Diagnostische biomerkers voor een ischemische beroerte: een meta-analyse

Thomas Monbailliu Joline Goossens
Persbericht

Time is brain

Time is brain

We hadden de ganse dag geholpen in het huis van onze dochter en toen ik ‘s avonds naar het toilet ging voelde ik mij niet goed worden: ik had helemaal geen hoofdpijn, voelde geen pijn maar ik viel wel op de grond. Ik wist niet wat er gebeurde: ineens kon ik niet meer spreken en was mijn rechter lichaamshelft verlamd. Ik kon niet meer goed bewegen en alleen maar wachten tot mijn man me kwam zoeken. Hij had al eens geroepen, maar ik kon niet antwoorden...”.

Wereldwijd zijn beroertes de op één na voornaamste doodsoorzaak bij volwassenen. In Europa alleen al zijn beroertes verantwoordelijk voor 1.1 miljoen doden per jaar. Een op de zeven vrouwen en een op de tien mannen sterven ten gevolge van de aandoening.
Wie wel overleefd heeft vaak te kampen met jarenlange revalidatie en met ernstige blijvende beperkingen zoals verlammingen, spraak- en geheugenstoornissen.

Wat is een beroerte nu juist?
Een beroerte ontstaat in de meerderheid van de gevallen wanneer een bloedklonter een bloedvat afsluit en zo de bloedstroom naar (een deel van) de hersenen onderbreekt. In de minderheid van de gevallen ontstaat een beroerte door een bloeding van de bloedvaten die de hersenen van bloed voorzien.

Onze hersenen zijn enorm afhankelijk van de stoffen (glucose, zuurstof) die ze via het bloed ontvangen. Een onderbreking van de bloedtoevoer zal dus onmiddellijke gevolgen hebben voor het hersenweefsel. Een centrale groep cellen die zich rond de onderbreking van het bloedvat bevinden sterven binnen de kortste keren af door een gebrek aan zuurstof. Hun functie gaat daarna onherroepelijk verloren. De zone (“de penumbra”) rondom deze centrale kern valt echter nog te redden indien er vroegtijdig wordt ingegrepen. Hoe langer de afsluiting duurt, hoe meer cellen van deze zone zullen sterven en hoe groter de schade wordt. Met andere woorden: ‘Time is brain’.

Hoe kan men proberen om nog zoveel mogelijk hersenweefsel te sparen?
Misschien had je het antwoord op deze vraag zelf al bedacht: men kan zoveel mogelijk hersenweefsel sparen door de bloedtoevoer naar dit hersenweefsel opnieuw te herstellen.
De enige mogelijkheid waarover we nu beschikken om dit te doen is recombinant tissue plasminogen activator (rtPA). rtPA is een stof die de bloedklonter doet oplossen en zo de bloedtoevoer naar de hersenen herstelt. Het grote probleem is echter dat rtPA binnen de 4,5 uur na het begin van de beroerte moet toegediend worden om enig effect te hebben.

Tijd is cruciaal
Zoals u wellicht al kon afleiden is tijd een cruciale factor bij een ischemische beroerte.  Het is dan ook van levensbelang om de diagnose van een ischemische beroerte zo snel mogelijk te stellen. Er zijn een aantal ziektes (‘stroke mimics’) die klinisch zeer sterk lijken op een ischemische beroerte. Op basis van de kliniek is het dus niet mogelijk om de diagnose van een ischemische beroerte met 100% zekerheid te stellen. Er is bijkomend beeldvorming nodig, zoals een CT-scan van de hersenen. Op deze beeldvorming is een ischemische beroerte in de acute fase echter niet goed zichtbaar. Beeldvorming wordt dus voornamelijk gebruikt om andere ziektes die een beroerte kunnen nabootsen en wel goed zichtbaar zijn op een CT-scan (hersenbloeding, hersentumor) uit te sluiten. Op dit moment zijn de kliniek en de beeldvorming de gouden standaard om de diagnose van een ischemische beroerte te stellen.

