De selectieve synthese van vloeibare alkanen uit hout

Guillaume Cavents Aron Deneyer
Onderzoek naar de synthese van nafta uit biomassa, meer specifiek hout, via een aan het COK ontwikkeld proces. Verschillende substraat eigenschappen werden hiertoe geëvalueerd en een optimale procedure voor totale hout valorisatie werd opgesteld.

Van boom tot benzine

Van boom tot benzine

De toenemende uitstoot van CO2, de uitputting van fossiele bronnen en verschillende geopolitieke spanningen vormen belangrijke uitdagingen voor onze maatschappij. Om aan deze problematiek tegemoet te komen, is er een sterke nood aan duurzame alternatieven om fossiele bronnen te vervangen en zo de impact op het milieu te verkleinen. Een veelbelovende oplossing is het gebruik van biomassa.

Het koolstof-tijdperk

Fossiele bronnen (aardolie, aardgas en steenkool) zijn de dag van vandaag onmisbaar geworden voor onze geïndustrialiseerde samenleving en zijn economische groei. Ze leveren de brandstoffen waar we op rijden, de elektriciteit die we verbruiken, de plastic zakken waarmee we onze boodschappen doen en zoveel meer. Onze afhankelijkheid van deze bronnen is de laatste decennia echter sterk toegenomen met een enorme impact op het milieu tot gevolg. Bovendien dreigt uitputting ervan. Deze problemen hebben ertoe geleid dat wetenschappers een zoektocht zijn gestart naar het vinden van manieren om fossiele bronnen te vervangen door duurzame alternatieven. Het betreft hier bronnen die onuitputbaar en veel minder vervuilend zijn, zoals bijvoorbeeld zon, wind en biomassa.

Biomassa is overal rondom ons

Biomassa is een ruim begrip en kent tal van voorbeelden zoals plantaardige oliën, houtafval, maïs, suikerriet, eiwitten enz. Het is overvloedig aanwezig in onze omgeving en treedt bijvoorbeeld in het geval van hout, niet in competitie met de voedingsindustrie. Dit maakt het gebruik ervan als duurzame bron uitermate interessant. Op het gebied van samenstelling vormt hout een netwerk van suikers (cellulose en hemicellulose) en aromaten (lignine). Het is deze chemische samenstelling die toelaat om, door tussenkomst van de juiste processen, bepaalde componenten te synthetiseren zoals deze de dag van vandaag uit ruwe aardolie geproduceerd worden. Deze identieke componenten hebben het grote voordeel dat bestaande technologieën en infrastructuur inzetbaar blijven, wat de implementatie ervan op korte termijn vereenvoudigd.

Olieraffinaderij versus bioraffinaderij

Brandstoffen, plastics en verschillende chemicaliën worden vandaag geproduceerd uit ruwe aardolie. Dit is een complex mengsel van koolwaterstoffen dat gewonnen wordt door boringen in oliereservoirs, diep aanwezig onder het oppervlak van de aarde. De aardolie wordt opgepompt en getransporteerd naar olieraffinaderijen waar deze verder wordt gescheiden in verschillende basisstromen. Elk van deze fracties kan vervolgens verwerkt worden tot diverse (eind)producten. Een interessante fractie is de zogenaamde nafta fractie, een vloeistofmengsel van korte koolwaterstoffen. De toepassingen hiervan zijn wijdverspreid en kunnen algemeen opgedeeld worden in drie domeinen. In de eerste plaats kan nafta – vandaar ook de veelgebruikte naam ‘naft’ – omgezet worden in benzine. Een tweede toepassing van nafta is de productie van belangrijke plastics. Tot slot kunnen nafta-afgeleide componenten ook verwerkt worden in verzorgingsproducten, detergenten, nylon, ...

De bioraffinaderij produceert analoog aan de olieraffinaderij koolstofstromen, maar nu uit duurzame bronnen zoals biomassa. Met het oog op de omzetting van hout, dienen zowel de suikerfractie (cellulose en hemicellulose) als de aromaatfractie (lignine) in rekening gebracht te worden. Daar deze drie structurele componenten samen vervat zitten in één enkele matrix, vormt de omzetting van hout tot waardevolle fracties een grote uitdaging. Een veelbelovende oplossing is het scheiden van hout in zijn structurele componenten: cellulose, hemicellulose en lignine, die vervolgens elk afzonderlijk kunnen opgewaardeerd worden. Zo kan de cellulose fractie onder andere omgezet worden tot nafta.

Onderzoekers van het Centrum voor Oppervlaktechemie en Katalyse aan de KU Leuven zijn erin geslaagd om een technologie te ontwikkelen waarmee een cellulosepulp kan gewonnen worden uit hout - met behoud van de waardevolle aromaatfractie - om deze vervolgens in één enkele stap om te zetten in nafta. In alle opzichten is deze nafta identiek aan de fossiele stroom die verkregen wordt uit de olieraffinaderij. Bijgevolg kent deze groene nafta-stroom dezelfde brede waaier aan toepassingen of kortom: nafta met een groen label.

Een volledig duurzame cyclus

De vorming van CO2 is, net zoals in de hedendaagse olieraffinaderijen, ook in dit proces onoverkomelijk. Ook de verbranding van benzine tijdens het autorijden of de afvalverwerking van plastics gaat onherroepelijk gepaard met CO2-uitstoot. Een belangrijke troef in dit nieuw proces is dat hout net CO2 nodig heeft om via fotosynthese terug te groeien. De CO2 die gevormd wordt tijdens het proces kan dus aangewend worden om op korte termijn biomassa terug te produceren. Op die manier ontstaat een groene cyclus zonder ophoping van CO2 in de atmosfeer.

Besluit

De toenemende druk op het milieu alsook het uitputbaar karakter van fossiele bronnen vereisen nieuwe inspanningen van de mens. Een tweede aarde beginnen consumeren behoort vandaag niet tot de mogelijkheden. Een supertechnologie waarmee al deze problemen van de baan zijn, is ook niet voorhanden. Maar er zijn opties. Gaan winkelen met zakken van dennenhout of een auto die rijdt op koolwaterstoffen van een populier, is zo’n optie. Laat ons deze opties maximaal benutten en inzetten.  

 

Bibliografie

Referentielijst

Abate, S., Lanzafame, P., Perathoner, S., & Centi, G. (2015). New Sustainable Model of Biorefineries : Biofactories and Challenges of Integrating Bio- and Solar Refineries. ChemSusChem, 8(17), 2854–2866.

Achilias, D. S., Roupakias, C., Megalokonomos, P., Lappas, A. A., & Antonakou, Ε. V. (2007). Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). Journal of Hazardous Materials, 149(3), 536–542.

Agbor, V. B., Cicek, N., Sparling, R., Berlin, A., & Levin, D. B. (2011). Biomass pretreatment: Fundamentals toward application. Biotechnology Advances, 29(6), 675–685.

Alonso, D. M., Bond, J. Q., & Dumesic, J. a. (2010). Catalytic conversion of biomass to biofuels. Green Chemistry, 12, 1493–1513.

Anastas, P. T., & Warner, J. C. (1998). Green chemistry: theory and practice. Oxford: Oxford University Press, 135 p.

Antos, G. J., Aitani, A. M. (2004). Catalytic Naphtha Reforming, Revised and Expanded. Marcel Dekker Inc, New York. 1–10 p.

Anwar, Z., Gulfraz, M., & Irshad, M. (2014). Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. Journal of Radiation Research and Applied Sciences, 7(2), 163–173.

Arantes, V., & Saddler, J. N. (2011). Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates Biotechnology for Biofuels, 4(1), 3.

Atkins P. W. (1982). Physical Chemistry. Oxford University Press, Oxford. 65–68 p.

Azadi, P., Inderwildi, O. R., Farnood, R., & King, D. A. (2013). Liquid fuels, hydrogen and chemicals from lignin: A critical review. Renewable and Sustainable Energy Reviews, 21, 506–523.

Aziz, S., Sarkanen, K. (1989). Organosolv pulping: A review. Tappi Journal, 72, 169–175.

Balich, G. W., & Aschenbach, C. R. (2004). The Gasoline 4-Stroke Engine for Automobiles. University of Notre Dame, Notre Dame. IN 46556.

Engelhard Industrial Bullion (EIB) Prices. (2016). Retrieved april 13, from https://apps.catalysts.basf.com/apps/eibprices/mp/

 

Beis, S. H., Mukkamala, S., Hill, N., Joseph, J., Baker, C., Jensen, B., … DeSisto, W. J. (2010). Fast pyrolysis of lignins. BioResources, 5(3), 1408–1424.

Belgacem, M. N., & Gandini, A. (2008). Monomers, Polymers and Composites from Renewable Resources. Amsterdam: Elsevier, 225-241 p.

Biomass Potential. (2015). Retrieved October 15, from http://ec.europa.eu/agriculture/bioenergy/potential/index_en.htm

Bjørgen, M., Joensen, F., Spangsberg Holm, M., Olsbye, U., Lillerud, K.-P., & Svelle, S. (2008). Methanol to gasoline over zeolite H-ZSM-5: Improved catalyst performance by treatment with NaOH. Applied Catalysis A: General, 345(1), 43–50.

 Bogdan, P. L. (2000). Selective bifunctional multimetallic reforming catalyst. Retrieved march 12 from http://www.google.com/patents/US6013173

Bond, J. Q., Alonso, D. M., Wang, D., West, R. M., & Dumesic, J. A. (2010). Integrated Catalytic Conversion of g-Valerolactone to Liquid Alkanes for Transportation Fuels. Science, 327, 1110–1114.

Burch, R., & Garla, L. C. (1981). Platinum-Tin Reforming Catalysts. Journal of Catalysis, 71, 360–372.

Cengel, Y. A., Boles, M. A. (2011). Thermodynamics: An Engineering Approach. McGraw-Hill Companies Inc., New York. 944–945 p.

Chang, J., Danuthai, T., Dewiyanti, S., Wang, C., & Borgna, A. (2013). Hydrodeoxygenation of Guaiacol over Carbon-Supported Metal Catalysts. ChemCatChem, 5, 3041–3049.

Cherubini, F. (2010). The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 51(7), 1412–1421.

Chu, S., & Majumdar, A. (2012). Opportunities and challenges for a sustainable energy future. Nature, 488(7411), 294–303.

Clasen, C. (2015). Design and Analysis of Polymeric Systems. KU Leuven, Belgium.

Climent, M. J., Corma, A., & Iborra, S. (2014). Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 16(2), 516.

Company, C. (1996). Motor Gasolines Technical Review, FTR-1, 1–69. Retrieved november 26, from papers2://publication/uuid/6AD1FE5D-F69B-43E2-AEB4-974E66626BFA

Corma, A., de la Torre, O., & Renz, M. (2012). Production of high quality diesel from cellulose and hemicellulose by the Sylvan process: catalysts and process variables. Energy & Environmental Science, 5(4), 6328.

Davda, R. R., Shabaker, J. W., Huber, G. W., Cortright, R. D., & Dumesic, J. A. (2005). A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts. Applied Catalysis B: Environmental 56, 171–186.

Demirbas, A., Balubaid, M. A., Basahel, A. M., Ahmad, W., & Sheikh, M. H. (2015). Octane Rating of Gasoline and Octane Booster Additives. Petroleum Science and Technology, 33(11), 1190–1197.

Deneyer, A., Renders, T., Van Aelst, J., Van den Bosch, S., Gabriëls, D., & Sels, B. F. (2015). Alkane production from biomass: chemo-, bio- and integrated catalytic approaches. Current Opinion in Chemical Biology, 29, 40–48.

Dincer, I. (2012). Green methods for hydrogen production. International Journal of Hydrogen Energy, 37(2), 1954–1971.

Du, X.-L., Bi, Q.-Y., Liu, Y.-M., Cao, Y., He, H.-Y., & Fan, K.-N. (2012). Tunable copper-catalyzed chemoselective hydrogenolysis of biomass-derived γ-valerolactone into 1,4-pentanediol or 2-methyltetrahydrofuran. Green Chemistry, 14(4), 935.

Dusselier, M., Mascal, M., Sels, B. F. (2014). Top Chemical Opportunities from Carbohydrate Biomass: A Chemist's View of the Biorefinery. Toppics in current chemistry: selective catalysis for renewable feedstocks and chemicals, 11, 13-35.

Dutta, S., De, S., Saha, B., & Alam, M. I. (2012). Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels. Catalysis Science & Technology, 2(10), 2025.

Ekman, A., & Börjesson, P. (2011). Environmental assessment of propionic acid produced in an agricultural biomass-based biorefinery system. Journal of Cleaner Production, 19(11), 1257–1265.

El Hage, R., Brosse, N., Sannigrahi, P., & Ragauskas, A. (2010). Effects of process severity on the chemical structure of Miscanthus ethanol organosolv lignin. Polymer Degradation and Stability, 95(6), 997–1003.

Elliott, D. C., & Frye, J. G. (1999). Hydrogenated 5-carbon compound and method of making. Retrieved november 3, from http://www.google.com/patents/US5883266

 

 

 

Ennaert, T., Op de Beeck, B., Vanneste, J., Smit, A. T., Huijgen, W. J. J., Vanhulsel, A., … Sels, B. F. (2016). The importance of pretreatment and feedstock purity in the reductive splitting of (ligno)cellulose by metal supported USY zeolite. Green Chemistry. http://doi.org/10.1039/C5GC02346G

Faba, L., Díaz, E., & Ordóñez, S. (2012). Aqueous-phase furfural-acetone aldol condensation over basic mixed oxides. Applied Catalysis B: Environmental, 113-114, 201–211.

Faba, L., Díaz, E., & Ordóñez, S. (2015). Recent developments on the catalytic technologies for the transformation of biomass into biofuels: A patent survey. Renewable and Sustainable Energy Reviews, 51, 273–287.

Finley, M. (2012). The Oil Market to 2030--Implications for Investment and Policy. Economics of Energy & Environmental Policy, 1(1), 25–36.

FitzPatrick, M., Champagne, P., Cunningham, M. F., & Whitney, R. A. (2010). A biorefinery processing perspective: Treatment of lignocellulosic materials for the production of value-added products. Bioresource Technology, 101(23), 8915–8922.

French, R., & Czernik, S. (2010). Catalytic pyrolysis of biomass for biofuels production. Fuel Processing Technology, 91(1), 25–32.

Gallezot, P. (2008). Catalytic Conversion of Biomass: Challenges and Issues. ChemSusChem, 1(8-9), 734–737.

Geboers, J., Van de Vyver, S., Carpentier, K., de Blochouse, K., Jacobs, P., & Sels, B. (2010). Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon. Chemical Communications, 46(20), 3577.

Ghosh, A. K., Stevenson, S., Sullivan, D., Mihut, C., Kulkarni, N., Simmons, M., & Mier, M. (2015). Hydrocarbon aromatization catalyst composition and method of formation. Retrieved march 11, from http://www.google.com/patents/US20150165424

Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100, 10–18.

Himmel, M. E., Ding, S., Johnson, D. K., & Adney, W. S. (2007). Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production, Science (February), 315, 804–807.

Horváth, I. T., Mehdi, H., Fábos, V., Boda, L., & Mika, L. T. (2008). γ-Valerolactone—a sustainable liquid for energy and carbon-based chemicals. Green Chemistry, 10(2), 238.

 

Hu, J., Yu, F., & Lu, Y. (2012). Application of Fischer–Tropsch Synthesis in Biomass to Liquid Conversion. Catalysts, 2(2), 303–326.

Hubbell, C. A., & Ragauskas, A. J. (2010). Bioresource Technology Effect of acid-chlorite delignification on cellulose degree of polymerization. Bioresource Technology, 101(19), 7410–7415.

Huber, G., Iborra, S., & Corma, A. (2006). Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chemical Reviews, 2, 4044–4098.

Huber, G. W., Chheda, J. N., Barrett, C. J., & Dumesic, J. A. (2005). Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science (New York, N.Y.), 308(5727), 1446–1450.

Huber, G. W., Cortright, R. D., & Dumesic, J. A. (2004). Renewable Alkanes by Aqueous-Phase Reforming of Biomass-Derived Oxygenates. Angewandte Chemie International Edition, 43(12), 1549–1551.

Hӧӧk, M., & Tang, X. (2013). Depletion of fossil fuels and anthropogenic climate change — A review. Energy Policy, 52, 797–809.

World Oil Demand. (2015). Retrieved november 9 from https://www.iea.org/oilmarketreport/omrpublic/

International Energy Agency. (2012). Global transport outlook to 2050. Global Transport Outlook to 2050.

IPCC. (2007). Mitigation of climate change: Contribution of working group III to the fourth assessment report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change.

Jahangiri, H., Bennett, J., Mahjoubi, P., Wilson, K., & Gu, S. (2014). A review of advanced catalyst development for Fischer–Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catalysis Science & Technology, 4(8), 2210–2229.

Jenkins, R. W., Cameron, M. M., Semelsberger, T. A., Chuck, C. J., Gordon, J. C., & Sutton, A. D. (2016). The effect of functional groups in bio-derived fuel candidates. ChemSusChem, 9. http://doi.org/10.1002/cssc.201600159

Jiang, G., Nowakowski, D. J., & Bridgwater, A. V. (2010). Effect of the Temperature on the Composition of Lignin Pyrolysis Products. Energy & Fuels, 24(8), 4470–4475.

 

 

Kayser, H., Müller, C. R., García-González, C. A., Smirnova, I., Leitner, W., & Domínguez de María, P. (2012). Dried chitosan-gels as organocatalysts for the production of biomass-derived platform chemicals. Applied Catalysis A: General, 445-446, 180–186.

Lange, J.-P., Price, R., Ayoub, P. M., Louis, J., Petrus, L., Clarke, L., & Gosselink, H. (2010). Valeric Biofuels: A Platform of Cellulosic Transportation Fuels. Angewandte Chemie International Edition, 49(26), 4479–4483.

Lin, Y. C., Li, C. L., Wan, H. P., Lee, H. T., & Liu, C. F. (2011). Catalytic hydrodeoxygenation of guaiacol on Rh-based and sulfided CoMo and NiMo catalysts. Energy and Fuels, 25(3), 890–896.

Liu, H., Xu, W., Liu, X., Guo, Y., Guo, Y., Lu, G., & Wang, Y. (2010). Aldol condensation of furfural and acetone on layered double hydroxides. Kinetics and Catalysis, 51(1), 75–80.

Liu, S., Okuyama, Y., Tamura, M., Nakagawa, Y., Imai, A., & Tomishige, K. (2016). Selective transformation of hemicellulose (xylan) into n-pentane, pentanols or xylitol over a rhenium-modified iridium catalyst combined with acids. Green Chemistry, 18, 165.

Liu, S., Tamura, M., Nakagawa, Y., & Tomishige, K. (2014). One-pot conversion of cellulose into n -hexane over the Ir-ReO x/SiO2 catalyst combined with HZSM-5. ACS Sustainable Chemistry and Engineering, 2, 1819–1827.

Löffler, K., Gillman, N., Leen, R. W. Van, Schäfer, T., Faaij, A., & Plata, L. G. (2010). The Future of Industrial Biorefineries, 40. Retrieved from www.weforum.org

Lonza H. Hass, H. Maas, A. Reid, & K.D. Rose, L., (2014). EU renewable energy targets in 2020: Analysis of scenarios for transport fuels. Scientific and Technical Research Series. http://doi.org/10.2788/74948

Luguel, C. (2011). European biorefinery joint strategic research roadmap for 2020. Retrieved from http://edepot.wur.nl/186481

Luterbacher, J. S., Martin Alonso, D., & Dumesic, J. A. (2014). Targeted chemical upgrading of lignocellulosic biomass to platform molecules. Green Chemistry, 16(12), 4816–4838.

Ma, L., Wang, T., Liu, Q., Zhang, X., Ma, W., & Zhang, Q. (2012). A review of thermal-chemical conversion of lignocellulosic biomass in China. Biotechnology Advances, 30(4), 859–873.

Maurer, S. A., Bedbrook, C. N., & Radke, C. J. (2012). Cellulase Adsorption and Reactivity on a Cellulose Surface from Flow Ellipsometry. Industrial & Engineering Chemistry Research, 51, 11389–11400.

 

Mehdi, H., Fábos, V., Tuba, R., Bodor, A., Mika, L. T., & Horváth, I. T. (2008). Integration of Homogeneous and Heterogeneous Catalytic Processes for a Multi-step Conversion of Biomass: From Sucrose to Levulinic Acid, γ-Valerolactone, 1,4-Pentanediol, 2-Methyl-tetrahydrofuran, and Alkanes. Topics in Catalysis, 48(1-4), 49–54.

Menon, V., & Rao, M. (2012). Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Progress in Energy and Combustion Science, 38(4), 522–550.

Morrison, R. T., Boyd, R. N. (1992). Organic Chemistry. Allyn and Bacon, Boston.

Nakagawa, Y., Liu, S., Tamura, M., & Tomishige, K. (2015). Catalytic Total Hydrodeoxygenation of Biomass-Derived Polyfunctionalized Substrates to Alkanes. ChemSusChem, 8(7), 1114–1132.

Negahdar, L., Delidovich, I., & Palkovits, R. (2016). Aqueous-phase hydrolysis of cellulose and hemicelluloses over molecular acidic catalysts : Insights into the kinetics and reaction mechanism. Applied Catalysis B : Environmental, 184, 285–298.

Ocic, O. (2005). A Review of: “Oil Refineries in the 21st Century: Energy Efficient, Cost Effective, Environmentally Benign.” Energy Sources. http://doi.org/10.1080/00908310590967265

Office of Energy Efficiency & Renewable Energy. (2016). Hydrogen production: Natural gas reforming. Retrieved march 4 from http://energy.gov/eere/fuelcells/hydrogen-production-natural-gas-reform…

Ohta, H., Kobayashi, H., Hara, K., & Fukuoka, A. (2011). Hydrodeoxygenation of phenols as lignin models under acid-free conditions with carbon-supported platinum catalysts. Chemical Communications, 47, 12209–12211.

Olson, E. S., & Heide, C. (2012). Multiproduct biorefinery for synthesis of fuel components and chemicals from lignocellulosics via levulinate condensations. Retrieved from https://google.com/patents/WO2010141950A2?cl=nl

Ooms, R., Dusselier, M., Geboers, J. A., Op de Beek, B., Verhaeven, R., Gobechiya, E., … Sels, B. F. (2014). Conversion of sugars to ethylene glycol with nickel tungsten carbide in a fed-batch reactor: high productivity and reaction network elucidation. Green Chemistry, 16, 695–707.

Op de Beeck, B., Dusselier, M., Geboers, J., Holsbeek, J., Morré, E., Oswald, S., … Sels, B. F. (2015). Direct catalytic conversion of cellulose to liquid straight-chain alkanes. Energy & Environmental Science, 8(1), 230–240.

Patil, S. K. R., & Lund, C. R. F. (2011). Formation and Growth of Humins via Aldol Addition and Condensation during Acid-Catalyzed Conversion of 5-Hydroxymethylfurfural. Energy fuels, 25, 4745–4755.

Petrus, L., & Noordermeer, M. A. (2006). Biomass to biofuels, a chemical perspective. Green Chemistry, 8(10), 861.

Ragauskas, A. J., Beckham, G. T., Biddy, M. J., Chandra, R., Chen, F., Davis, M. F., … Wyman, C. E. (2014). Lignin Valorization : Improving Lignin Processing in the Biorefinery. Science, 344, 1246843.

Rahimi, N., & Karimzadeh, R. (2011). Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: A review. Applied Catalysis A: General, 398(1-2), 1–17.

Rapagna, S., Jand, N., & Foscolo, P. U. (1998). Catalytic Gasification of Biomass Rich Gas To Produce. International Journal of Hydrogen Energy, 23(I), 551–557.

Renders, T., Schutyser, W., Van den Bosch, S., Koelewijn, S. -F. Vangeel, T., Courtin, C. M., & Sels, B. F. (2016). Influence of Acidic (H3PO4) and Alkaline (NaOH) Additives on the Catalytic Reductive Fractionation of Lignocellulose. ACS Catalysis, 6(3), 2055–2066.

Rutkowski, P. (2011). Pyrolysis of cellulose, xylan and lignin with the K2CO3 and ZnCl2 addition for bio-oil production. Fuel Processing Technology, 92(3), 517–522.

Sannigrahi, P., Kim, D. H., Jung, S., & Ragauskas, A. (2011). Pseudo-lignin and pretreatment chemistry. Energy & Environmental Science, 4(4), 1306–1310.

Sasaki, M., Kabyemela, B., Malaluan, R., Hirose, S., Takeda, N., Adschiri, T., & Arai, K. (1998). Cellulose hydrolysis in subcritical and supercritical water. Journal of Supercritical Fluids, 13, 261–268.

Schutyser, W., Bosch, S. Van Den, Renders, T., Boe, T. De, Koelewijn, S., Dewaele, A., … Sels, B. F. (2015). Influence of bio-based solvents on the catalytic reductive fractionation of birch wood. Green Chemistry, 17, 5035.

Segal, L., Creely, J. J., Martin, A. E., & Conrad, C. M. (1959). An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Research Journal, 29, 786–794.

Sels, B. F. (2015). Heterogeneous Catalysis. KU Leuven, Belgium.

Serrano-Ruiz, J. C., Braden, D. J., West, R. M., & Dumesic, J. A. (2010). Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen. Applied Catalysis B: Environmental, 100(1-2), 184–189.

Serrano-Ruiz, J. C., & Dumesic, J. A. (2011). Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energy & Environmental Science, 4(1), 83–99.

Song, Q., Wang, F., Cai, J., Wang, Y., Zhang, J., … Xu, J. (2013). Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation-hydrogenolysis process †. Energy & Environmental Science, 6, 994–1007.

Starodusteva, E. V., Turova, O. V., Vinogradov, M. G., Gorshkova, L. S., & Ferpontov, V. A. (2005). Enantioselective hydrogenation of levulinic acid esters in the presence of the Ru II — BINAP — HCl catalytic system. Russian Chemical Bulletin, 54(10), 2374–2378.

Upare, P. P., Lee, J. M., Hwang, Y. K., Hwang, D. W., Lee, J. H., Halligudi, S. B., … Chang, J. S. (2011). Direct hydrocyclization of biomass-derived levulinic acid to 2-methyltetrahydrofuran over nanocomposite copper/silica catalysts. ChemSusChem, 4(12), 1749–1752.

Van de Vyver, S., Geboers, J., Dusselier, M., Schepers, H., Vosch, T., Zhang, L., … Sels, B. F. (2010). Selective bifunctional catalytic conversion of cellulose over reshaped Ni particles at the tip of carbon nanofibers. ChemSusChem, 3(6), 698–701.

Van de Vyver, S., Thomas, J., Geboers, J., Keyzer, S., Smet, M., Dehaen, W., … Sels, B. F. (2011). Catalytic production of levulinic acid from cellulose and other biomass-derived carbohydrates with sulfonated hyperbranched poly(arylene oxindole)s. Energy & Environmental Science, 4(9), 3601.

Van den Bosch, S., Schutyser, W., Koelewijn, S. -F., Renders, T., Courtin, C. M., Sels, B. F. (2015). Tuning the lignin oil OH-content with Ru and Pd catalysts during lignin hydrogenolysis on birch wood. Chemical Communications, 51(67), 13158–13161.

Van den Bosch, S., Schutyser, W., Vanholme, R., Driessen, T., Koelewijn, S.-F., Renders, T., … Sels, B. F. (2015). Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps. Energy & Environmental Science, 8(6), 1748–1763.

Vanholme, B., Desmet, T., Ronsse, F., Rabaey, K., & Breusegem, F. Van. (2013). Towards a carbon-negative sustainable bio-based economy. Frontiers in Plant Science, 4, 1–17.

Van Puyvelde, P. (2016). Industrial Chemical Processes. KU Leuven, Belgium.

Vardon, D. R., Franden, M. A., Johnson, C. W., Karp, E. M., Guarnieri, M. T., Linger, J. G., … Beckham, G. T. (2015). Adipic acid production from lignin. Energy & Environmental Science, 8(2), 617–628.

Venkatakrishnan, V. K., Delgass, W. N., Ribeiro, F. H., & Agrawal, R. (2015). Oxygen removal from intact biomass to produce liquid fuel range hydrocarbons via fast-hydropyrolysis and vapor-phase catalytic hydrodeoxygenation. Green Chemistry, 17(1), 178–183.

Vispute, T. P., & Huber, G. W. (2009). Production of hydrogen, alkanes and polyols by aqueous phase processing of wood-derived pyrolysis oils. Green Chemistry, 11(9), 1433.

Wang, D., Xiao, R., Zhang, H., & He, G. (2010). Comparison of catalytic pyrolysis of biomass with MCM-41 and CaO catalysts by using TGA–FTIR analysis. Journal of Analytical and Applied Pyrolysis, 89(2), 171–177.

Xiang, Q., Lee, Y. Y., Pettersson, P. O., & Torget, R. W. (2003). Heterogeneous aspects of acid hydrolysis of alpha-cellulose. Applied Biochemistry and Biotechnology, 105 -108(1), 505–514.

Xing, R., Subrahmanyam, A. V., Olcay, H., Qi, W., van Walsum, G. P., Pendse, H., & Huber, G. W. (2010). Production of jet and diesel fuel range alkanes from waste hemicellulose-derived aqueous solutions. Green Chemistry, 12(11), 1933.

Yan, N., Yuan, Y., Dykeman, R., Kou, Y., & Dyson, P. J. (2010). Hydrodeoxygenation of Lignin-Derived Phenols into Alkanes by Using Nanoparticle Catalysts Combined with Brønsted Acidic Ionic Liquids. Angewandte Chemie International Edition, 49(32), 5549–5553.

Zhao, C., He, J., Lemonidou, A. A., Li, X., & Lercher, J. A. (2011). Aqueous-phase hydrodeoxygenation of bio-derived phenols to cycloalkanes. Journal of Catalysis, 280(1), 8–16.

Zhao, C., & Lercher, J. A. (2012). Selective Hydrodeoxygenation of Lignin-Derived Phenolic Monomers and Dimers to Cycloalkanes on Pd/C and HZSM-5 Catalysts. ChemCatChem, 4(1), 64–68.

Zhao, X., Cheng, K., & Liu, D. (2009). Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Applied Microbiology and Biotechnology, 82(5), 815–827.

Zheng, Y., Pan, Z., & Zhang, R. (2009). Overview of biomass pretreatment for cellulosic ethanol production. International Journal of Agricultural and Biological Engineering, 2(3), 51–68.

 

 

 

 

Universiteit of Hogeschool
Bio-ingenieurswetenschappen: Katalytische technologie
Publicatiejaar
2016
Promotor(en)
Bert F Sels
Kernwoorden
Share this on: