Zoete immuniteit: Verhoogde resistentie tegen schimmelinfectie in tabak

Maxime
Versluys

Vanuit het oogpunt van duurzame en ecologisch verantwoorde landbouw wordt wereldwijd koortsachtig gezocht naar alternatieven voor pesticiden. Deze zijn namelijk vaak schadelijk, zowel voor de menselijke gezondheid als voor het ecosysteem en de omgeving. Wetgeving limiteert ook sterk de bewegingsvrijheid voor gebruik van pesticiden en correct pesticide management ontbreekt in vele ontwikkelingslanden. Toch wordt het gebruik ervan gezien als een noodzaak om de voedselproductie op peil te houden. Gedurende de laatste decennia is onze populatie piramidaal toegenomen. Bovendien zijn ondervoeding en honger fenomenen die wereldwijd frequent voorkomen.

Hoe kunnen we de voedselopbrengst in de landbouw laten toenemen? Het is belangrijk om in te zien dat vele gewassen die geteeld worden niet hun maximaal potentiële opbrengst kennen. De invloed van verscheidene omgevingsfactoren maakt dat de plant zich in een toestand van stress bevindt. Om hiermee te kunnen omgaan zal de groei worden onderdrukt. Biotische stress wordt vaak veroorzaakt door herbivore insecten en fytopathogenen van bacteriële of fungale oorsprong. Planten bezitten een aangeboren immuunsysteem dat in vele opzichten sterk gelijkt op deze bij dieren. In vele gewassen heeft langdurige selectieve teelt er echter toe geleid dat de plant minder resistentie kan bieden tegen deze biotische stressoren. Selectie voor zogenaamde ‘soft growth’ karakteristieken verbeterde eigenschappen als smaak, textuur en nutritionele waarde, maar dit ten koste van fysische verdedigingsmechanismen en antimicrobiële stoffen.

Hoewel genetisch gemodificeerde gewassen de oplossing kunnen bieden, is dit onderwerp nog steeds onderhevig aan zware debatvoering. Een recente oplossing is het ‘primen’ van het immuunsysteem van de plant door toediening van natuurlijk beschikbare stoffen. Deze priming agentia induceren niet onmiddellijk de verdedigingsresponsen van de plant, maar stellen deze in staat sneller te kunnen reageren bij een toekomstige pathogene aanval. Bijgevolg is deze techniek energetisch weinig kostelijk voor de plant, waardoor de groei niet wordt belemmerd. Het belang van endogene suikers als signaalmoleculen in deze context werd reeds aangetoond. Het gegeven van ‘zoete immuniteit’ bespreekt de rol van suikermoleculen in de verdediging van de plant, waarbij ze een energiebron kunnen leveren voor de inductie van defensiemechanismen, maar ook zelf een signalerende functie kunnen verzorgen. Enzymen die betrokken zijn in het suikermetabolisme, zoals de sucrose-degraderende invertases, kunnen het immuunsysteem tevens beïnvloeden. ‘Zoete priming’ beschrijft de techniek waarbij exogene suikers op de plant worden aangebracht om het immuunsysteem te boosten.

In dit onderzoek werd de  zoete priming techniek toegepast op tabak (Nicotiana tabacum), een modelorganisme in het veld van fytopathologie. Priming werd uitgevoerd op volgroeide bladeren. Enkele dagen na priming werden deze geïnoculeerd met sporen van de schimmel Botrytis cinerea, een fytopathogeen die een groot gamma aan plantensoorten kan infecteren, waaronder verscheidene gewassen. Ziekteverschijnselen werden geobserveerd 6 dagen na infectie. Bovendien werden fysiologische metingen uitgevoerd op bladeren na priming (pre-infectie stadium). Bladconcentratie aan glucose, fructose en sucrose werd gemeten, alsook het zetmeelgehalte. Enzymatische activiteit van enkele invertases werd nagegaan, in het bijzonder vacuolair- en celwand invertase. Aan de hand van voorgaand onderzoek werden enkele veelbelovende suikers uitgekozen voor priming. Glucose, fructose en allose (een weinig voorkomende variant van glucose) werden toegepast. Water priming was steeds de negatieve controle. Sorbitol, een suiker-alcohol, werd geïncludeerd als osmotische controle. Voor de positieve controle behandeling werd geopteerd voor OGs (oligalacturonides), het afbraakproduct van pectine aanwezig in de celwand van de plant. Het is reeds enige tijd duidelijk dat deze OGs worden herkend door een receptor, waarna een inductie van het immuunsysteem volgt.

Meerdere priming en infectie experimenten werden uitgevoerd, waarna bleek dat allose en fructose weinig effect hadden in de verbetering van het immuunsysteem. Glucose priming daarentegen verhoogde resistentie tegen Botrytis infectie significant. Deze hogere resistentie ging meestal samen met een hogere concentratie aan hexosen (glucose en fructose) in het blad. Eveneens werd vaak een verhoogde celwand invertase activiteit gemeten na glucose priming. De resultaten van zetmeelinhoud waren weinig verhelderend, alhoewel bleek dat het zetmeelgehalte lager lag na priming ten opzichte van de waterbehandeling.

Een tweede focuspunt in dit onderzoek was het gebruik van fructanen als priming agens. Fructanen zijn polymere suikermoleculen, opgebouwd uit een sucrose eenheid verlengd met verscheidene fructose eenheden. Slechts 15% van alle bloemplanten maakt fructanen aan, en deze worden opgeslagen in de vacuole van de cel. Afhankelijk van het type verbinding tussen deze bouwstenen wordt onderscheid gemaakt tussen inulines en levanen.  De prebiotische functie van fructanen in ons dieet is reeds aangetoond. Hier werd geprimed met BFO (fructooligosacchariden van Arctium lappa). Deze fructanen zijn van het inulin-type. Recent onderzoek in andere pathosystemen heeft reeds aangetoond dat BFO priming het immuunsysteem van de plant bevordert. Uit onze resultaten blijkt dat deze fructanen tevens werken in het tabak-Botrytis pathosysteem. Voornamelijk in het laatste experiment werd een significant hogere resistentie waargenomen. Een belangrijk gegeven hierbij is dat tabak van nature geen fructanen bevat. Hoewel fructanen een signalerende functie blijken te hebben, is een receptor tot nog toe niet gekend.

Wij stellen voor dat de apoplastische omgeving, de ruimte tussen plantencellen, een belangrijke rol speelt tijdens priming. Toediening van suikers kan de osmotische status van de apoplast drastisch veranderen. Hierdoor kan mogelijk de balans van fysiologische processen wijzigen, hetgeen een inductie, ofwel een suppressie van het immuunsysteem tot gevolg zou kunnen hebben. We concluderen hier dat sommige suikers een immunostimulerend  effect kunnen hebben. Zoete priming kan een alternatief bieden om gewasopbrengst te verhogen. Er moet echter meer onderzoek gebeuren om na te gaan of applicatieve doeleinden haalbaar zijn. Bovendien moet theoretisch gericht onderzoek verricht worden om onderliggende mechanismen van zoete priming te ontrafelen.

Bibliografie

  • Abràmoff, M.D., P.J. Magalhães and S.J. Ram (2004). Image processing with imageJ. Biophotonics International, 11(7): 36-42.
  • Ahuja, I., R. Kissen and A.M. Bones (2012). Phytoalexins in defense against pathogens. Trends in Plant Science, 17(2): 73-90.
  • Allègre, M., M.C. Héloir, S. Trouvelot, X. Daire, A. Pugin, D. Wendehenne and M. Adrian (2009). Are grapevine stomata involved in the elicitor-induced protection against downy mildew? Molecular Plant-Microbe Interactions, 22(8): 977-986.
  • Amborabé, B., J. Bonmort, P. Fleurat-Lessard and G. Roblin (2008). Early events induced by chitosan on plant cells. Journal of Experimental Botany, 59(9): 2317-2324.
  • Andolfo, G. and M.R. Ercolano (2015). Plant innate immunity multicomponent model. Frontiers in Plant Science, 6(987): 1-6.
  • Aranega-Bou, P., M. de la O. Leyva, I. Finiti, P. García-Agustín and C. González-Bosch (2014). Priming of plant resistance by natural compounds: Hexanoic acid as a model. Frontiers in Plant Science, 5(488): 1-12.
  • Arenas-Huertero, F., A. Arroyo, L. Zhou, J. Sheen and P. León (2000). Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes and Development, 14(16): 2085-2096.
  • Arora, J., S. Goyal and K.G. Ramawat (2012). Chapter 1: Co-evolution of pathogens, mechanisms involved in pathogenesis and biocontrol of plant diseases: An overview. In: Plant defence: Biological control (Mérillon, J.M. and K.G. Ramawat). Springer, 3-22.
  • Asselbergh, B., K. Curvers, S.C. França, K. Audenaert, M. Vuylsteke, F. Van Breusegem and M. Höfte (2007). Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell well modifications in the epidermis. Plant Physiology, 144(4): 1863-1877.
  • Asselbergh, B., D. De Vleesschauwer and M. Höfte (2008). Global switches and fine-tuning: ABA modulates plant pathogen defense. Molecular Plant-Microbe Interactions, 21(6): 709-719.
  • Atkinson, N.J., R. Jain and P.E. Urwin (2014). Chapter 9: The response of plants to simultaneous biotic and abiotic stress. In: Combined stresses in plants (Mahalingam, R.). Springer, 181-201.
  • Attaran, E., T.E. Zeier, T. Griebel and J. Zeier (2009). Methyl salicylate production and jasmonate signaling are not essential for systemic acquired resistance in Arabidopsis. The Plant Cell, 21(3): 954-971.
  •       



                                               REFERENCES       

    Avonce, N., B. Leyman, J.O. Mascorro-Gallardo, P. Van Dijck, J.M. Thevelein and G. Iturriaga (2004). The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisic acid, and stress signaling. Plant Physiology, 136(3): 3649-3659.

  • Aziz, A., B. Poinssot, X. Daire, M. Adrian, A. Bézier, B. Lambert, J.M. Joubert and A. Pugin (2003). Laminarin elicits defense responses in Grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Molecular Plant-Microbe Interactions, 16(12): 1118-1128.
  • Aziz, A., A. Heyraud and B. Lambert (2004). Oligogalacturonide signal transduction, induction of defense-related responses and protection of grapevine against Botrytis cinerea. Planta, 218: 767-774.
  • Bardin, M., S. Ajouz, M. Comby, M. Lopez-Ferber, B. Graillot, M. Siegwart and P.C. Nicot (2015). Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides? Frontiers in Plant Science, 6(566): 1-14.
  • Barilli, E., D. Rubiales, C. Amalfitano, A. Evidente and E. Prats (2015). BTH and BABA induce resistance in pea against rust (Uromyces pisi) involving differential phytoalexin accumulation. Planta, 242(5): 1095-1106.
  • Barto, E.K. and D. Cipollini (2005). Testing the optimal defense theory and the growth-differentiation balance hypothesis in Arabidopsis thaliana. Oecologia, 146(2): 169-178.
  • Baxter, A., R. Mittler and N. Suzuki (2014). ROS as key players in plant stress signaling. Journal of Experimental Botany, 65(5): 1229-1240.
  • Beckers, G.J. and U. Conrath (2007). Priming for stress resistance: From the lab to the field. Current Opinion in Plant Biology, 10(4): 425-431.
  • Bellin, D., S. Asai, M. Delledonne and H. Yoshioka (2013). Nitric oxide as a mediator for defense responses. Molecular Plant-Microbe Interactions, 26(3): 271-277.
  • Berger, S., A.K. Sinha and T. Roitsch (2007). Plant physiology meets phytopathology: Plant primary metabolism and plant-pathogen interactions. Journal of Experimental Botany, 58(15-16): 4019-4026.
  • Bigeard, J., J. Colcombet and H. Hirt (2015). Signaling mechanisms in pattern-triggered immunity (PTI). Molecular Plant, 8(4): 521-539.
  • Blanco-Ulate, B., A. Morales-Cruz, K.C.H. Amrine, J.M. Labavitch, A.L.T. Powell and D. Cantu (2014). Genome-wide transcriptional profiling of Botrytis cinerea genes targeting plant cell walls during infections of different hosts. Frontiers in Plant Science, 5(435): 1-16.
  • Böhm, H., I. Albert, L. Fan, A. Reinhard and T. Nürnberger (2014). Immune receptor complexes at the plant cell surface. Current Opinion in Plant Biology, 20: 47-54.
  • Bohnert, H.J., D.E. Nelson and R.G. Jensen (1995). Adaptations to environmental stresses. The Plant Cell, 7: 1099-1111.
  •       



                                               REFERENCES       

    Bolouri Moghaddam, M.R. and W. Van den Ende (2012). Sugars and plant innate immunity. Journal of Experimental Botany, 63(11): 3989-3998.

  • Bolouri Moghaddam, M.R. and W. Van den Ende (2013). Sweet immunity in the plant circadian regulatory network. Journal of Experimental Botany, 64(6): 1439-1449.
  • Bolouri Moghaddam, M.R., A. Vilcinskas and M. Rahnamaeian (2015). Cooperative interaction of antimicrobial peptides with the interrelated immune pathways in plants. Molecular Plant Pathology, doi: 10.1111/mpp.12299.
  • Bolton, M.D. (2009). Primary metabolism and plant defense: Fuel for the fire. Molecular Plant-Microbe Interactions, 22(5): 487-497.
  • Bonde, M.R., S.E. Nester and D.K. Berner (2012). Effects of soybean leaf and plant age on susceptibility to initiation of infection by Phakopsora pachyrhizi. Online. Plant Health Progress doi:10.1094/PHP-2012-0227-01-RS.
  • Bonfig, K.B., A. Gabler, U.K. Simon, N. Luschin-Ebengreuth, M. Hatz, S. Berger, N. Muhammad, J. Zeier, A.K. Sinha and T. Roitsch (2010). Post-translational derepression of invertase activity in source leaves via down-regulation of invertase inhibitor expression is part of the plant defense response. Molecular Plant, 3(6): 1037-1048.
  • Borges, A.A., D. Jiménez-Arias, M. Expósito-Rodríguez, L.M. Sandalio and J.A. Pérez (2014). Priming crops against biotic and abiotic stresses: MSB as a tool for studying mechanisms. Frontiers in Plant Science, 5(642): 1-4.
  • Bueter, C.L., C.A. Specht and S.M. Levitz (2013). Innate sensing of chitin and chitosan. PLoS Pathogens, 9(1): 1-3.
  • Caarls, L., C. Pieterse and S. Van Wees (2015). How salicylic acid takes transcriptional control over jasmonic acid signaling. Frontiers in Plant Science, 6(170): 1-11.
  • Cao, Y., Y. Liang, K. Tanaka, C.T. Nguyen, R.P. Jedrzejczak, A. Joachimiak and G.Stacey (2014). The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. ELife, 3: 1-19.
  • Cassels, A.C. and S.M. Rafferty-McArdle (2012). Chapter 1: Priming of plant defences by PGPR against fungal and bacterial plant foliar pathogens. In: Bacteria in agrobiology: Stress management (Maheshwari, D.K.). Springer, 1-26.
  • Chassot, C., C. Nawrath and J. Métraux (2008). The cuticle: Not only a barrier for plant defence: A novel defence syndrome in plants with cuticular defects. Plant Signaling and Behavior, 3(2): 142-144.
  • Chen, Z., Z. Zheng, J. Huang, Z. Lai and B. Fan (2009). Biosynthesis of salicylic acid in plants. Plant Signaling and Behavior, 4(6): 493-496.
  • Chen, H.Y., J.H. Huh, Y.C. Yu, L.H. Ho, L.Q. Chen, D. Tholl, W. Frommer and W.J. Guo (2015). The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection. The Plant Journal, 83(6): 1046-1058.
  •       



                                               REFERENCES       

    Cheng, C., X. Gao, B. Feng, J. Sheen, L. Shan and P. He (2013). Differential temperature operation of plant immune responses. Nature Communications, 4(2530): 1-17.

  • Chrisholm, S.T., G. Coaker, B. Day and B.J. Staskawicz (2006). Host-microbe interactions: Shaping the evolution of the plant immune response. Cell, 124(4): 803-814.
  • Chong, J., A. Poutaraud and P. Hugueney (2009). Metabolism and roles of stilbenes in plants. Plant Science, 177(3): 143-155.
  • Choquer, M., E. Fournier, C. Kunz, C. Levis, J.M. Pradier, A. Simon and M. Viaud (2007). Botrytis cinerea virulence factors: New insights into a necrotrophic and polyphageoous pathogen. FEMS Microbiology Letters, 277(1): 1-10.
  • Claeyssen, É. and J. Rivoal (2007). Isozymes of plant hexokinase: Occurrence, properties and functions. Phytochemistry, 68(6): 709-731.
  • Cole, J.T., W.S. Kean, H.B. Pollard, A. Verma and W.D. Watson (2012). Glucose-6-phosphate reduces calcium accumulation in rat brain endoplasmic reticulum. Frontiers in Molecular Neuroscience, 5(51): 1-8.
  • Conrath, U., C.M. Pieterse and B. Mauch-Mani (2002). Priming in plant-pathogen interactions. Trends in Plant Science, 7(5): 210-216.
  • Conrath, U. (2009). Priming of induced plant defense responses. Advances in Botanical Research, 51: 361-395.
  • Couée, I., C. Sulmon, G. Gouesbet and A. El Amrani (2006). Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. Journal of Experimental Botany, 57(3): 449-459.
  • Cramer, G.R., K. Urano, S. Delrot, M. Pezzotti and K. Shinozaki (2011). Effects of abiotic stress on plants: A systems biology perspective. BMC Plant Biology, 11: 163-176.
  • Dat, J., S. Vandenabeele, E. Vranová, M. Van Montagu, D. Inzé and F. Van Breusegem (2000). Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences, 57(5): 779-795.
  • De Bruyne, L., M. Höfte and D. De Vleesschauwer (2014). Connecting growth and defense: The emerging roles of brassinosteroids and gibberellins in plant innate immunity. Molecular Plant, 7(6): 943-959.
  • De Stefano, M., E. Vandelle, A. Polverari, A. Ferrarini and M. Delledonne (2005). Nitric oxide-mediated signaling functions during plant hypersensitive response. In: Nitric oxide in plant growth, development and stress physiology (Lamattina, L., J.C. Polacco). Springer, 5: 207-222.
  • Dekkers, B.J.W., J.A.M. Schuurmans and J.C.M. Smeekens (2008). Interaction between sugar and abscisic acid signaling during early seedling development in Arabidopsis. Plant Molecular Biology, 67: 151-167.
  •       



                                               REFERENCES       

    Delcour, I., P. Spanoghe and M. Uyttendaele (2015). Literature review: Impact of climate change on pesticide use. Food Research International, 68: 7-15.

  • Delatte, T.L., P. Sedjani, Y. Kondou, M. Matsui, G.J. De Jong, G.W. Somsen, A. Wiese-Klinkenberg, L.F. Primavesi, M.J. Paul and H. Schluepmann (2011). Growth arrest by trehalose-6-phosphate: An astonishing case of primary metabolite control over growth by way of the SnRK1 signaling pathway. Plant Physiology, 157(1): 160-174.
  • Delledonne, M., Y. Xia, R.A. Dixon and C. Lamb (1998). Nitric oxide functions as a signal in plant disease resistance. Nature, 394(6693): 585-8.
  • Demidchik, V. (2015). Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environmental and Experimental Botany, 109: 212-228.
  • Denoux, C., R. Galletti, N. mammarella, S. Gopalan, D. Werck, G. De Lorenzo, S. Ferrari, F.M. Ausubel and J. Dewdney (2008). Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. Molecular Plant, 1(3): 423-445.
  • Dik, A.J. and J.P. Wubben (2007). Chapter 17: Epidemiology of Botrytis cinerea diseases in greenhouses. In: Botrytis: Ecology, pathology and control (Elad, Y., B. Williamson, P. Tudzynski and N. Delen). Springer, 319-333.
  • Dimlioglu, G., Z.A. Das, M. Bor, F. Özdemir and I. Türkan (2015). The impact of GABA in hairpin-elicited biotic stress responses in Nicotiana tabacum. Journal of Plant Physiology, 188: 51-57.
  • Eckardt, N.A. (2008). Chitin signaling in plants: Insights into the perception of fungal pathogens and rhizobacterial symbionts. The Plant Cell, 20: 241-243.
  • Ehness, R., M. Ecker, D.E. Godt and T. Roitsch (1997). Glucose and stress independently regulate source and sink metabolism and defense mechanisms via signal transduction pathways involving protein phosphorylation. The Plant Cell, 9: 1825-1841.
  • Elad, Y., B. Williamsom, P. Tudzynski and N. Delen (2007). Chapter 1: Botrytis spp. and diseases they cause in agricultural systems – an introduction. In: Botrytis: Ecology, pathology and control (Elad, Y., B. Williamson, P. Tudzynski and N. Delen). Springer, 1-8.
  • Ellinger, D. and C.A. Voigt (2014). Callose biosynthesis in Arabidopsis with a focus on pathogen response: wat have we learned within the last decade. Annals of Botany: 1-10.
  • Elorza, M.V., J.R. Villanueva and R. Sentandreu (1977). The mechanism of catabolite inhibition of invertase by glucose in Saccharomyces cerevisiae. Biochimica et Biophysica Acta, 1: 103-112.
  • Elsayed, A., M. Rafudeen and D. Golldack (2014). Physiological aspects of raffinose family oligosaccharides in plants: Protection against abiotic stress. Plant Biology, 16: 1-8.
  •       



                                               REFERENCES       

    El Hadrami, A., L.R. Adam, I. El Hadrami and F. Daayf (2010). Chitosan in plant protection. Marine Drugs, 8: 968-987.

  • El Oirdi, M., A. Trapani and K. Bouarab (2010). The nature of tobacco resistance against Botrytis cinerea depends on the infection structures of the pathogen. Environmental Microbiology, 12(1): 239-253.
  • El Oirdi, M., T.A. El Rahman, L. Rigano, A. El Hadrami, M.C. Rodriguez, F. Daayf, A. Vojnov and K. Bouarab (2011). Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato. The Plant Cell, 23: 2405-2421.
  • Escobar Gutiérrez, A.J. and J.P. Gaudillère (1996). Distribution, metabolism and role of sorbitol in higher plants: A review. Agronomy, 16: 281-298.
  • Evans, H.C. and J.M. Waller (2010). Chapter 5: Globalisation and the threat to biosecurity. In: The role of plant pathology in food safety and food security (Strange, R.N. and M.L. Gullino). Springer, 53-72.
  • Farmer, E.E. and M.J. Mueller (2013). ROS-mediated lipid peroxidation and RES-activated signaling. Annual Reviews of Plant Biology, 64: 429-450.
  • Ferrari, S., J.M. Plotnikova, G. De Lorenzo and F.M. Ausubel (2003). Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. The Plant Journal, 35(2): 193-205.
  • Ferrari, S., R. Galletti, C. Denoux, G. De Lorenzo, F.M. Ausubel and J. Dewdney (2007). Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3. Plant Physiology, 144: 367-379.
  • Ferrari, S., D.V. Savatin, F. Sicilia, G. Gramegna, F. Cervone and G. De Lorenzo (2013). Oligogalacturonides: Plant damage-associated molecular patterns and regulators of growth and development. Frontiers in Plant Science, 4(49): 1-9.
  • Ferrieri, A.P., C.M.C. Arce, R.A.R. Machado, I.D. Meza-Canales, E. Lima, I.T. Baldwin and M. Erb (2015). A Nicotiana attenuate cell wall invertase inhibitor (NaCWII) reduces growth and increases secondary metabolite biosynthesis in herbivore-attacked plants. New Pytologist, 208: 519-530.
  • Finkelstein, R.R. and S.I. Gibson (2001). ABA and sugar interactions regulating development: Cross-talk or voices in a crowd? Current Opinion in Plant Biology, 5: 26-32.
  • Ford, K.A., J.E. Casida, D. Chandran, A.G. Gulevich, R.A. Okrent, K.A. Durkin, R. Sarpong, E.M. Bunnelle and M.C. Wildermuth (2010). Neonicotinoid insecticides induces salicylate-associated plant defense responses. PNAS, 107(41): 17527-17532.
  •       



                                               REFERENCES       

    Frías, M., N. Brito and C. González (2013). The Botrytis cinerea cerato-platanin BcSpl1 is a potent inducer of systemic acquired resistance (SAR) in tobacco and generates a wave of salicylic acid expanding from the site of application. Molecular Plant Pathology, 14(2): 191-196.

  • Fu, Z.Q., S. Yan, A. Saleh, W. Wang, J. Ruble, N. Oka, R. Mohan, S.H. Spoel, Y. Tada, N. Zheng and X. Dong (2012). NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature, 486(7402): 228-232.
  • Fu, Z.Q. and X. Dong (2013). Systemic acquired resistance: Turning local infection into global defense. Annual Review of Plant Biology, 64: 839-863.
  • Furuichi, T., I.C. Mori, K. Takahashi and S. Muto (2001). Sugar-induced increase in cytosolic Ca2+ in Arabidopsis thaliana whole plants. Plant Cell Physiology, 42(10): 1149-1155.
  • Galletti, R., S. Ferrari and G. De Lorenzo (2011). Arabidopsis MPK3 and MPK6 play different roles in basal and oligogalacturonide- or flagellin-induced resistance against Botrytis cinerea. Plant Physiology, 157: 804-814.
  • Gamir, J., P. Sánchez-Bel and V. Flors (2014). Molecular and physiological stages of priming: How plants prepare for environmental challenges. Plant Cell Reports, 33: 1935-1949.
  • Gao, J., P.J.M. van Kleeff, C. Oecking, K.W. Li, A. Erban, J. Kopka, D.K. Hincha and A.H. de Boer (2014). Light modulated activity of root alkaline/neutral invertase involves the interaction with 14-3-3 proteins. The Plant Journal, 80(5): 785-796.
  • Gao, Q., S. Zhu, P. Kachroo and A. Kachroo (2015). Signal regulators of systemic acquired resistance. Frontiers in Plant Science, 6(228): 1-12.
  • Ghannam, A., A. Jacques, P. De Ruffray, F. Baillieul and S. Kauffmann (2005). Identification of tobacco ESTs with a hypersensitive response (HR)-specific pattern of expression and likely involved in the induction of the HR and/or localized acquired resistance (LAR). Plant Physiology and Biochemistry, 43: 249-259.
  • Ghillebert, R., E. Swinnen, J. Wen, L. Vandesteene, M. Ramon, K. Norga, F. Rolland and J. Winderickx (2011). The AMPK/SNF1/SnRK1 fuel gauge and energy regulator: Structure, function and regulation. FEBS Journal, 278: 3978-3990.
  • Gibson, S.I. (2000). Plant sugar-response pathways: Part of a complex regulatory web. Plant Physiology, 124: 1532-1539.
  • Gibson, S.I. (2005). Control of plant development and gene expression by sugar signaling. Current Opinion in Plant Biology, 8: 93-102.
  • Gilroy, S., N. Suzuki, G. Miller, W.G. Choi, M. Toyota, A.R. Devireddy and R. Mittler (2014). A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends in Plant Science, 19(10): 623-630.
  •       



                                               REFERENCES       

    Gimenez-Ibanez, S. and R. Solano (2013). Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens. Frontiers in Plant Science, 4(72): 1-11.

  • Glowacki, S., V.K. Macioszek and A.K. Kononowicz (2011). R proteins as fundamentals of plant innate immunity. Cellular and Molecular Biology Letters, 16: 1-24.
  • Gómez-Ariza, J., S. Campo, M. Rufat, M. Estopà, J. Messeguer, B. San Segundo and M. Coca (2007). Sucrose-mediated priming of plant defense responses and broad-spectrum disease resistance by overexpression of the maize pathogenesis-related PRms protein in rice plants. Molecular Plant-Microbe Interactions, 20(7): 832-842.
  • Görlach, J., S. Volrath, G. Knauf-Beiter, G. Hengy, U. Beckhove, K.H. Kogel, M. Oostendorp, T. Staub, E. Ward, H. kessmann and J. Ryals (1996). Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. The Plant Cell, 8(4): 629-643.
  • Govrin, E.M. and A. Levine (2000). The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Current Biology, 10(13): 751-757.
  • Granot, D., R. David-Schwartz and G. Kelly (2013). Hexose kinases and their role in sugar-sensing and plant development. Frontiers in Plant Science, 4(44): 1-17.
  • Gravino, M., D.V. Savatin, A. Macone and G. De Lorenzo (2015). Ethylene production in Botrytis cinerea- and oligogalacturonide-induced immunity requires calcium-dependent protein kinases. The Plant Journal, 84(6): 1073-1086.
  • Guo, M., K. Chen and P. Zhang (2012). Transcriptome profile analysis of resistance induced by burdock fructooligosaccharide in tobacco. Journal of Plant Physiology, 169: 1511-1519.
  • Guo, M., P. Zhang, Y. Guo, L. Shi and K. Chen (2013). The function of nitric oxide and reactive oxygen species elicited by burdock fructooligosaccharide in tobacco. Plant and Cell Physiology.
  • Gust, A.A., R. Willmann, Y. Desaki, H.M. Grabherr and T. Nürnberger (2012). Plant LysM proteins: Modules mediating symbiosis and immunity. Trends in Plant Science, 17(8): 495-502.
  • Hamel, L. and N. Beaudoin (2010). Chitooligosaccharide sensing and downstream signaling: Contrasted outcomes in pathogenic and beneficial plant-microbe interactions. Planta, 232: 787-806.
  • Han, L., G. Li, K. Yang, G. Mao, R. Wang, Y. Liu and S. Zhang (2010). Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis. The Plant Journal, 64: 114-127.
  •       



                                               REFERENCES       

    Handford, C.E., C.T. Elliott and K. Campbell (2015). A review of the global pesticide legislation and the scale of challenge in reaching the global harmonization of food safety standards. Integrated Environmental Assessment and Management, 11(4): 525-536.

  • Hanson, J., M. Hanssen, A. Wiese, M.M.W.B. Hendriks and S. Smeekens (2008). The sucrose regulated transcription factor bZIP11 affects amino acid metabolism by regulating the expression of ASPARAGINE SYNTHASE1 and PROLINE DEHYDROGENASE2. The Plant Journal, 53: 935-949.
  • Heath, M.C. (2000). Nonhost resistance and nonspecific plant defenses. Current Opinion in Plant Biology, 3: 315-319.
  • Heil, M. (2009). Damaged-self recognition in plant herbivore defence. Trends in Plant Science, 14(7): 356-363.
  • Heil, M., E. Ibarra-Laclette, R.M. Adame-Álvarez, O. Martínez, E. Ramirez-Chávez, J. Molina-Torres and L. Herrera-Estrella (2012). How plants sense wounds: Damaged-self recognition is based on plant-derived elicitors and induces octadecanoid signaling. PLoS ONE, 7(2): 1-9.
  • Henry, E., K.A. yadeta and G. Coaker (2013). Recognition of bacterial plant pathogens: Local, systemic and transgenerational immunity. New Phytologist, 199: 908-915.
  • Herbers, K., P. Meuwly, J. Métraux and U. Sonnewald (1996). Salicylic acid-independent induction of pathogenesis-related protein transcripts by sugars is dependent on leaf developmental stage. FEBS Letters, 397: 239-244.
  • Holz, G., S. Coertze and B. Williamson (2007). Chapter 2: The ecology of Botrytis on plant surfaces. In: Botrytis: Ecology, pathology and control (Elad, Y., B. Williamson, P. Tudzynski and N. Delen). Springer, 9-27.
  • Horsfall, J.G. and A.E. Dimond (1957). Interactions of tissue sugar, growth substances and disease susceptibility. Zeitschrift für Pflanzenkrankheiten und Pflanzenschulz, 64: 415-421.
  • Horst, R.K. (2001). Chapter 3: Plant diseases and their pathogens. In: Westcott’s Plant Disease Handbook (Horst, R.K.). Springer, 65-530.
  • Hou, S., C. Zhang, Y. yang and D. Wu (2013). Recent advances in plant immunity: Recognition, signaling, response, and evolution. Biologia Plantarum, 57(1): 11-25.
  • Howe, G.A. and G. Jander (2008). Plant immunity to insect herbivores. Annuals Reviews of Plant Biology, 59: 41-66.
  • Huang, J., M. Gu, Z. Lai, B. Fan, K. Shi, Y. Zhou, J. Yu and Z. Chen (2010). Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiology, 153: 1526-1538.
  • Huot, B., J. Yao, B.L. Montgomery and S.Y. He (2014). Growth-defense tradeoffs in plants: A balancing act to optimize fitness. Molecular Plant, 7: 1267-1287.
  •       



                                               REFERENCES       

    Iriti, M. and E.M. Varoni (2015). Chitosan-induced antiviral activity and innate immunity in plants. Environ Sci Pollut Res, 22: 2935-2944.

  • Janda, M. and E. Ruelland (2015). Magical mystery tour: Salicylic acid signaling. Environmental and Experimental Botany, 114: 117-128.
  • Jang, J., P. Léon, L. Zhou and J. Sheen (1997). Hexokinase as a sugar sensor in higher plants. The Plant Cell, 9: 5-19.
  • Jang, J. and J. Sheen (1994). Sugar sensing in higher plants. The Plant Cell, 6: 1665-1679.
  • Jeon, J. and J. Kim (2013). Cold stress signaling networks in Arabidopsis. Journal of Plant Biology, 56: 69-76.
  • Jones, J.D.G. and J. L. Dangl (2006). The plant immune system. Nature, 444: 323-329.
  • Kano, A., T. Fukumoto, K. Ohtani, A. Yoshihara, T. Ohara, S. Tajima, K. Izumori, K. Tanaka, T. Ohkouchi, Y. Ishida, Y. Nishizawa, K. Ichimura, Y. Tada, K. Gomi and K. Akimitsu (2013). The rare sugar D-allose acts as a triggering molecule of rice defense via ROS generation. Journal of Experimental Botany, 64(16): 4939-4951.
  • Kasai, M., K. Koide and Y. Ichikawa (2012). Effect of pot size on various characteristics related to photosynthetic matter production in soybean plants. International Journal of Agronomy, 2012(751731): 1-7.
  • Kawano, Y. and K. Shimamoto (2013). Early signaling network in rice PRR-mediated and R-mediated immunity. Current Opinion in Plant Biology, 16: 496-504.
  • Kazan, K. and J.M. Manners (2013). MYC2: The master in action. Molecular Plant, 6(3): 686-703.
  • Keane, P.J. (2012). Chapter 13: Horizontal or generalized resistance to pathogens in plants. In: Plant Pathology (Cumagun, C.J.R.). Intech, 327-362.
  • Kerry, B.R. (2000). Rhizosphere interactions and exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annual Reviews of Phytopathology, 38: 423-441.
  • Keunen, E., D. Peshev, J. Vangronsveld, W. Van den Ende and A. Cuypers (2013). Plant sugars are crucial players in the oxidative challenge during abiotic stress: Extending the traditional concept. Plant, Cell and Environment, 36: 1242-1255.
  • Kim, S., J. Kang, D. Cho, J.H. Park and S.Y. Kim (2004). ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. The Plant Journal, 40: 75-87.
  • Kinnersley, A.M. and F.J. Turano (2000). Gamma aminobutyric acid (GABA) and plant responses to stress. Critical Reviews in Plant Sciences, 19(6): 479-509.
  • Koch, K. (2004). Sucrose metabolism: Regulatory mechanisms and pivotal roles in sugar sensing and plant development. Current Opinion in Plant Biology, 7: 235-246.
  •       



                                               REFERENCES       

    Kohorn, B.D. and S.L. Kohorn (2012). The cell wall-associated kinases, WAKs, as pectin receptors. Frontiers in Plant Science, 3(88): 1-5.

  • Kombrink, A., A. Sánchez-Vallet and B.P.H.J. Thomma (2011). The role of chitin detection in plant-pathogen interactions. Microbes and Infection, 13: 1168-1176.
  • Kotak, S., J. Larkindale, U. lee, P. van Koskull-Döring, E. Vierling and K. Scharf (2007). Complexity of the heat stress response in plants. Current Opinion in Plant Biology, 10: 310-316.
  • Krügel, T., M. Lim, K. Gase, R. Halitschke and I.T. Baldwin (2002). Agrobacterium-mediated transformation of Nicotiana attenuata, a model ecological expression system. ChemoEcology, 12(4): 177-183.
  • Kunz, S., P. Gardeström, E. Pesquet and L.A. Kleczkowski (2015). Hexokinase 1 is required for glucose-induced repression of bZIP63, At5g22920, and BT2 in Arabidopsis. Frontiers in Plant Science. 6(525): 1-12.
  • Lahlali, R., D. Friel, M.N. Serrhini and M.H. Jijakli (2006). Effect of incubation temperature and relative humidity on lesion diameter of Botritis cinerea Pers. and Penicillium expansum Link. on apple fruits. Communications in Agricultural and Applied Biological Sciences, 71(3): 1159-1166.
  • Lalonde, S., E. Boles, H. Hellmann, L. Barker, J.W. Patrick, W.B. Frommer and J.M. Ward (1999). The dual function of sugar carriers: Transport and sugar sensing. The Plant Cell, 11: 707-726.
  • Lastdrager, J., J. Hanson and S. Smeekens (2014). Sugar signals and the control of plant growth and development. Journal of Experimental Botany, 65(3): 799-807.
  • Lazniewska, J., V.K. Macioszek and A.K. Kononowicz (2012). Plant-fungus interface: The role of surface structures in plant resistance and susceptibility to pathogenic fungi. Physiological and Molecular Plant Pathology, 78: 24-30.
  • Lecourieux, D., R. Ranjeva and A. Pugin (2006). Calcium in plant defense-signaling pathways. New Phytologist, 171(2): 249-269.
  • Lemoine, R., S. La Camera, R. Atanassova, F. Dédaldéchamp, T. Allario, N. Pourtau, J. Bonnemain, M. Laloi, P. Coutos-Thévenot, L. Maurousset, M. Faucher, C. Girousse, P. Lemonnier, J. Parrilla and M. Durand (2013). Source-to-sink transport of sugar and regulation by environmental factors. Frontiers in Plant Science, 4(272): 1-21.
  • Lemonnier, P., C. Gaillard, F. Veillet, J. Verbeke, R. Lemoine, P. Coutos-Thévenot and S. La Camera (2014). Expression of Arabidopsis sugar transport protein STP13 differentially affects glucose transport activity and basal resistance to Botrytis cinerea. Plant Molecular Biology, 85: 473-484.
  •       



                                               REFERENCES       

    Leyronas, C., F. Bryone, M. Duffaud, C. Troulet and P.C. Nicot (2015). Assessing host specialization of Botrytis cinerea on lettuce and tomato by genotypic and phenotypic characterization. Plant Pathology, 64: 119-127.

  • Li, Y., W. Van den Ende and F. Rolland (2014). Sucrose induction of anthocyanin biosynthesis is mediated by DELLA. Molecular Plant, 7(3): 570-572.
  • Liu, J., L. Han, B. Huai, P. Zheng, Q. Chang, T. Guan, D. Li, L. Huang and Z. Kang (2015). Down-regulation of a wheat alkaline/neutral invertase correlates with reduced host susceptibility to wheat stripe rust caused by Puccinia striiformis. Journal of Experimental Botany, 66(22): 7325-7338.
  • Liu, P., C.C. von Dahl, S. Park and D.F. Klessig (2011). Interconnection between methyl salicylate and lipid-based long-distance signaling during the development of systemic acquired resistance in Arabidopsis and Tobacco. Plant Physiology, 155: 1762-1768.
  • Liu, Z. and S. Rochfort (2015). Identification and quantitative analysis of oligosaccharides in wheat flour using LC-MS. Journal of Cereal Science, 63: 128-133.
  • Ljung, K., J.L. Nemhauser and P. Perata (2015). New mechanistic links between sugar and hormone signaling networks. Current Opinion in Plant Biology, 25: 130-137.
  • Lu, C., C. Lin, K. Lee, J. Chen, L. Huang, S. Ho, H. Liu, Y. Hsing and S. Yu (2007). The SnRK1A protein kinase plays a key role in sugar signaling during germination and seedling growth of rice. The Plant Cell, 19: 2484-2499.
  • Lunn, J.E., R. Feil, J.H.M. Hendriks, Y. Gibon, R. Morcuende, D. Osuna, W. Scheible, P. Carillo, M. Hajirezaei and M. Stitt (2006). Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADPglucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. The Biochemical Journal, 397: 139-148.
  • Lyon, G.D., B.A. Goodman and B. Williamson (2007). Chapter 8:Botrytis cinerea perturbs redox processes as an attack strategy in plants. In: Botrytis: Ecology, pathology and control (Elad, Y., B. Williamson, P. Tudzynski and N. Delen). Springer, 119-141.
  • Macho, A.P. and C. Zipfel (2014). Plant PRRs and the activation of innate immune signaling. Molecular Cell, 54: 263-272.
  • Malinovsky, F.G., J.U. Fangel and W.G.T. Willats (2014). The role of the cell wall in plant immunity. Frontiers in Plant Science, 5(178): 1-12.
  • Mao, G., X. Meng, Y. Liu, Z. Zheng, Z. Chen and S. Zhang (2011). Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. The Plant Cell, 23: 1639-1653.
  • Matros, A., D. Peshev, M. Peukert, H.P. Mock and W. Van den Ende (2015). Sugars as hydroxyl radical scavengers: Proof-of-concept by studying the fate of sucralose in Arabidopsis. The Plant Journal, 82(5): 822-839.
  •       



                                               REFERENCES       

    McCall, A.C. and J.A. Fordyce (2010). Can optimal defense theory be used to predict the distribution of plant chemical defenses? Journal of Ecology, 98(5): 985-992.

  • Meng, X., J. Xu, Y. He, K. Yang, B. Mordorski, Y. Liu and S. Zhang (2013). Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. The Plant Cell, 25(3): 1126-1142.
  • Mithöfer, A., G. Wanner and W. Boland (2005). Effects of feeding Spodoptera littoralis  on lima bean leaves: Continuous mechanism wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emissions. Plant Physiology, 137(3): 1160-1168.
  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9): 405-410.
  • Monoghan, J. and C. Zipfel (2012). Plant pattern recognition receptor complexes at the plasma membrane. Current Opinion in Plant Biology, 15: 349-357.
  • Moore, B.D., R.L. Andrew, G. Külheim and W.J. Foley (2014). Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytologist, 201: 733-750.
  • Moore, B., L. Zhou, F. Rolland, Q. Hall, W. Cheng, Y. Liu, I. Hwang, T. Jones and J. Sheen (2003). Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science, 300(5617): 332-336.
  • Moore, J.W., G.J. Loake and S.H. Spoel (2011). Transcription dynamics in plant immunity. The Plant Cell, 23: 2809-2820.
  • Moreau, M., M. Tian and D.F. Klessig (2012). Salicylic acid binds NPR3 and NPR4 to regulate NPR1-dependent defense responses. Cell Research, 22: 1631-1633.
  • Morkunas, I. and L. Ratajczak (2014). The role of sugar signaling in plant defense responses against fungal pathogens. Acta Physiologiae Plantarum, 36: 1607-1619.
  • Mou, Z., W. Fan and X. Dong (2003). Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell, 113: 935-944.
  • Mozgová, I., T. Wildhaber, Q. Liu, E. Abou-Mansour, F. L’Haridon, J. Métraux, W. Gruissem, D. Hofius and L. Hennig (2015). Chromatin assembly factor CAF-1 represses priming of plant defence response genes. Nature Plants, 15127: 1-8.
  • Munns, R. (2011). Plant adaptations to salt and water stress: differences and commonalities. Advances in Botanical Research, 57: 1-32.
  • Mur, L.A.J., P. Kenton, A.J. Lloyd, H. Ougham and E. Prats (2008). The hypersensitive response; the centenary is upon us but how much do we know? Journal of Experimental Botany, 59(3): 501-520.
  • Muthamilarasan, M. and M. Prasad (2013). Plant innate immunity: An updated insight into defense mechanism. Journal of Biosciences, 38(2): 433-449.
  •       



                                               REFERENCES       

    Nair, A., S.P. Kolet, H.V. Thulasiram and S. Bhargava (2015). Role of methyl jasmonate in the expression of mycorrhizal induced resistance against Fusarium oxysporum in tomato plants. Physiological and Molecular Plant Pathology, 92: 139-145.

  • Nakajima, M. and K. Akutsu (2013). Virulence factors of Botrytis cinerea. Journal of General Plant Pathology, 80: 15-23.
  • Návarová, H., F. Bernsdorff, A. Döring and J. Zeier (2012). Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. The Plant Cell, 24: 5123-5141.
  • Nawrot, R., J. Barylski, G. Nowicki, J. Broniarczyk, W. Buchwald and A. Gozdzicka-Józefiak (2014). Plant antimicrobial peptides. Folia Microbiologica, 59: 181-196.
  • Nedukha, O.M. (2015). Callose: Localization, functions, and synthesis in plant cells. Cytology and Genetics, 49(1): 49-57.
  • Nitta, Y., P. Ding and Y. Zhang (2015). Heterotrimeric G proteins in plant defense against pathogens and ABA signaling. Environmental and Experimental Botany, 114: 153-158.
  • Nürnberger, T., F. Brunner, B. Kemmerling and L. piater (2004). Innate immunity in plants and animals: Striking similarities and obvious differences. Immunological Reviews, 198: 249-266.
  • Ökmen, B. and G. Doehlemann (2014). Inside plant: Biotrophic strategies to modulate host immunity and metabolism. Current Opinion in Plant Biology, 20: 19-25.
  • Osakabe, Y., K. Osakabe, K. Shinozaki and L.P. Tran (2014). Response of plants to water stress. Frontiers in Plant Science, 5(86): 1-8.
  • Osuna, D., B. Usadel, R. Morcuende, Y. Gibon, O.E. Bläsing, M. Höhne, M. Günter, B. Kamlage, R. Trethewey, W. Scheible and M. Stitt (2007). Temporal responses of transcripts, enzyme activities and metabolites after adding sucrose to carbon-deprived Arabidopsis seedlings. The Plant Journal, 49: 463-491.
  • Pandey, P., R. Sinha, K.S. Mysore and M. Senthil-Kumar (2014). Impact of concurrent drought stress and pathogen infection on plants. In: Combined stresses in plants (Mahalingam, R.). Springer, 203-222.
  • Piasecka, A., N. Jedrzejczak-Rey and P. Bednarek (2015). Secondary metabolites in plant innate immunity: Conserved function of divergent chemicals. New Phytologist, 206: 948-964.
  • Pieterse, C.M.J. and M. Dicke (2007). Plant interactions with microbes and insects: From molecular mechanisms to ecology. TRENDS in Plant Science, 12(12): 564-569.
  • Pieterse, C.M.J., S. Van Der Ent, J.A. Van Pelt and L.C. Van Loon (2007). The role of ethylene in rhizobacteria-induced systemic resistance (ISR). In: Advances in Plant Ethylene Research (A. Ramina, C. Chang, J. Giovannoni, H. Klee, P. Perata and E. Woltering). Springer, 325-331.
  •       



                                               REFERENCES       

    Pimentel, D., L. Lach, R. Zuniga and D. Morrison (2000). Environmental and economic costs of nonindigenous species in the United States. BioScience, 50(1): 53-65.

  • Piquerez, S.J.M., S.E. Harvey, J.L. Beynon and V. Ntoukakis (2014). Improving crop disease resistance: Lessons from research on Arabidopsis and tomato. Frontiers in Plant Science, 5(671): 1-13.
  • Price, J., T. Li, S.G. Kang, J.K. Na and J. Jang (2003). Mechanisms of glucose signaling during germination of Arabidopsis. Plant Physiology, 132: 1424-1438.
  • Price, J., A. Laxmi, S.K. St. Martin and J. Jang (2004). Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. The Plant Cell, 16: 2128-2150.
  • Qamar, A., K.S. Mysore and M. Senthil-Kumar (2015). Role of proline and pyrroline-5-carboxylate metabolism in plant defense against invading pathogens. Frontiers in Plant Science, 6(503): 1-9.
  • Radhika, V., C. Kost, S. Bartram, M. Heil and W. Boland (2008). Testing the optimal defense hypothesis for two indirect defences: Extrafloral nectar and volatile organic compounds. Planta, 228: 449-457.
  • Ramesh, S.A., S.D. Tyerman, B. Xu, J. Bose, S. Kaur, V. Conn, P. Domingos, S. Ullah, S. Wege, S. Shabala, J.A. Feijó, P.R. Ryan and M. Gilliham (2015). GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters. Nature Communications, 6(7879): 1-10.
  • Ramon, M., F. Rolland, J.M. Thevelein, P. Van Dijck and B. Leyman (2007). ABI4 mediates the effects of exogenous trehalose on Arabidopsis growth and starch breakdown. Plant Molecular Biology, 63: 195-206.
  • Ramon, M., F. Rolland and J. Sheen (2008). Sugar sensing and signaling. The Arabidopsis Book, 6.
  • Rasul, S., C. Dubreuil, O. Lamotte, E. Koen, B. Poinssot, G. Alcaraz, D. Wendehenne and S. Jeandroz (2012). Nitric oxide production mediates oligogalacturonide-triggered immunity and resistance to Botrytis cinerea in Arabidopsis thaliana. Plant, Cell and Environment, 35(8): 1483-1499.
  • Ray, J.D. and T.R. Sinclair (1998). The effect of pot size on growth and transpiration of maize and soybean during water deficit stress. Journal of Experimental Botany, 49(325): 1381-1386.
  • Reddy, A.S.N., G.S. Ali, H. Celesnik and I.S. Day (2011). Coping with stresses: Roles of calcium- and calcium/calmodulin-regulated gene expression. The Plant Cell, 23: 2010-2032.
  •       



                                               REFERENCES       

    Redondo-Gómez, S. (2013). Chapter 1: Abiotic and biotic stress tolerance in plants. In: Molecular stress physiology of plants (Rout, G.R. and A.B. Das). Springer, 1-20.

  • Rejeb, I.B., V. Pastor and B. Mauch-Mani (2014). Plant responses to simultaneous biotic and abiotic stress: Molecular mechanisms. Plants, 3: 458-475.
  • Reuveni, M., S. Tuzun, J.S. Cole, M.R. Siegel and J. Kué (1986). The effects of plant age and leaf position on the susceptibility of tobacco to blue mold caused by Peronospora tabacina. Phytopathology, 76(4): 455-458.
  • Roitsch, T. (1999). Source-sink regulation by sugar and stress. Current Opinion in Plant Biology, 2: 198-206.
  • Roitsch, T. and M. González (2004). Function and regulation of plant invertases: Sweet sensations. Trends in Plant Science, 9(12): 606-613.
  • Rojas, C.M., M. Senthil-Kumar, V. Tzin and K.S. Mysore (2014). Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Frontiers in Plant Science, 5(17): 1-12.
  • Rolland, F., E. Baena-Gonzalez and J. Sheen (2006). Sugar sensing and signaling in plants: Conserved and novel mechanisms. Annual Review of Plant Biology, 57: 675-709.
  • Rossi, F.R., A. gárriz, M. Marina, F.M. Romero, M.E. Gonzalez, I.G. Collado and F.L. Pieckenstain (2011). The sesquiterpene botrytial produced by Botrytis cinerea induces the hypersensitive response on plant tissues and its action is modulated by salicylic acid and jasmonic acid signaling. Molecular Plant-Microbe Interactions, 24(8): 888-896.
  • Ruan, Y., Y. Jin, Y. Yang, G. Li and J.S. Boyer (2010). Sugar input, metabolism, and signaling mediated by invertase: Roles in development, yield potential, and response to drought and heat. Molecular Plant, 3(6): 942-955.
  • Ruan, Y. (2014). Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. Annual Review of Plant Biology, 65: 33-67.
  • Sagor, G.H., P. Chawla, D.W. Kim, T. Berberich, S. Kojima, M. Niitsu and T. Kusano (2015). The polyamine spermine induces the unfolded protein response via the MAPK cascade in Arabidopsis. Frontiers in Plant Science, 6(687): 1-11.
  • Sanabria, N.M., J. huang and I.A. Dubery (2010). Self/nonself perception in plants in innate immunity and defense. Self/Nonself, 1(1): 40-54.
  • Savatin, D.V., G. gramegna, V. Modesti and F. Cervone (2014). Wounding in the plant tissue: The defense of a dangerous passage. Frontiers in Plant Science, 5(470): 1-11.
  • Scharte, J., H. Schön and E. Weis (2005). Photosynthesis and carbohydrate metabolism in tobacco leaves during an incompatible interaction with Phytophthora nicotianae. Plant, Cell and Environment, 28: 1421-1435.
  •       



                                               REFERENCES       

    Schumacher, J. and P. Tudzynski (2012). Chapter 11: Morphogenesis and infection in Botrytis cinerea. In: Morphogenesis and pathogenicity in fungi (Pérez-Martín, J. and A. Di Pietro). Springer, 225-241.

  • Shah, J. and J. Zeier (2013). Long-distance communication and signal amplification in systemic acquired resistance. Frontiers in Plant Science, 4(30): 1-16.
  • Sharon, A., Y. Elad, R. Barakat and P. Tudzynski (2007). Chapter 10: Phytohormones in Botrytis-plant interactions. In: Botrytis: Ecology, pathology and control (Elad, Y., B. Williamson, P. Tudzynski and N. Delen). Springer, 163-179.
  • Sharp, R.G. (2013). A review of the applications of chitin and its derivatives in agriculture to modify plant-microbial interactions and improve crop yields. Agronomy, 3: 757-793.
  • Sheen, J., L. Zhou and J. Jang (1999). Sugars as signaling molecules. Current Opinion in Plant Biology, 2: 410-418.
  • Sheen, J. (2014). Master regulators in plant glucose signaling networks. Journal of Plant Biology, 57: 67-79.
  • Shelp, B.J., A.W. Bown and D. Faure (2006). Extracellular γ-aminobutyrate mediates communication between plants and other organisms. Plant Physiology, 142: 1350-1352.
  • Sinha, A.K., M.G. Hofmann, U. Römer, W. Köckenberger, L. Elling and T. Roitsch (2002). Metabolizable and non-metabolizable sugars activate different signal transduction pathways in Tomato. Plant Physiology, 128: 1480-1489.
  • Slaughter, A., X. Daniel, V. Flors, E. Luna, B. Hohn and B. Mauch-Mani (2012). Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiology, 158(2): 835-843.
  • Slewinski, T.L. (2011). Diverse functional roles of monosaccharide transporters and their homologs in vascular plants: A physiological perspective. Molecular Plant, 4(4): 641-662.
  • Smeekens, S. (1998). Sugar regulation of gene expression in plants. Current Opinion in Plant Biology, 1: 230-234.
  • Smith, A.M. and S.C. Zeeman (2006). Quantification of starch in plant tissues. Nature Protocols, 1(3): 1342-1345.
  • Smith, J.L., C.M. De Moraes and M.C. Mescher (2009). Jasmonate- and salicylate-mediated plant defense responses to insect herbivores, pathogens and parasitic plants. Pest Management Science, 65: 497-503.
  • Spoel, S.H. and X. Dong (2008). Making sense of hormone crosstalk during plant immune responses. Cell Host and Microbe, 3(6): 348-351.
  • Stael, S. P. Kmiecik, P. Willems, K. Van Der Kelen, N.S. Coll, M. Teige and F. Van Breusegem (2015). Plant innatie immunity – Sunny side up? Trends in Plant Science, 20(1): 3-11.
  •       



                                               REFERENCES       

    Stintzi, A., T. Heitz, V. Prasad, S. Wiedemann-Merdinoglu, S. Kauffmann, P. Geoffroy, M. Legrand and B. Fritig (1993). Plant ‘pathogenesis-related’ proteins and their role in defense against pathogens. Biochimie, 75: 687-706.

  • Stotz, H.U., G.K. Mitrousia, P.J.G.M. de Wit and B.D.L. Fitt (2014). Effector-triggered defence against apoplastic fungal pathogens. Trends in Plant Science, 19(8): 491-500.
  • Struck, C. (2006). Chapter 4: Infection strategies of plant parasitic fungi. In: The Epidemiology of Plant Diseases (Cooke, B.M., D.G. Jones and B. Kaye). Springer, 117-137.
  • Sudisha, J., R.G. Sharathchandra, K.N. Amruthesh, A. Kumar and H.S. Shetty (2012). Chapter 17: Pathogenesis related proteins in plant defense response. In: Plant defence: Biological control (Mérillon, J.M. and K.G. Ramawat). Springer, 379-403.
  • Sun, F., P. Zhang, M. Guo, W. Yu and K. Chen (2013). Burdock fructooligosaccharide induces fungal resistance in postharvest Kyoho grapes by activating the salicylic acid-dependent pathway and inhibiting browning. Food Chemistry, 138: 539-546.
  • Sutton, P.N., M.J. Gilbert, L.E. Williams and J.L. Hall (2007). Powdery mildew infection of wheat leaves changes host solute transport and invertase activity. Physiologia Plantarum, 129: 787-795.
  • Suzuki, N., R.M. Rivero, V. Shulaev, E. Blumwald and R. Mittler (2014). Abiotic and biotic stress combinations. New Phytologist, 203: 32-43.
  • Takahashi, T. and J. Kakehi (2010). Polyamines: Ubiquitous polycations with unique roles in growth and stress responses. Annals of Botany, 105: 1-6.
  • Takatsuji, H. and C. Jiang (2014). Plant hormone crosstalks under biotic stresses. In: Phytohormones – A window to metabolism, signaling and biotechnological applications (Tran, S.P. and S. Pal). Springer, 323-350.
  • Tarkowski, L.P. and W. Van den Ende (2015). Cold tolerance triggered by soluble sugars: A multifaceted countermeasure. Frontiers in Plant Science, 6(203): 1-7.
  • Tauzin, A.S. and T. Giardina (2014). Sucrose and invertases, a part of the plant defense response to the biotic stresses. Frontiers in Plant Science, 5(293): 1-8.
  • Teh, O. and D. Hofius (2014). Membrane trafficking and autophagy in pathogen-triggered cell death and immunity. Journal of Experimental Botany, 65(5): 1297-1312.
  • Tena, G., M. Boudsocq and J. Sheen (2011). Protein kinase signaling networks in plant innate immunity. Current Opinion in Plant Biology, 14(5): 519-529.
  • Tenberge, K.B. (2007). Chapter 5: Morphology and cellular organization in Botrytis interactions with plants. In: Botrytis: Ecology, pathology and control (Elad, Y., B. Williamson, P. Tudzynski and N. Delen). Springer, 67-84.
  • Thibaud, M., S. Gineste, L. Nussaume and C. Robaglia (2004). Sucrose increases pathogenesis-related PR-2 gene expression in Arabidopsis thaliana through an SA-dependent but NPR1-independent signaling pathway. Plant Physiology and Biochemistry, 42: 81-88.
  •       



                                               REFERENCES       

    Thomas, C.S., J.J. Marois and J.T. English (1988). The effects of wind speed, temperature, and relative humidity on development of aerial mycelium and conidia of Botrytis cinerea on grape. Phytopathology, 78(3): 260-265.

  • Thomma, B.P.H.J., T. Nürnberger and M.H.A.J. Joosten (2011). Of PAMPs and effectors: The blurred PTI-ETI dichotomy. The Plant Cell, 23: 4-15.
  • Tiburcio, A.F., T. Altabella, M. Bitrián and R. Alcázar (2014). The roles of polyamines during the lifespan of plants: From development to stress. Planta, 240: 1-18.
  • Trouvelot, S., M. Héloir, B. Poinssot, A. Gauthier, F. Paris, C. Guillier, M. Combier, L. Trdá, X. Daire and M. Adrian (2014). Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays. Frontiers in Plant Science, 5(592): 1-14.
  • Turgeon, R. and R. Medville (2004). Phloem loading. A reevaluation of the relationship between plasmodesmatal frequencies and loading strategies. Plant Physiology, 136(3): 3795-3803.
  • Valluru, R. and W. Van den Ende (2008). Plant fructans in stress environments: Emerging concepts and future prospects. Journal of Experimantal Botany, 59(11): 2905-2916.
  • Valluru, R. and W. Van den Ende (2011). Myo-inositol and beyond: Emerging networks under stress. Plant Science, 181: 387-400.
  • van Baarlen, P., L. Legendre and J.A.L. van Kan (2007). Chapter 9: Plant defence compounds against Botrytis infection. In: Botrytis: Ecology, pathology and control (Elad, Y., B. Williamson, P. Tudzynski and N. Delen). Springer, 143-161.
  • van Baarlen, P., E.J. Woltering, M. Staats and J.A.L. Van Kan (2007). Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: An important role for cell death control. Molecular Plant Pathology, 8(1): 41-54.
  • Van den Ende, W., B. De Coninck and A. Van Laere (2004). Plant fructan exohydrolases: A role in signaling and defense? Trends in Plant Science, 9(11): 523-528.
  • Van den Ende, W. and R. Valluru (2009). Sucrose, sucrosyl oligosaccharides, and oxidative stress: Scavenging and salvaging? Journal of Experimental Botany, 60(1): 9-18.
  • Van den Ende, W. (2013). Multifunctional fructans and raffinose family oligosaccharides. Frontiers in Plant Science, 4(247): 1-11.
  •       



                                               REFERENCES       

    Van den Ende, W. (2014). Sugars take a central position in plant growth, development and, stress responses. A focus on apical dominance. Frontiers in Plant Science, 5(313): 1-3.

  • van der Hoorn, R.A.L. and S. Kamoun (2008). From guard to decoy: A new model for perception of plant pathogen effectors. The Plant Cell, 20: 2009-2017.
  • van Kan, J.A.L. (2006). Licensed to kill: The lifestyle of a necrotrophic plant pathogen. Trends in Plant Science, 11(5): 247-253.
  • Vargas, W.A. and G.L. Salerno (2010). The Cinderella story of sucrose hydrolysis: Alkaline/neutral invertases, from cyanobacteria to unforeseen roles in plant cytosol and organelles. Plant Science, 178(1): 1-8.
  • Vatsa-Portugal, P., A. Walker, L. Jacquens, C. Clément, E.A. Barka and N. Vaillant-Gaveau (2015). Inflorescences vs leaves: A distinct modulation of carbon metabolism process during Botrytis infection. Physiologia Plantarum, 154: 162-177.
  • Veloso, J., T. García, A. Bernal and J. Díaz (2014). New bricks on the wall of induced resistance: Salicylic acid receptors and transgenerational priming. European Journal of Plant Pathology, 138: 685-693.
  • Vergauwen, R., W. Van den Ende and A. Van Laere (2000). The role of fructan in flowering of Campanula rapunculoides. Journal of Experimental Botany, 51(348): 1261-1266.
  • Vidhyasekaran, P. (2014b). Chapter 3: G-proteins as molecular switches in signal transduction. In: PAMP signals in plant innate immunity (Vidhyasekaran, P.). Springer, 163-206.
  • Vidhyasekaran, P. (2014c). Chapter 4: Calcium ion signaling system – calcium signatures and sensors. In: PAMP signals in plant innate immunity (Vidhyasekaran, P.). Springer, 207-282.
  • Vidhyasekaran, P. (2015). Plant hormone signaling systems in plant innate immunity. Springer, 1-444.
  • Vijayakumari, K. and J.T. Puthur (2015). γ-aminobutyric acid (GABA) priming enhances the osmotic stress tolerance in Piper nigrum Linn. plants subjected to PEG-induced stress. Plant Growth Regulation, 78(1): 57-67.
  • Voesenek, L.A.C.J. and J. Bailey-Serres (2015). Flood adaptive traits and processes: An overview. New Phytologist, 206: 57-73.
  • Walters, D.R., J. Ratsep and N.D. Havis (2013). Controlling crop diseases using induced resistance: Challenges for the future. Journal of Experimental Botany, 64(5): 1263-1280.
  • Wang, F., G. Feng and K. Chen (2009). Defense responses of harvested tomato fruit to burdock fructooligosaccharide, a novel potential elicitor. Postharvest Biology and Technology, 52(1): 110-116.
  •       



                                               REFERENCES       

    Wang, L., X. Li, H. Lian, D. Ni, Y. He, X. Chen and Y. Ruan (2010). Evidence that high activity of vacuolar invertase is required for cotton fiber and Arabidopsis root elongation through osmotic dependent and independent pathways, respectively. Plant Physiology, 154(2): 744-756.

  • Wang, X., R. Sager, W. Cui, C. Zhang, H. Lu and J. Lee (2013). Salicylic acid regulates plasmodesmata closure during innate immune responses in Arabidopsis. The Plant Cell, 25: 2315-2329.
  • Wasternack, C. and B. Hause (2013). Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany, 111: 1021-1058.
  • Winter, H. and S.C. Huber (2000). Regulation of sucrose metabolism in higher plants: Localization and regulation of activity of key enzymes. Critical Reviews in Biochemistry and Molecular Biology, 35(4): 253-289.
  • Wittstock, U. and J. Gershenzon (2002). Constitutive plant toxins and their role in defense against herbivores and pathogens. Current Opinion in Plant Biology, 5: 300-307.
  • Xiong, L. and J. Zhu (2003). Regulation of abscisic acid biosynthesis. Plant Physiology, 133(1): 29-36.
  • Xiong, Y., M. McCormack, L. Li, Q. Hall, C. Xiang and J. Sheen (2013). Glc-TOR signaling leads transcriptome reprogramming and meristem activation. Nature, 496(7444): 181-186.
  • Xu, H. and M.C. Heath (1998). Role of calcium in signal transduction during the hypersensitive response caused by basidiospore-derived infection of the cowpea rust fungus. The Plant Cell, 10(4): 585-597.
  • Yun, B., S.H. Spoel and G.J. Loake (2012). Synthesis of and signalling by small, redox active molecules in the plant immune response. Biochimica et Biophysica Acta, 1820: 770-776.
  • Zhang, D. and W. Yongzhang (2002). Post-translational inhibitory regulation of acid invertase induced by fructose and glucose in developing apple fruit. Science in China, 45(3): 309.

Zimmerli, L., J. Métraux and B. Mauch-Mani (2001). β-aminobutyric acid-induced protection of Arabidopsis against the necrotrophic fungus Botrytis cinerea. Plant Physiology, 126: 517-523.

Download scriptie (4.33 MB)
Universiteit of Hogeschool
KU Leuven
Thesis jaar
2016
Promotor(en)
Wim Van den Ende