Maar zoals u wellicht ondertussen al aanvoelt, is het niet altijd evident om in de acute fase een ischemische beroerte te onderscheiden van ziektes die een beroerte kunnen nabootsen. Deze diagnostische onzekerheid bij patiënten met symptomen van een beroerte is dan ook één van de grootste redenen waardoor rtPA niet binnen de 4,5 uur kan toegediend worden.

Biomerkers
Een aanpak die hierin zou kunnen helpen is het gebruik van biomerkers. Biomerkers zijn bepaalde stoffen in het lichaam (zoals eiwitten) die de toestand van een ziekte weergeven. Zo vindt tijdens een beroerte een ischemische cascade plaats. Dit is een complexe opeenvolging van schadelijke gebeurtenissen ten gevolge van het zuurstof tekort. Tijdens deze cascade komen verschillende stoffen (biomerkers) vrij in het bloed. Deze biomerkers kunnen gemeten en gekwantificeerd worden en geven de staat van de ziekte aan. Door deze biomarkers te meten in het bloed is het dus mogelijk zijn om patiënten met een ischemische beroerte te onderscheiden van gezonde personen of patiënten met een andere aandoening. In ons onderzoek hebben we dan ook onderzocht welke biomerkers hiertoe in staat waren. Van de zesentwintig onderzochte biomerkers waren er twee (BNP en S100B) in staat om patiënten met een ischemische beroerte significant te onderscheiden van gezonde personen en/of patiënten met een andere aandoening.

Door het bepalen van de concentratie van deze twee biomerkers in een diagnostische test kan men dus de diagnose van een ischemische beroerte sneller en accurater stellen dan het op dit moment mogelijk is op basis van de kliniek en beeldvorming. Op deze manier zullen meer patiënten rtPA krijgen binnen het gepaste therapeutische venster en zullen er uiteindelijk minder patiënten overlijden of moeten leven met ernstige beperkingen, want onthoud: ‘Time is brain’…

Bibliografie

1] EuroHYP-1: EuroHYP-1 Overview and Project Summary. Online 2015. Cited 10 January 2015, available from: http://www.eurohyp1.eu
[2] Nichols M, Townsend N, Luengo-Fernandez R, Leal J, Gray A, Scarborough P et al. European cardiovascular disease statistics. European Heart Journal. 2008. 1773 p.
[3] Lewis L., Dirksen S.R., Heitkemper M.M., Bucher. L. Clinical Companion to Medical-Surgical Nursing. Elsevier Health Sciences, 2014.
[4] Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, Flegal K, et al. Heart disease and stroke statistics--2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2009;119(3):e21-181.
[5] Aho K, Harmsen P, Hatano S, Marquardsen J, Smirnov VE, Strasser T. Cerebrovascular disease in the community: results of a WHO collaborative study. Bulletin of the World Health Organization. 1980;58(1):113-30.
[6] Mehndiratta P, Chapman Smith S, Worrall BB. Etiologic stroke subtypes: updated definition and efficient workup strategies. Current treatment options in cardiovascular medicine. 2015;17(1):357.
[7] A classification and outline of cerebrovascular diseases. II. Stroke; a journal of cerebral circulation. 1975;6(5):564-616.
[8] Sacco RL, Kasner SE, Broderick JP, Caplan LR, Connors JJ, Culebras A, et al. An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke; a journal of cerebral circulation. 2013;44(7):2064-89.
[9] Tuttolomondo A, Di Sciacca R, Di Raimondo D, Serio A, D'Aguanno G, La Placa S, et al. Plasma levels of inflammatory and thrombotic/fibrinolytic markers in acute ischemic strokes: relationship with TOAST subtype, outcome and infarct site. Journal of neuroimmunology. 2009;215(1-2):84-9.
[10] Jaunch E C, Stettler B. Ischemic Stroke. Online 2015. Cited 22 March 2015, available from: http://emedicine.medscape.com/article/1916852-overview
[11] Whisnant J, Basford JR, Bernstein EF, Cooper ES, Dyken ML, Easton D et al. Special report from the National Institute of Neurological Disorders and Stroke. Classification of cerebrovascular diseases III. Stroke; a journal of cerebral circulation. 1990;21(4):637-76.
[12] Roos K.L. Emergency Neurology. Springer, New York, 2012.[13] Saenger AK, Christenson RH. Stroke biomarkers: progress and challenges for diagnosis, prognosis, differentiation, and treatment. Clinical chemistry. 2010;56(1):21-33.
[14] Arboix A, Alio J. Acute cardioembolic cerebral infarction: answers to clinical questions. Current cardiology reviews. 2012;8(1):54-67.
[15] Amarenco P, Bogousslavsky J, Caplan LR, Donnan GA, Hennerici MG. Classification of stroke subtypes. Cerebrovascular diseases (Basel, Switzerland). 2009;27(5):493-501.

