Het Oplossen van Stelsels Veeltermvergelijkingen

Simon Telen
Stelsels veeltermvergelijkingen duiken op in vele ingenieursdisciplines. In de scriptie wordt een nieuwe, op lineaire algebra gebaseerde methode voorgesteld om bivariate stelsels op te lossen. De methode wordt in detail beschreven en vergeleken met enkele bestaande methodes.

Het Oplossen van Stelsels Veeltermvergelijkingen

Een pdf-versie van het artikel is toegevoegd als bijlage.


[1] S. Barnett. A Companion Matrix Analogue for Orthogonal Polynomials. Queen’s
University, Kingston - Mathematics Department, 1975.
[2] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry.
Springer, 2006.
[3] D. J. Bates, J. D. Hauenstein, A. J. Sommese, and C. W. Wampler. Numerically
solving polynomial systems with Bertini, volume 25 of Software, Environments
and Tools. SIAM, 2013.
[4] K. Batselier. A Numerical Linear Algebra Framework for Solving Problems with
Multivariate Polynomials. KU Leuven - Faculty of Engineering Science, 2013.
PhD thesis, promotor: Bart De Moor.
[5] B. Buchberger. Groebner bases: A short introduction for systems theorists.
Computer Aided Systems Theory, 2178:1–19, 2002.
[6] A. Bultheel and D. Huybrechs. Wavelets. CuDi VTK vzw, 2014. Course notes
on Wavelets.
[7] L. Bus´e, H. Khalil, and B. Mourrain. Resultant-Based Methods for Plane Curves
Intersection Problems. Springer-Verlag Berlin Heidelberg, 2016.
[8] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties and Algorithms. Springer,
[9] I. Daubechies. Ten Lectures on Wavelets. SIAM, 1992.
[10] T. A. Davis, S. N. Yeralan, and S. Ranka. User’s Guide for SuiteSparseQR, a
multifrontal multithreaded sparse QR factorization package (with optional GPU
acceleration). 2016.
[11] B. De Moor. Back to the Roots: Solving Polynomial Systems with Numerical
Linear Algebra Tools (slides). KU Leuven - Department of Electrical Engineering
ESAT/SCD, 2013.
[12] R. Descartes. La G´eom´etrie. Jean Maire, 1637. Slide show used in Valencia.
[13] E. D. Dolan and J. J. Mor´e. Benchmarking optimization software with performance
profiles. Mathematical Programming, 91:201–213, 2002.
[14] P. Dreesen. Back to the Roots. KU Leuven - Faculty of Engineering Science,
2013. PhD thesis, promotor: Bart De Moor.
[15] D. Gleich. gaimc: Graph algorithms in matlab code. Matlab
File Exchange, http://www.mathworks.com/matlabcentral/fileexchange/
[16] I. Gohberg, P. Lancaster, and L. Rodman. Matrix Polynomials. SIAM, 2009.
[17] P. W. Lawrence, M. Van Barel, and P. Van Dooren. Backward error analysis
of polynomial eigenvalue problems solved by linearization. SIAM journal on
Matrix Analysis and Applications, 2005.
[18] D. Lazard. Groebner bases, gaussian elimination and resolution of systems of
algebraic equations. European Computer Algebra Conference London, 162:146–
156, 1983.
[19] L. Ljung. System Identification: Theory for the User. Prentice Hall, 2 edition,
[20] Y. Nakatsukasa, V. Noferini, and A. Townsend. Computing the common zeros of
two bivariate functions via B´ezout resultants. Springer-Verlag Berlin Heidelberg,
[21] V. Y. Pan. Solving a polynomial equation: Some history and recent progress.
Siam Review, 39:187–220, 1997.
[22] B. Plestenjak. Multipareig. Matlab File Exchange, http://www.mathworks.
[23] B. Plestenjak and M. E. Hochstenbach. Roots of bivariate polynomial systems
via determinantal representations. SIAM J. Sci. Comput., 38(2):A765–A788,
[24] A. J. Sommese and C. W. Wampler. The Numerical Solution of Systems of
Polynomials Arising in Engineering Science. World Scientific Publishing Co.
Pte. Ltd., 2005.
[25] L. Sorber, M. Van Barel, and L. De Lathauwer. Numerical solution of bivariate
and polyanalytic polynomial systems. SIAM J. Num. Anal. 52, pages 1551–1572,
[26] H. J. Stetter. Numerical Polynomial Algebra. Society for Industrial and Applied
Mathematics, 2004.
[27] G. Strang and T. Nguyen. Wavelets and Filter Banks. Wellesley-Cambridge
Press, 1997.
[28] B. Sturmfels. Polynomial equations and convex polytopes. The American
Mathematical Monthly, 105:907–922, 1998.
[29] B. Sturmfels. Solving Systems of Polynomial Equations. Number 97 in CBMS
Regional Conferences. Amer. Math. Soc., 2002.
[30] J. Verschelde. Homotopy Continuation Methods for Solving Polynomial Systems.
KU Leuven - Faculty of Engineering Science, 1996. PhD thesis, promotor: Ann
[31] J. Verschelde. Algorithm 795: Phcpack: A general-purpose solver for polynomial
systems by homotopy continuation. ACM Transactions on Mathematical
Software Vol. 25, No. 2, pages 251–276, 1999.
[32] Wikipedia. La g´eom´etrie. https://en.wikipedia.org/wiki/La_G%C3%A9om%
[33] Wikipedia. Polynomial. https://en.wikipedia.org/wiki/Polynomial.

Universiteit of Hogeschool
Master in de Ingenieurswetenschappen, Wiskundige Ingenieurstechnieken
Prof. dr. ir. Marc Van Barel
Share this on: