pseudomonas in the rhizosphere of black pepper in Vietnam. J. Appl. Microbiol. 104:839–851.

Trögl J, Chauhan A, Ripp S, Layton AC, Kuncová G, Sayler GS. 2012. Pseudomonas fluorescens HK44: lessons learned from a model whole-cell bioreporter with a broad application history. Sensors 12:1544–1571.

Troxler J, Zala M, Natsch A, Moënne-Loccoz Y, Défago G. 1997. Autecology of the biocontrol strain Pseudomonas fluorescens CHA0 in the rhizosphere and inside roots at later stages of plant development. FEMS Microbiol. Ecol. 23:119–130.

Urbatsch IL, Sankaran B, Weber J, Senior AE. 1995. P-glycoprotein is stably inhibited by vanadate-induced trapping of nucleotide at a single catalytic site. J. Biol. Chem.

Vallet-Gely I, Novikov A, Augusto L, Liehl P, Bolbach G, Péchy-Tarr M, Cosson P, Keel C, Caroff M, Lemaitre B. 2010. Association of hemolytic activity of Pseudomonas entomophila, a versatile soil bacterium, with cyclic lipopeptide production. Appl. Environ. Microbiol. 76:910–921.

Vasconcellos RLF, Mendes R, Taketani RG, Zucchi TD, Melo IS. 2013. Draft genome sequence of Pseudomonas sp . strain CMAA1215 , a plant growth-promoting bacterium isolated from a Brazilian Mangrove. Genome Announc. 1:2164.

Voisard C, Bull CT, Keel C, Laville J, Maurhofer M, Schnider U, Défago G, Haas D. 1994. Molecular ecology of rhizosphere microorganisms. Chapter 6: Biocontrol of root diseases by Pseudomonas fluorescens CHA0: current concepts and experimental approaches. Ed. F. O’Gara, D. N. Dowling, B. Boesten. Weinheim, Germany: Wiley-VCH Verlag GmbH 67-89 p.

Wang N, Lu S-E, Records AR, Gross DC. 2006. Characterization of the transcriptional Aactivators SalA and SyrF, which are required for syringomycin and syringopeptin production by Pseudomonas syringae pv. syringae. J. Bacteriol. 188:3290–8.

Zhang JH, Quigley NB, Gross DC. 1997. Analysis of the syrP gene, which regulates syringomycin synthesis by Pseudomonas syringae pv. syringae. Appl. Environ. Microbiol. 63:2771–2778.

Download scriptie (9.66 MB)
Universiteit of Hogeschool
Universiteit Gent
Thesis jaar
2016
Promotor(en)
Prof. dr. ir. Monica Höfte