[16] Rink C, Khanna S. Significance of brain tissue oxygenation and the arachidonic acid cascade in stroke. Antioxidants & redox signaling. 2011;14(10):1889-903.
[17] Liu S, Shi H, Liu W, Furuichi T, Timmins GS, Liu KJ. Interstitial pO2 in ischemic penumbra and core are differentially affected following transient focal cerebral ischemia in rats. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2004;24(3):343-9.
[18] Rink C, Roy S, Khan M, Ananth P, Kuppusamy P, Sen CK, et al. Oxygen-sensitive outcomes and gene expression in acute ischemic stroke. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2010;30(7):1275-87.
[19] Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics. Brain research reviews. 2007;54(1):34-66.
[20] Kumar G, Goyal MK, Sahota PK, Jain R. Penumbra, the basis of neuroimaging in acute stroke treatment: current evidence. Journal of the neurological sciences. 2010;288(1-2):13-24.
[21] Brouns R, De Deyn PP. The complexity of neurobiological processes in acute ischemic stroke. Clinical neurology and neurosurgery. 2009;111(6):483-95.
[22] Mattson MP, Duan W, Pedersen WA, Culmsee C. Neurodegenerative disorders and ischemic brain diseases. Apoptosis : an international journal on programmed cell death. 2001;6(1-2):69-81.
[23] Broughton BR, Reutens DC, Sobey CG. Apoptotic mechanisms after cerebral ischemia. Stroke; a journal of cerebral circulation. 2009;40(5):e331-9.
[24] Weinstein PR, Hong S, Sharp FR. Molecular identification of the ischemic penumbra. Stroke; a journal of cerebral circulation. 2004;35(11 Suppl 1):2666-70.
[25] Fann DY, Lee SY, Manzanero S, Chunduri P, Sobey CG, Arumugam TV. Pathogenesis of acute stroke and the role of inflammasomes. Ageing research reviews. 2013;12(4):941-66.

[26] Brouns R, Sheorajpanday R, Wauters A, De Surgeloose D, Marien P, De Deyn PP. Evaluation of lactate as a marker of metabolic stress and cause of secondary damage in acute ischemic stroke or TIA. Clinica chimica acta; international journal of clinical chemistry. 2008;397(1-2):27-31.
[27] Zhang QG, Xu YL, Li HC, Han D, Zhang GY. NMDA receptor/L-VGCC-dependent expression and AMPA/KA receptor-dependent activation of c-Jun induced by cerebral ischemia in rat hippocampus. Neuroscience letters. 2006;398(3):268-73.
[28] Simard JM, Kent TA, Chen M, Tarasov KV, Gerzanich V. Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. The Lancet Neurology. 2007;6(3):258-68.
[29] Durukan A, Tatlisumak T. Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacology, biochemistry, and behavior. 2007;87(1):179-97.
[30] Allan SM, Rothwell NJ. Cytokines and acute neurodegeneration. Nature reviews Neuroscience. 2001;2(10):734-44.
[31] Vila N, Castillo J, Davalos A, Chamorro A. Proinflammatory cytokines and early neurological worsening in ischemic stroke. Stroke; a journal of cerebral circulation. 2000;31(10):2325-9.
[32] Dimitrijevic OB, Stamatovic SM, Keep RF, Andjelkovic AV. Effects of the chemokine CCL2 on blood-brain barrier permeability during ischemia-reperfusion injury. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2006;26(6):797-810.
[33] Wang Q, Tang XN, Yenari MA. The inflammatory response in stroke. Journal of neuroimmunology. 2007;184(1-2):53-68.
[34] Danton GH, Dietrich WD. Inflammatory mechanisms after ischemia and stroke. Journal of neuropathology and experimental neurology. 2003;62(2):127-36.
[35] Emsley HC, Tyrrell PJ. Inflammation and infection in clinical stroke. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2002;22(12):1399-419.
[36] Chamorro A, Hallenbeck J. The harms and benefits of inflammatory and immune responses in vascular disease. Stroke; a journal of cerebral circulation. 2006;37(2):291-3.
[37] Adams HP, Jr., del Zoppo G, Alberts MJ, Bhatt DL, Brass L, Furlan A, et al. Guidelines for the early management of adults with ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups: The American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists. Circulation. 2007;115(20):e478-534.
[38] Whiteley W, Chong WL, Sengupta A, Sandercock P. Blood markers for the prognosis of ischemic stroke: a systematic review. Stroke; a journal of cerebral circulation. 2009;40(5):e380-9.

[39] Gonzalez R.G., Hirsch J.A., Lev M.H., Schaefer P.W., Schwamm L.H. Acute Ischemic Stroke: Imaging and Intervention. Springer, Berlin, 2011.

[40] Brunswick AS, Hwang BY, Appelboom G, Hwang RY, Piazza MA, Connolly ES, Jr. Serum biomarkers of spontaneous intracerebral hemorrhage induced secondary brain injury. Journal of the neurological sciences. 2012;321(1-2):1-10.

[41] Libman RB, Wirkowski E, Alvir J, Rao TH. Conditions that mimic stroke in the emergency department. Implications for acute stroke trials. Archives of neurology. 1995;52(11):1119-22.
[42] Hand PJ, Kwan J, Lindley RI, Dennis MS, Wardlaw JM. Distinguishing between stroke and mimic at the bedside: the brain attack study. Stroke; a journal of cerebral circulation. 2006;37(3):769-75.

[43] Huff JS. Stroke mimics and chameleons. Emergency medicine clinics of North America. 2002;20(3):583-95.

[44] Scott PA, Silbergleit R. Misdiagnosis of stroke in tissue plasminogen activator-treated patients: characteristics and outcomes. Annals of emergency medicine. 2003;42(5):611-8.

[45] Hasan N, McColgan P, Bentley P, Edwards RJ, Sharma P. Towards the identification of blood biomarkers for acute stroke in humans: a comprehensive systematic review. British journal of clinical pharmacology. 2012;74(2):230-40.

[46] Montaner J, Mendioroz M, Delgado P, García-Berrocoso T, Giralt D, Merino C, et al. Differentiating ischemic from hemorrhagic stroke using plasma biomarkers: the S100B/RAGE pathway. J Proteomics 2012;75:4758-65.

[47] Anderson CS, Huang Y, Arima H, Heeley E, Skulina C, Parsons MW, et al. Effects of early intensive blood pressure-lowering treatment on the growth of hematoma and perihematomal edema in acute intracerebral hemorrhage: the Intensive Blood Pressure Reduction in Acute Cerebral Haemorrhage Trial (INTERACT). Stroke; a journal of cerebral circulation. 2010;41(2):307-12.
[48] Rasool AH, Rahman AR, Choudhury SR, Singh RB. Blood pressure in acute intracerebral haemorrhage. Journal of human hypertension. 2004;18(3):187-92.
[49] Antihypertensive treatment of acute cerebral hemorrhage. Critical care medicine. 2010;38(2):637-48.
[50] Oliveira-Filho J, Silva SC, Trabuco CC, Pedreira BB, Sousa EU, Bacellar A. Detrimental effect of blood pressure reduction in the first 24 hours of acute stroke onset. Neurology. 2003;61(8):1047-51.
[51] Vlcek M, Schillinger M, Lang W, Lalouschek W, Bur A, Hirschl MM. Association between course of blood pressure within the first 24 hours and functional recovery after acute ischemic stroke. Annals of emergency medicine. 2003;42(5):619-26.
[52] Pepe PE, Zachariah BS, Sayre MR, Floccare D. Ensuring the chain of recovery for stroke in your community. Academic emergency medicine : official journal of the Society for Academic Emergency Medicine. 1998;5(4):352-8.
[53] Kidwell CS, Chalela JA, Saver JL, Starkman S, Hill MD, Demchuk AM, et al. Comparison of MRI and CT for detection of acute intracerebral hemorrhage. Jama. 2004;292(15):1823-30.
[54] Guidelines for management of ischaemic stroke and transient ischaemic attack 2008. Cerebrovascular diseases (Basel, Switzerland). 2008;25(5):457-507.
[55] Lansberg MG, Bluhmki E, Thijs VN. Efficacy and safety of tissue plasminogen activator 3 to 4.5 hours after acute ischemic stroke: a metaanalysis. Stroke; a journal of cerebral circulation. 2009;40(7):2438-41.
[56] Montaner J, Mendioroz M, Ribo M, Delgado P, Quintana M, Penalba A, et al. A panel of biomarkers including caspase-3 and D-dimer may differentiate acute stroke from stroke-mimicking conditions in the emergency department. Journal of internal medicine. 2011;270(2):166-74.
[57] Hemmen TM, Meyer BC, McClean TL, Lyden PD. Identification of nonischemic stroke mimics among 411 code strokes at the University of California, San Diego, Stroke Center. Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association. 2008;17(1):23-5.
[58] Barber PA, Zhang J, Demchuk AM, Hill MD, Buchan AM. Why are stroke patients excluded from TPA therapy? An analysis of patient eligibility. Neurology. 2001;56(8):1015-20.
[59] El Husseini N, Laskowitz DT. Clinical application of blood biomarkers in cerebrovascular disease. Expert review of neurotherapeutics. 2010;10(2):189-203.
[60] Hills NK, Johnston SC. Why are eligible thrombolysis candidates left untreated? American journal of preventive medicine. 2006;31(6 Suppl 2):S210-6.
[61] Schumacher HC, Bateman BT, Boden-Albala B, Berman MF, Mohr JP, Sacco RL, et al. Use of thrombolysis in acute ischemic stroke: analysis of the Nationwide Inpatient Sample 1999 to 2004. Annals of emergency medicine. 2007;50(2):99-107.
[62] Glickman SW, Phillips S, Anstrom KJ, Laskowitz DT, Cairns CB. Discriminative capacity of biomarkers for acute stroke in the emergency department. The Journal of emergency medicine. 2011;41(3):333-9.
[63] Kim SJ, Moon GJ, Bang OY. Biomarkers for stroke. Journal of stroke. 2013;15(1):27-37.
[64] Bettermann K. Biomarkers for stroke: in search of fingerprints. Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association. 2011;20(3):173-6.
[65] Mayeux R. Biomarkers: potential uses and limitations. NeuroRx : the journal of the American Society for Experimental NeuroTherapeutics. 2004;1(2):182-8.
[66] Maas MB, Furie KL. Molecular biomarkers in stroke diagnosis and prognosis. Biomarkers in medicine. 2009;3(4):363-83.
[67] Ning M, Lopez M, Cao J, Buonanno FS, Lo EH. Application of proteomics to cerebrovascular disease. Electrophoresis. 2012;33(24):3582-97.
[68] Jickling GC, Sharp FR. Blood biomarkers of ischemic stroke. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics. 2011;8(3):349-60.
[69] Rainer TH, Wong KS, Lam W, Lam NY, Graham CA, Lo YM. Comparison of plasma beta-globin DNA and S-100 protein concentrations in acute stroke. Clinica chimica acta; international journal of clinical chemistry. 2007;376(1-2):190-6.
[70] Abboud H, Labreuche J, Meseguer E, Lavallee PC, Simon O, Olivot JM, et al. Ischemia-modified albumin in acute stroke. Cerebrovascular diseases (Basel, Switzerland). 2007;23(2-3):216-20.
[71] Allard L, Burkhard PR, Lescuyer P, Burgess JA, Walter N, Hochstrasser DF, et al. PARK7 and nucleoside diphosphate kinase A as plasma markers for the early diagnosis of stroke. Clinical chemistry. 2005;51(11):2043-51.
[72] Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC medical research methodology. 2014;14(1):135.
[73] Rajeshwar K, Kaul S, Al-Hazzani A, Babu MS, Balakrishna N, Sharma V, et al. C-reactive protein and nitric oxide levels in ischemic stroke and its subtypes: correlation with clinical outcome. Inflammation. 2012;35(3):978-84.
[74] Lu LF, Yang SS, Wang CP, Hung WC, Yu TH, Chiu CA, et al. Elevated visfatin/pre-B-cell colony-enhancing factor plasma concentration in ischemic stroke. Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association. 2009;18(5):354-9.

[75] Waje-Andreassen U, Krakenes J, Ulvestad E, Thomassen L, Myhr KM, Aarseth J, et al. IL-6: an early marker for outcome in acute ischemic stroke. Acta neurologica Scandinavica. 2005;111(6):360-5.
[76] Shenhar-Tsarfaty S, Ben Assayag E, Bova I, Shopin L, Cohen M, Berliner S, et al. Persistent hyperfibrinogenemia in acute ischemic stroke / transient ischemic attack (TIA). Thrombosis and haemostasis. 2008;99(1):169-73.
[77] Youssef MY, Mojiminiyi OA, Abdella NA. Plasma concentrations of C-reactive protein and total homocysteine in relation to the severity and risk factors for cerebrovascular disease. Translational research : the journal of laboratory and clinical medicine. 2007;150(3):158-63.
[78] Ben Assayag E, Shenhar-Tsarfaty S, Ofek K, Soreq L, Bova I, Shopin L, et al. Serum cholinesterase activities distinguish between stroke patients and controls and predict 12-month mortality. Molecular medicine (Cambridge, Mass). 2010;16(7-8):278-86.
[79] Alvarez-Perez FJ, Castelo-Branco M, Alvarez-Sabin J. Usefulness of measurement of fibrinogen, D-dimer, D-dimer/fibrinogen ratio, C reactive protein and erythrocyte sedimentation rate to assess the pathophysiology and mechanism of ischaemic stroke. Journal of neurology, neurosurgery, and psychiatry. 2011;82(9):986-92.
[80] Basic Kes V, Simundic AM, Nikolac N, Topic E, Demarin V. Pro-inflammatory and anti-inflammatory cytokines in acute ischemic stroke and their relation to early neurological deficit and stroke outcome. Clinical biochemistry. 2008;41(16-17):1330-4.
[81] Kara H, Akinci M, Degirmenci S, Bayir A, Ak A, Nayman A, et al. High-sensitivity C-reactive protein, lipoprotein-related phospholipase A2, and acute ischemic stroke. Neuropsychiatric disease and treatment. 2014;10:1451-7.
[82] Licata G, Tuttolomondo A, Di Raimondo D, Corrao S, Di Sciacca R, Pinto A. Immuno-inflammatory activation in acute cardio-embolic strokes in comparison with other subtypes of ischaemic stroke. Thrombosis and haemostasis. 2009;101(5):929-37.
[83] Roudbary SA, Saadat F, Forghanparast K, Sohrabnejad R. Serum C-reactive protein level as a biomarker for differentiation of ischemic from hemorrhagic stroke. Acta medica Iranica. 2011;49(3):149-52.
[84] Kim MH, Kang SY, Kim MC, Lee WI. Plasma biomarkers in the diagnosis of acute ischemic stroke. Annals of clinical and laboratory science. 2010;40(4):336-41.
[85] Ageno W, Finazzi S, Steidl L, Biotti MG, Mera V, Melzi D'Eril G, et al. Plasma measurement of D-dimer levels for the early diagnosis of ischemic stroke subtypes. Archives of internal medicine. 2002;162(22):2589-93.
[86] Vanni S, Polidori G, Pepe G, Chiarlone M, Albani A, Pagnanelli A, et al. Use of biomarkers in triage of patients with suspected stroke. The Journal of emergency medicine. 2011;40(5):499-505.
[87] Kelly PJ, Morrow JD, Ning M, Koroshetz W, Lo EH, Terry E, et al. Oxidative stress and matrix metalloproteinase-9 in acute ischemic stroke: the Biomarker Evaluation for Antioxidant Therapies in Stroke (BEAT-Stroke) study. Stroke; a journal of cerebral circulation. 2008;39(1):100-4.
[88] Demir R, Ulvi H, Ozel L, Ozdemir G, Guzelcik M, Aygul R. Relationship between plasma metalloproteinase-9 levels and volume and severity of infarct in patients with acute ischemic stroke. Acta neurologica Belgica. 2012;112(4):351-6.
[89] Ning M, Furie KL, Koroshetz WJ, Lee H, Barron M, Lederer M, et al. Association between tPA therapy and raised early matrix metalloproteinase-9 in acute stroke. Neurology. 2006;66(10):1550-5.
[90] An SA, Kim J, Kim OJ, Kim JK, Kim NK, Song J, et al. Limited clinical value of multiple blood markers in the diagnosis of ischemic stroke. Clinical biochemistry. 2013;46(9):710-5.
[91] Unden J, Strandberg K, Malm J, Campbell E, Rosengren L, Stenflo J, et al. Explorative investigation of biomarkers of brain damage and coagulation system activation in clinical stroke differentiation. Journal of neurology. 2009;256(1):72-7.
[92] Oh SH, Lee JG, Na SJ, Park JH, Choi YC, Kim WJ. Prediction of early clinical severity and extent of neuronal damage in anterior-circulation infarction using the initial serum neuron-specific enolase level. Archives of neurology. 2003;60(1):37-41.
[93] Mazzotta G, Sarchielli P, Caso V, Paciaroni M, Floridi A, Floridi A, et al. Different cytokine levels in thrombolysis patients as predictors for clinical outcome. European journal of neurology : the official journal of the European Federation of Neurological Societies. 2004;11(6):377-81.
[94] Perini F, Morra M, Alecci M, Galloni E, Marchi M, Toso V. Temporal profile of serum anti-inflammatory and pro-inflammatory interleukins in acute ischemic stroke patients. Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology. 2001;22(4):289-96.
[95] Castellanos M, Castillo J, Garcia MM, Leira R, Serena J, Chamorro A, et al. Inflammation-mediated damage in progressing lacunar infarctions: a potential therapeutic target. Stroke; a journal of cerebral circulation. 2002;33(4):982-7.
[96] Nadar SK, Lip GY, Blann AD. Platelet morphology, soluble P selectin and platelet P-selectin in acute ischaemic stroke. The West Birmingham Stroke Project. Thrombosis and haemostasis. 2004;92(6):1342-8.
[97] Cha JK, Jeong MH, Kim EK, Lim YJ, Ha BR, Kim SH, et al. Surface expression of P-selectin on platelets is related with clinical worsening in acute ischemic stroke. Journal of Korean medical science. 2002;17(6):811-6.
[98] Zaremba J, Losy J. Early TNF-alpha levels correlate with ischaemic stroke severity. Acta neurologica Scandinavica. 2001;104(5):288-95.
[99] Supanc V, Biloglav Z, Kes VB, Demarin V. Role of cell adhesion molecules in acute ischemic stroke. Annals of Saudi medicine. 2011;31(4):365-70.
[100] Cano CP, Bermudez VP, Atencio HE, Medina MT, Anilsa A, Souki A, et al. Increased serum malondialdehyde and decreased nitric oxide within 24 hours of thrombotic stroke onset. American journal of therapeutics. 2003;10(6):473-6.
[101] Dambinova SA, Khounteev GA, Skoromets AA. Multiple panel of biomarkers for TIA/stroke evaluation. Stroke; a journal of cerebral circulation. 2002;33(5):1181-2.
[102] Dvorak F, Haberer I, Sitzer M, Foerch C. Characterisation of the diagnostic window of serum glial fibrillary acidic protein for the differentiation of intracerebral haemorrhage and ischaemic stroke. Cerebrovascular diseases (Basel, Switzerland). 2009;27(1):37-41.
[103] Foerch C, Niessner M, Back T, Bauerle M, De Marchis GM, Ferbert A, et al. Diagnostic accuracy of plasma glial fibrillary acidic protein for differentiating intracerebral hemorrhage and cerebral ischemia in patients with symptoms of acute stroke. Clinical chemistry. 2012;58(1):237-45.
[104] Foerch C, Curdt I, Yan B, Dvorak F, Hermans M, Berkefeld J, et al. Serum glial fibrillary acidic protein as a biomarker for intracerebral haemorrhage in patients with acute stroke. Journal of neurology, neurosurgery, and psychiatry. 2006;77(2):181-4.
[105] Dambinova SA, Khounteev GA, Izykenova GA, Zavolokov IG, Ilyukhina AY, Skoromets AA. Blood test detecting autoantibodies to N-methyl-D-aspartate neuroreceptors for evaluation of patients with transient ischemic attack and stroke. Clinical chemistry. 2003;49(10):1752-62.
[106] Slevin M, Krupinski J, Slowik A, Kumar P, Szczudlik A, Gaffney J. Serial measurement of vascular endothelial growth factor and transforming growth factor-beta1 in serum of patients with acute ischemic stroke. Stroke; a journal of cerebral circulation. 2000;31(8):1863-70.
[107] Matsuo R, Ago T, Kamouchi M, Kuroda J, Kuwashiro T, Hata J, et al. Clinical significance of plasma VEGF value in ischemic stroke - research for biomarkers in ischemic stroke (REBIOS) study. BMC neurology. 2013;13:32.
[108] Montaner J, Perea-Gainza M, Delgado P, Ribo M, Chacon P, Rosell A, et al. Etiologic diagnosis of ischemic stroke subtypes with plasma biomarkers. Stroke; a journal of cerebral circulation. 2008;39(8):2280-7.
[109] Rothstein L, Jickling GC. Ischemic stroke biomarkers in blood. Biomarkers in medicine. 2013;7(1):37-47.
[110] Kernagis DN, Laskowitz DT. Evolving role of biomarkers in acute cerebrovascular disease. Annals of neurology. 2012;71(3):289-303.

Universiteit of Hogeschool
Master Geneeskunde
Publicatiejaar
2016
Promotor(en)
Prof. Dr. S. Idrissi
Kernwoorden
Share this on: