Unravelling the role of ROCK in the pathological retina

Lien Veys
Persbericht

‘ROCK inhibitie’ klinkt glaucoompatiënten als muziek in de oren

Ooit al gehoord van de term ‘neurodegeneratieve ziekten’? Misschien wel, misschien ook niet. In elk geval zal één van de volgende neurodegeneratieve ziekten je wel bekend in de oren klinken; de ziekte van Parkinson, frontotemporale dementie, amyotrofe laterale sclerose (ALS), de ziekte van Alzheimer, glaucoom of de ziekte van Huntington, zijn allemaal ziekten van het zenuwstelsel waarbij in de loop der jaren zenuwcellen afsterven.

In het kader van haar biologieopleiding onderzocht Lien Veys voor haar masterthesis wat de rol is van ROCK moleculen bij neurodegeneratieve ziekten zoals bv. glaucoom.

Het oog als modelsysteem

Omdat neurodegeneratieve ziekten vaker optreden bij ouderen, stijgt het aantal mensen dat hieraan lijdt in onze vergrijzende samenleving. Dergelijke ziekten verminderen de levenskwaliteit van de patiënten aanzienlijk en zijn bovendien nog niet te genezen of zelfs af te remmen. In sommige gevallen kan de vooruitgang van de ziekte wat vertraagd worden, maar eenmaal een zenuwcel in het centraal zenuwstelsel (waar ook de hersenen deel van uitmaken) beschadigd is, kan deze niet meer teruggroeien en is er geen of slechts een onvolledig herstel mogelijk. Daarom is het hoogstnodig nieuwe strategieën te ontwikkelen, die gericht zijn op het behoud van de beschadigde zenuwcellen en het herstel ervan.

Aangezien het oog informatie doorgeeft aan de hersenen via zenuwcellen in het netvlies, kan eveneens in dit circuit neurodegeneratie optreden. Verder is het netvlies structureel en functioneel zeer gelijkaardig aan de rest van de hersenen. Bovendien is het optische circuit anatomisch eenvoudig, gemakkelijk te manipuleren en bereikbaar via het oog, wat het een ideaal modelsysteem maakt om neurodegeneratieve ziekten te bestuderen. Zo kunnen we door het oog te bestuderen niet enkel informatie vergaren over neurodegeneratieve oogziekten, zoals glaucoom, maar ook over andere neurodegeneratieve ziekten in de hersenen.

ROCK inhibitie als strategie voor het beschermen en herstellen van zenuwcellen

Recent is de inhibitie van het Rho-associated coiled-coil kinase (ROCK) molecule naar voor geschoven als een efficiënte en veelbelovende strategie voor het beschermen en herstellen van zenuwcellen. Omdat de exacte werkingsmechanismen van ROCK nog niet gekend zijn, was het doel van dit onderzoek om de rol van ROCK gedetailleerder te ontrafelen. Hierbij werd niet enkel gekeken hoe ROCK werkt in gezonde cellen en weefsels, maar ook in een ziek oog. ROCK kan tevens onder 2 vormen voorkomen en wordt dan ROCK1 of ROCK2 genoemd. In welke cellen en weefsels meer of minder ROCK1 of ROCK2 aanwezig is en of veranderingen in dit patroon verschillen tussen beiden vormen is echter nog niet volledig opgehelderd.

ROCK onderzocht op 2 niveaus

Om menselijke ziekten te bestuderen worden vaak levende proefdieren gebruikt die model staan voor de mens, dit heet in vivo onderzoek en heeft over de jaren heen al veel succes opgeleverd. Het is echter niet altijd even eenvoudig om een menselijke ziekte na te bootsen in een ander dier. Het lichaam is zo complex dat het vaak moeilijk is om de verschillende factoren te onderscheiden die een rol spelen bij de balans van het lichaam. Bovendien is het houden van dieren voor laboratoriumonderzoek vaak een kostelijke en tijdrovende aangelegenheid. Om experimenten eenduidiger, sneller en efficiënter te laten verlopen en minder proefdieren te gebruiken is er een hele batterij nieuwe technieken beschikbaar om basisonderzoek te doen, zoals in vitro en ex vivo methodes, beiden gebruikt in deze thesis.

In vitro

De in vitro aanpak is steeds populairder; hierbij worden cellen uit het lichaam gehaald, van elkaar los gemaakt en in een kamertje gehouden dat de omstandigheden van het lichaam nabootst, wat ‘cellen in cultuur brengen’ heet. Op die manier kunnen grote hoeveelheden cellen aan een relatief lage prijs in cultuur worden gehouden en het kan effect van bepaalde veranderingen hierin eenduidig bestudeerd worden in een gecontroleerde omgeving. Aangezien het exacte ROCK1 en ROCK2 patroon ook in het netvlies nog niet volledig gekarakteriseerd is, werden eerst de ROCK1 en ROCK2 levels bestudeerd in gezonde en zieke retinale cellen, geïsoleerd uit varkensogen. Varkens werden gebruikt omdat cellen in varkensogen talrijk, groot en gemakkelijk in cultuur te houden zijn. Daarenboven waren de varkensogen slachtafval van een slachthuis en hoefden er geen echte proefdieren gebruikt te worden. Om een neurodegeneratieve omgeving na te bootsen, werden de cellen ziek gemaakt door een stressor toe te voegen, die ook aanwezig is in de neurodegeneratieve retina. Deze experimenten toonden een duidelijke aanwezigheid van ROCK in bepaalde gezonde cellen in het netvlies aan en legden differentiële veranderingen in ROCK1 en ROCK2 levels in zieke cellen bloot.

Ex vivo

Bij het gebruik van in vitro modellen wordt er echter geen rekening gehouden met de interacties tussen de cellen in een weefsel. Daarom werd ook de ex vivo aanpak gebruikt, waarbij een deeltje van een weefsel in cultuur wordt gebracht. In dit onderzoek werd zowel weefsel van het netvlies van varkens als van muizen gebruikt. Deze weefseldeeltjes, ook explanten genoemd, zijn vaak een ideale manier om het effect van nieuwe therapeutische moleculen te onderzoeken. Voor deze thesis werd een varkensexplant modelsysteem gekarakteriseerd dat een neurodegeneratieve retina nabootst. Dit model zou dan in de toekomst gebruikt kunnen worden om geneesmiddelen (bvb. ROCK1 of/en ROCK2 inhibitoren) op grote schaal te testen en om te onderzoeken of ze de neurodegeneratieve retina al dan niet kunnen herstellen. Tot slot werden de effecten van ROCK inhibitors getest op explanten van heel jonge muizen waarvan de zenuwcellen nog heel goed kunnen groeien. Deze ROCK inhibitors bleken wel degelijk een positief effect te hebben op de initiële fase van het teruggroeien van de connecties van de zenuwcel.

Een stapsteen naar nieuwe therapieën

Globaal gezien legde dit onderzoek al een aantal belangrijke aspecten van het werkingsmechanisme van ROCK bloot, werd ROCK gedetailleerder gelokaliseerd en opgevolgd en werd er een neurodegeneratief model gevalideerd dat gebruikt kan worden om de kracht van nieuwe ROCK inhibitoren te testen. Bovendien werd het positief effect van ROCK inhibitie in neurodegeneratie aangestipt. Deze studie benadrukte ook de nood aan het verder ontrafelen van ROCK in neurodegeneratieve processen, om ROCK inhibitie te kunnen gebruiken als een innovatieve therapie voor neurodegeneratieve (oog)ziekten, zoals glaucoom.

Bibliografie

Adamiec-Mroczek J, Zajac-Pytrus H, Misiuk-Hojlo M (2015) Caspase-Dependent Apoptosis of Retinal Ganglion Cells During the Development of Diabetic Retinopathy. Adv Clin Exp Med 24: 531-535

Agarwal R, Gupta SK, Agarwal P, Saxena R, Agrawal SS (2009) Current concepts in the pathophysiology of glaucoma. Indian J Ophthalmol 57: 257-266

Ahmed Z, Aslam M, Lorber B, Suggate EL, Berry M, Logan A (2010) Optic nerve and vitreal inflammation are both RGC neuroprotective but only the latter is RGC axogenic. Neurobiol Dis 37: 441-454

Almasieh M, Wilson AM, Morquette B, Cueva Vargas JL, Di Polo A (2012) The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res 31: 152-181

Amano M, Nakayama M, Kaibuchi K (2010) Rho-kinase/ROCK: A key regulator of the cytoskeleton and cell polarity. Cytoskeleton 67: 545-554

Araya-Callis C, Hiemke C, Abumaria N, Flugge G (2012) Chronic psychosocial stress and citalopram modulate the expression of the glial proteins GFAP and NDRG2 in the hippocampus. Psychopharmacology (Berl) 224: 209-222

Arimura N, Inagaki N, Chihara K, Menager C, Nakamura N, Amano M, Iwamatsu A, Goshima Y, Kaibuchi K (2000) Phosphorylation of collapsin response mediator protein-2 by Rho-kinase. Evidence for two separate signaling pathways for growth cone collapse. J Biol Chem 275: 23973-23980

Arita R, Hata Y, Nakao S, Kita T, Miura M, Kawahara S, Zandi S, Almulki L, Tayyari F, Shimokawa H, Hafezi-Moghadam A, Ishibashi T (2009) Rho kinase inhibition by fasudil ameliorates diabetes-induced microvascular damage. Diabetes 58: 215-226

Azuma N (2000) [Molecular cell biology on morphogenesis of the fovea and evolution of the central vision]. Nippon Ganka Gakkai Zasshi 104: 960-985

Barber AJ (2015) Diabetic retinopathy: recent advances towards understanding neurodegeneration and vision loss. Sci China Life Sci 58: 541-549

Barker RA, Cicchetti F (2014) Neurodegenerative disorders: the Glia way forward. Front Pharmacol 5: 157

Beal M, Lang A, Ludolph A (2005) Neurodegenerative diseases: Cambridge University Press.

Bear M, Connors B, Paradiso M (2007) Neuroscience, exploring the brain, Vol. Third edition: Lippincott Williams & Wilkins.

Behl T, Kaur I, Kotwani A (2015) Implication of oxidative stress in progression of diabetic retinopathy. Surv Ophthalmol

Benowitz L, Yin Y (2008) Rewiring the injured CNS: lessons from the optic nerve. Exp Neurol 209: 389-398

Benowitz LI, Popovich PG (2011) Inflammation and axon regeneration. Curr Opin Neurol 24: 577-583

Benowitz LI, Yin Y (2007) Combinatorial treatments for promoting axon regeneration in the CNS: strategies for overcoming inhibitory signals and activating neurons' intrinsic growth state. Dev Neurobiol 67: 1148-1165

Bergles DE, Diamond JS, Jahr CE (1999) Clearance of glutamate inside the synapse and beyond. Curr Opin Neurobiol 9: 293-298

Berry M, Carlile J, Hunter A (1996) Peripheral nerve explants grafted into the vitreous body of the eye promote the regeneration of retinal ganglion cell axons severed in the optic nerve. J Neurocytol 25: 147-170

Bikbova G, Oshitari T, Baba T, Yamamoto S (2014) Neurotrophic factors for retinal ganglion cell neuropathy - with a special reference to diabetic neuropathy in the retina. Curr Diabetes Rev 10: 166-176

Booij JC, Baas DC, Beisekeeva J, Gorgels TG, Bergen AA (2010) The dynamic nature of Bruch's membrane. Prog Retin Eye Res 29: 1-18

Bosco A, Steele MR, Vetter ML (2011) Early microglia activation in a mouse model of chronic glaucoma. J Comp Neurol 519: 599-620

Bosse F (2012) Extrinsic cellular and molecular mediators of peripheral axonal regeneration. Cell Tissue Res 349: 5-14

Bredesen DE, Rao RV, Mehlen P (2006) Cell death in the nervous system. Nature 443: 796-802

Bringmann A, Grosche A, Pannicke T, Reichenbach A (2013) GABA and Glutamate Uptake and Metabolism in Retinal Glial (Müller) Cells. Front Endocrinol (Lausanne) 4: 48

Bringmann A, Iandiev I, Pannicke T, Wurm A, Hollborn M, Wiedemann P, Osborne NN, Reichenbach A (2009a) Cellular signaling and factors involved in Muller cell gliosis: neuroprotective and detrimental effects. Prog Retin Eye Res 28: 423-451

Bringmann A, Pannicke T, Biedermann B, Francke M, Iandiev I, Grosche J, Wiedemann P, Albrecht J, Reichenbach A (2009b) Role of retinal glial cells in neurotransmitter uptake and metabolism. Neurochem Int 54: 143-160

Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN, Reichenbach A (2006) Muller cells in the healthy and diseased retina. Prog Retin Eye Res 25: 397-424

Bull ND, Johnson TV, Welsapar G, DeKorver NW, Tomarev SI, Martin KR (2011) Use of an adult rat retinal explant model for screening of potential retinal ganglion cell neuroprotective therapies. Invest Ophthalmol Vis Sci 52: 3309-3320

Burgoyne CF. (2015) The morphological difference between glaucoma and other optic neuropathies. In Syllabus AM (ed.). North American Neuro-Ophthalmology Society, pp. 527-542.

Buyens T, Gaublomme D, Van Hove I, De Groef L, Moons L (2014) Quantitative assessment of neurite outgrowth in mouse retinal explants. Methods Mol Biol 1162: 57-71

Caprioli J, Kitano S, Morgan JE (1996) Hyperthermia and hypoxia increase tolerance of retinal ganglion cells to anoxia and excitotoxicity. Investigative Ophthalmology & Visual Science 37: 2376-2381

Cavallotti CAP, Cerullo L (2008) Age-Related Changes of the Human Eye, Vol. Chapter 7: Humana Press.

Challenor M, O'Hare Doig R, Fuller P, Giacci M, Bartlett C, Wale CH, Cozens GS, Hool L, Dunlop S, Swaminathan Iyer K, Rodger J, Fitzgerald M (2015) Prolonged glutamate excitotoxicity increases GluR1 immunoreactivity but decreases mRNA of GluR1 and associated regulatory proteins in dissociated rat retinae in vitro. Biochimie 112: 160-171

Chen H, Weber AJ (2004) Brain-derived neurotrophic factor reduces TrkB protein and mRNA in the normal retina and following optic nerve crush in adult rats. Brain Res 1011: 99-106

Chong RS, Martin KR (2015) Glial cell interactions and glaucoma. Curr Opin Ophthalmol 26: 73-77

Ciulla TA, Harris A, McIntyre N, Jonescu-Cuypers C (2014) Treatment of diabetic macular edema with sustained-release glucocorticoids: intravitreal triamcinolone acetonide, dexamethasone implant, and fluocinolone acetonide implant. Expert Opin Pharmacother 15: 953-959

Cooper WJ, Jones AC, Whitehead RF, Zika RG (2007) Sunlight-induced photochemical decay of oxidants in natural waters: implications in ballast water treatment. Environ Sci Technol 41: 3728-3733

Cuenca N, Fernandez-Sanchez L, Campello L, Maneu V, De la Villa P, Lax P, Pinilla I (2014) Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Prog Retin Eye Res 43: 17-75

Cui Qi, Yip HK, Zhao RCH, So K-F, Harvey AR (2003) Intraocular elevation of cyclic AMP potentiates ciliary neurotrophic factor-induced regeneration of adult rat retinal ganglion cell axons. Molecular and Cellular Neuroscience 22: 49-61

Cursiefen C, Wisse M, Cursiefen S, Junemann A, Martus P, Korth M (2000) Migraine and tension headache in high-pressure and normal-pressure glaucoma. Am J Ophthalmol 129: 102-104

Danesh-Meyer HV (2011) Neuroprotection in glaucoma: recent and future directions. Curr Opin Ophthalmol 22: 78-86

Das A, McGuire PG, Rangasamy S (2015) Diabetic Macular Edema: Pathophysiology and Novel Therapeutic Targets. Ophthalmology 122: 1375-1394

de Lima S, Koriyama Y, Kurimoto T, Oliveira JT, Yin Y, Li Y, Gilbert HY, Fagiolini M, Martinez AM, Benowitz L (2012) Full-length axon regeneration in the adult mouse optic nerve and partial recovery of simple visual behaviors. Proc Natl Acad Sci U S A 109: 9149-9154

Dekeyster E, Geeraerts E, Buyens T, Van den Haute C, Baekelandt V, De Groef L, Salinas-Navarro M, Moons L (2015) Tackling Glaucoma from within the Brain: An Unfortunate Interplay of BDNF and TrkB. PLoS One 10: e0142067

Devi TS, Lee I, Huttemann M, Kumar A, Nantwi KD, Singh LP (2012) TXNIP links innate host defense mechanisms to oxidative stress and inflammation in retinal Muller glia under chronic hyperglycemia: implications for diabetic retinopathy. Exp Diabetes Res 2012: 438238

Dezawa M (2002) Central and peripheral nerve regeneration by transplantation of Schwann cells and transdifferentiated bone marrow stromal cells. Anat Sci Int 77: 12-25

Diekmann H, Kalbhen P, Fischer D (2015) Active mechanistic target of rapamycin plays an ancillary rather than essential role in zebrafish CNS axon regeneration. Front Cell Neurosci 9: 251

Dong C-J, Guo Y, Agey P, Wheeler L, Hare WA (2008) α2 Adrenergic Modulation of NMDA Receptor Function as a Major Mechanism of RGC Protection in Experimental Glaucoma and Retinal Excitotoxicity. Invest Ophthalmol Vis Sci 49: 4515-4522

Dorfman D, Aranda ML, Rosenstein RE (2015) Enriched Environment Protects the Optic Nerve from Early Diabetes-Induced Damage in Adult Rats. PLoS One 10: e0136637

Easthope SE, Perry CM (2002) Topical bimatoprost: a review of its use in open-angle glaucoma and ocular hypertension. Drugs Aging 19: 231-248

Ebneter A, Casson RJ, Wood JP, Chidlow G (2010) Microglial activation in the visual pathway in experimental glaucoma: spatiotemporal characterization and correlation with axonal injury. Invest Ophthalmol Vis Sci 51: 6448-6460

Erickson KK, Sundstrom JM, Antonetti DA (2007) Vascular permeability in ocular disease and the role of tight junctions. Angiogenesis 10: 103-117

Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24: 2143-2155

Feng Y, LoGrasso PV, Defert O, Li R (2015) Rho Kinase (ROCK) Inhibitors and Their Therapeutic Potential. J Med Chem

Ferreira SM, Lerner SF, Brunzini R, Evelson PA, Llesuy SF (2004) Oxidative stress markers in aqueous humor of glaucoma patients. Am J Ophthalmol 137: 62-69

Filbin MT (2003) Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci 4: 703-713

Fischer D, He Z, Benowitz LI (2004) Counteracting the Nogo receptor enhances optic nerve regeneration if retinal ganglion cells are in an active growth state. J Neurosci 24: 1646-1651

Frank RN (2015) Diabetic retinopathy and systemic factors. Middle East Afr J Ophthalmol 22: 151-156

Friedlander M (2007) Fibrosis and diseases of the eye. J Clin Invest 117: 576-586

Fruttiger M (2007) Development of the retinal vasculature. Angiogenesis 10: 77-88

Fujita Y, Yamashita T (2014) Axon growth inhibition by RhoA/ROCK in the central nervous system. Front Neurosci 8: 338

Gardner TW, Antonetti DA, Barber AJ, LaNoue KF, Levison SW, Group TPSRR (2002) Diabetic retinopathy - more than meets the eye. Survey of ophthamology 47 (supl. 2): 253-262

Garnock-Jones KP (2014) Ripasudil: first global approval. Drugs 74: 2211-2215

Gaublomme D, Buyens T, Moons L (2013) Automated analysis of neurite outgrowth in mouse retinal explants. J Biomol Screen 18: 534-543

Gavrilova NS, Gavrilov LA (2009) Aging Populations: Russia/Eastern Europe. In International Handbook of the Demography of Aging, Uhlenberg P (ed), pp 113-131. New York: Springer-Verlag

Gelman R, Stevenson W, Prospero Ponce C, Agarwal D, Christoforidis JB (2015) Retinal Damage Induced by Internal Limiting Membrane Removal. J Ophthalmol 2015: 939748

Ghosh F, Arner K (2010) Cell type differentiation dynamics in the developing porcine retina. Dev Neurosci 32: 47-58

Ghosh F, Arner K, Taylor L (2016) In vitro biomechanical modulation-retinal detachment in a box. Graefes Arch Clin Exp Ophthalmol 254: 475-487

Ghosh F, Engelsberg K, English RV, Petters RM (2007) Long-term neuroretinal full-thickness transplants in a large animal model of severe retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol 245: 835-846

Goldberg JL, Klassen MP, Hua Y, Barres BA (2002) Amacrine-signaled loss of intrinsic axon growth ability by retinal ganglion cells. Science 296: 1860-1864

Gopalakrishnan SM, Teusch N, Imhof C, Bakker MH, Schurdak M, Burns DJ, Warrior U (2008) Role of Rho kinase pathway in chondroitin sulfate proteoglycan-mediated inhibition of neurite outgrowth in PC12 cells. J Neurosci Res 86: 2214-2226

GrandPre T, Nakamura F, Vartanian T, Strittmatter SM (2000) Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403: 439-444

Grigsby JG, Cardona SM, Pouw CE, Muniz A, Mendiola AS, Tsin AT, Allen DM, Cardona AE (2014) The role of microglia in diabetic retinopathy. J Ophthalmol 2014: 705783

Guduric-Fuchs J, Ringland LJ, Gu P, Dellett M, Archer DB, Cogliati T (2009) Immunohistochemical study of pig retinal development. Mol Vis 15: 1915-1928

Gupta N, Ang LC, Noel de Tilly L, Bidaisee L, Yucel YH (2006) Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex. Br J Ophthalmol 90: 674-678

Hauk TG, Muller A, Lee J, Schwendener R, Fischer D (2008) Neuroprotective and axon growth promoting effects of intraocular inflammation do not depend on oncomodulin or the presence of large numbers of activated macrophages. Exp Neurol 209: 469-482

Higginbotham EJ, Gordon MO, Beiser JA, Drake MV, Bennett GR, Wilson MR, Kass MA (2004) The Ocular Hypertension Treatment Study: topical medication delays or prevents primary open-angle glaucoma in African American individuals. Arch Ophthalmol 122: 813-820

Hollanders K, Van Bergen T, Kindt N, Castermans K, Leysen D, Vandewalle E, Moons L, Stalmans I (2015) The effect of AMA0428, a novel and potent ROCK inhibitor, in a model of neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 56: 1335-1348

Hove IV, Lefevere E, Moons L (2015) ROCK inhibition as a novel potential strategy for axonal regeneration in optic neuropathies. Neural Regen Res 10: 1949-1950

Huang P, Wang J, Shen X, Jiao Q, Cheng Y, Xie B, Zhong Y (2012) The effects of erythropoietin on RhoA/Rho-associated kinase expression in rat retinal explants cultured with glutamate. Mol Med Rep 6: 662-666

Hübener M (2003) Mouse visual cortex. Current Opinion in Neurobiology 13: 413-420

Huebner EA, Strittmatter SM (2009) Axon regeneration in the peripheral and central nervous systems. Results Probl Cell Differ 48: 339-351

Hussain RM, Ciulla TA (2015) Treatment Strategies for Refractory Diabetic Macular Edema: Switching Anti-VEGF Treatments, adopting corticosteroid-based treatments, and combination therapy. Expert Opin Biol Ther

Ishikawa M (2013) Abnormalities in glutamate metabolism and excitotoxicity in the retinal diseases. Scientifica (Cairo) 2013: 528940

Ishizaki T, Naito M, Fujisawa K, Maekawa M, Watanabe N, Saito Y, Narumiya S (1997) p160ROCK, a Rho-associated coiled-coil forming protein kinase, works downstream of Rho and induces focal adhesions. FEBS Lett 404: 118-124

Januschowski K, Muller S, Krupp C, Spitzer MS, Hurst J, Schultheiss M, Bartz-Schmidt KU, Szurman P, Schnichels S (2015) Glutamate and hypoxia as a stress model for the isolated perfused vertebrate retina. J Vis Exp

Jha MK, Seo M, Kim JH, Kim BG, Cho JY, Suk K (2013) The secretome signature of reactive glial cells and its pathological implications. Biochim Biophys Acta 1834: 2418-2428

Jiang SM, Zeng LP, Zeng JH, Tang L, Chen XM, Wei X (2015) beta-III-Tubulin: a reliable marker for retinal ganglion cell labeling in experimental models of glaucoma. Int J Ophthalmol 8: 643-652

Jiang Y, Pagadala J, Miller D, Steinle JJ (2013) Reduced insulin receptor signaling in retinal Müller cells cultured in high glucose. Molecular Vision 2013 19: 804-8011

Johansson UE, Eftekhari S, Warfvinge K (2010) A Battery of Cell- and Structure-specific Markers for the Adult Porcine Retina. Journal of Histochemistry and Cytochemistry 58: 377-389

Johnson M, Erickson K. (2000) Mechanism and routes of aqueous humor drainage. WB Saunders, Philadelphia, pp. 2577-2595.

Johnson TV, Bull ND, Martin KR (2011) Neurotrophic factor delivery as a protective treatment for glaucoma. Exp Eye Res 93: 196-203

Junqueira LCU, Carneiro J (2005) Basic Histology: Text & Atlas: McGraw-Hill.

Kaneko-Kawano T, Takasu F, Naoki H, Sakumura Y, Ishii S, Ueba T, Eiyama A, Okada A, Kawano Y, Suzuki K (2012) Dynamic regulation of myosin light chain phosphorylation by Rho-kinase. PLoS One 7: e39269

Kaplan DR, Miller FD (2003) Axon growth inhibition: signals from the p75 neurotrophin receptor. Nat Neurosci 6: 435-436

Kardassis D, Murphy C, Fotsis T, Moustakas A, Stournaras C (2009) Control of transforming growth factor beta signal transduction by small GTPases. FEBS J 276: 2947-2965

Karlstetter M, Scholz R, Rutar M, Wong WT, Provis JM, Langmann T (2015) Retinal microglia: just bystander or target for therapy? Prog Retin Eye Res 45: 30-57

Katt ME, Placone AL, Wong AD, Xu ZS, Searson PC (2016) In Vitro Tumor Models: Advantages, Disadvantages, Variables, and Selecting the Right Platform. Front Bioeng Biotechnol 4: 12

Kern TS, Berkowitz BA (2015) Photoreceptors in diabetic retinopathy. J Diabetes Investig 6: 371-380

Kertmen H, Gurer B, Yilmaz ER, Kanat MA, Arikok AT, Erguder BI, Hasturk AE, Ergil J, Sekerci Z (2015) Antioxidant and antiapoptotic effects of darbepoetin-alpha against traumatic brain injury in rats. Arch Med Sci 11: 1119-1128

Kesherwani V, Tarang S, Barnes R, Agrawal SK (2014) Fasudil reduces GFAP expression after hypoxic injury. Neurosci Lett 576: 45-50

Kiel J (2010) Chapter 2, Anatomy. In The Ocular Circulation. San Rafael (CA): Morgan & Claypool Life Sciences

Kimura K, Fukata Y, Matsuoka Y, Bennett V, Matsuura Y, Okawa K, Iwamatsu A, Kaibuchi K (1998) Regulation of the association of adducin with actin filaments by Rho-associated kinase (Rho-kinase) and myosin phosphatase. J Biol Chem 273: 5542-5548

Klein R, Moss SE, Klein BE (1987) New management concepts for timely diagnosis of diabetic retinopathy treatable by photocoagulation. Diabetes Care 10: 633-638

Klettner A, Hamann T, Schluter K, Lucius R, Roider J (2014) Retinal pigment epithelium cells alter the pro-inflammatory response of retinal microglia to TLR-3 stimulation. Acta Ophthalmol 92: e621-629

Klimanskaya I (2006) Retinal Pigment Epithelium. Methods in Enzymology 418: 169-194

Koch JC, Tonges L, Barski E, Michel U, Bahr M, Lingor P (2014a) ROCK2 is a major regulator of axonal degeneration, neuronal death and axonal regeneration in the CNS. Cell Death Dis 5: e1225

Koch JC, Tonges L, Michel U, Bahr M, Lingor P (2014b) Viral vector-mediated downregulation of RhoA increases survival and axonal regeneration of retinal ganglion cells. Front Cell Neurosci 8: 273

Krugel K, Wurm A, Pannicke T, Hollborn M, Karl A, Wiedemann P, Reichenbach A, Kohen L, Bringmann A (2011) Involvement of oxidative stress and mitochondrial dysfunction in the osmotic swelling of retinal glial cells from diabetic rats. Exp Eye Res 92: 87-93

Kwong JM, Quan A, Kyung H, Piri N, Caprioli J (2011) Quantitative analysis of retinal ganglion cell survival with Rbpms immunolabeling in animal models of optic neuropathies. Invest Ophthalmol Vis Sci 52: 9694-9702

Kyrylkova K, Kyryachenko S, Leid M, Kioussi C (2012) Detection of apoptosis by TUNEL assay. Methods Mol Biol 887: 41-47

Lavezzi AM, Corna MF, Matturri L (2013) Neuronal nuclear antigen (NeuN): a useful marker of neuronal immaturity in sudden unexplained perinatal death. J Neurol Sci 329: 45-50

Leaver SG, Cui Q, Plant GW, Arulpragasam A, Hisheh S, Verhaagen J, Harvey AR (2006) AAV-mediated expression of CNTF promotes long-term survival and regeneration of adult rat retinal ganglion cells. Gene Ther 13: 1328-1341

Lee D, Kim KY, Noh YH, Chai S, Lindsey JD, Ellisman MH, Weinreb RN, Ju WK (2012) Brimonidine blocks glutamate excitotoxicity-induced oxidative stress and preserves mitochondrial transcription factor a in ischemic retinal injury. PLoS One 7: e47098

Lesuisse C, Martin LJ (2002) Long-term culture of mouse cortical neurons as a model for neuronal development, aging, and death. J Neurobiol 51: 9-23

Leung T, Manser E, Tan L, Lim L (1995) A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. J Biol Chem 270: 29051-29054

Levkovitch-Verbin H (2004) Animal models of optic nerve diseases. Eye (Lond) 18: 1066-1074

Lewis GP, Fisher SK (2003) Up-regulation of glial fibrillary acidic protein in response to retinal injury: its potential role in glial remodeling and a comparison to vimentin expression. Int Rev Cytol 230: 263-290

Li Z, Dong X, Wang Z, Liu W, Deng N, Ding Y, Tang L, Hla T, Zeng R, Li L, Wu D (2005) Regulation of PTEN by Rho small GTPases. Nat Cell Biol 7: 399-404

Liao JK, Seto M, Noma K (2007) Rho kinase (ROCK) inhibitors. J Cardiovasc Pharmacol 50: 17-24

Linden C, Alm A (1999) Prostaglandin analogues in the treatment of glaucoma. Drugs Aging 14: 387-398

Lindsey JD, Duong-Polk KX, Hammond D, Chindasub P, Leung CK, Weinreb RN (2015) Differential protection of injured retinal ganglion cell dendrites by brimonidine. Invest Ophthalmol Vis Sci 56: 1789-1804

Lingor P, Teusch N, Schwarz K, Mueller R, Mack H, Bähr M, Mueller BK (2007) Inhibition of Rho kinase (ROCK) increases neurite outgrowth on chondroitin sulphate proteoglycan in vitro and axonal regeneration in the adult optic nerve in vivo. J Neurochem 103: 181-189

Lingor P, Tonges L, Pieper N, Bermel C, Barski E, Planchamp V, Bahr M (2008) ROCK inhibition and CNTF interact on intrinsic signalling pathways and differentially regulate survival and regeneration in retinal ganglion cells. Brain 131: 250-263

Logan A, Ahmed Z, Baird A, Gonzalez AM, Berry M (2006) Neurotrophic factor synergy is required for neuronal survival and disinhibited axon regeneration after CNS injury. Brain 129: 490-502

Lopez-Sanchez LM, Jimenez C, Valverde A, Hernandez V, Penarando J, Martinez A, Lopez-Pedrera C, Munoz-Castaneda JR, De la Haba-Rodriguez JR, Aranda E, Rodriguez-Ariza A (2014) CoCl2, a mimic of hypoxia, induces formation of polyploid giant cells with stem characteristics in colon cancer. PLoS One 9: e99143

Lorber B, Berry M, Douglas MR, Nakazawa T, Logan A (2009) Activated retinal glia promote neurite outgrowth of retinal ganglion cells via apolipoprotein E. J Neurosci Res 87: 2645-2652

Lykissas MG, Batistatou AK, Charalabopoulos KA, Beris AE (2007) The role of neurotrophins in axonal growth, guidance, and regeneration. Curr Neurovasc Res 4: 143-151

MacNeil MA, Masland RH (1998) Extreme Diversity among Amacrine Cells: Implications for Function. Neuron 20: 971-982

Masland RH (2001) The fundamental plan of the retina. Nat Neurosci 4: 877-886

Matsui T, Amano M, Yamamoto T, Chihara K, Nakafuku M, Ito M, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K (1996) Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J 15: 2208-2216

Matteucci A, Varano M, Mallozzi C, Gaddini L, Villa M, Gabrielli S, Formisano G, Pricci F, Malchiodi-Albedi F (2015) Primary retinal cultures as a tool for modeling diabetic retinopathy: an overview. Biomed Res Int 2015: 364924

Mead B, Thompson A, Scheven BA, Logan A, Berry M, Leadbeater W (2014) Comparative evaluation of methods for estimating retinal ganglion cell loss in retinal sections and wholemounts. PLoS One 9: e110612

MIT MIfBRa. (2014) Brain Disorders: By the Numbers. Retrieved 26 October from https://mcgovern.mit.edu/brain-disorders/by-the-numbers

Montaner S, Perona R, Saniger L, Lacal JC (1998) Multiple signalling pathways lead to the activation of the nuclear factor kappaB by the Rho family of GTPases. J Biol Chem 273: 12779-12785

Murgatroyd H, Bembridge J (2008) Intraocular pressure. Continuing Education in Anaesthesia, Critical Care & Pain 8: 100-103

Mysona B, Dun Y, Duplantier J, Ganapathy V, Smith SB (2009) Effects of hyperglycemia and oxidative stress on the glutamate transporters GLAST and system xc- in mouse retinal Muller glial cells. Cell Tissue Res 335: 477-488

Nakagawa O, Fujisawa K, Ishizaki T, Saito Y, Nakao K, Narumiya S (1996) ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBS Lett 392: 189-193

Nickells RW (2012) The cell and molecular biology of glaucoma: mechanisms of retinal ganglion cell death. Invest Ophthalmol Vis Sci 53: 2476-2481

Nickells RW, Howell GR, Soto I, John SW (2012) Under pressure: cellular and molecular responses during glaucoma, a common neurodegeneration with axonopathy. Annu Rev Neurosci 35: 153-179

Nieoullon A (2011) Neurodegenerative diseases and neuroprotection: current views and prospects. Journal of Applied Biomedicine 9: 173-183

Noma K, Oyama N, Liao JK (2006) Physiological role of ROCKs in the cardiovascular system. Am J Physiol Cell Physiol 290: C661-668

Ola MS (2014) Effect of hyperglycemia on insulin receptor signaling in the cultured retinal Muller glial cells. Biochem Biophys Res Commun 444: 264-269

Ola MS, Alhomida AS (2014) Neurodegeneration in diabetic retina and its potential drug targets. Curr Neuropharmacol 12: 380-386

Omri S, Omri B, Savoldelli M, Jonet L, Thillaye-Goldenberg B, Thuret G, Gain P, Jeanny JC, Crisanti P, Behar-Cohen F (2010) The outer limiting membrane (OLM) revisited: clinical implications. Clin Ophthalmol 4: 183-195

Osborne A, Hopes M, Wright P, Broadway DC, Sanderson J (2016) Human organotypic retinal cultures (HORCs) as a chronic experimental model for investigation of retinal ganglion cell degeneration. Exp Eye Res 143: 28-38

Pan P, Shen M, Yu H, Li Y, Li D, Hou T (2013) Advances in the development of Rho-associated protein kinase (ROCK) inhibitors. Drug Discov Today 18: 1323-1333

Patel V, El Hawy E, Waisbourd M, Zangalli C, Shapiro DM, Gupta L, Hsieh M, Kasprenski A, Katz LJ, Spaeth GL (2015) Long-term outcomes in patients initially responsive to selective laser trabeculoplasty. Int J Ophthalmol 8: 960-964

Perkins ES. (2015) Human Eye - Anatomy.

Pernet V, Joly S, Dalkara D, Jordi N, Schwarz O, Christ F, Schaffer DV, Flannery JG, Schwab ME (2013) Long-distance axonal regeneration induced by CNTF gene transfer is impaired by axonal misguidance in the injured adult optic nerve. Neurobiol Dis 51: 202-213

Pournaras CJ, Rungger-Brandle E, Riva CE, Hardarson SH, Stefansson E (2008) Regulation of retinal blood flow in health and disease. Prog Retin Eye Res 27: 284-330

Prentice H, Modi JP, Wu JY (2015) Mechanisms of Neuronal Protection against Excitotoxicity, Endoplasmic Reticulum Stress, and Mitochondrial Dysfunction in Stroke and Neurodegenerative Diseases. Oxid Med Cell Longev 2015: 964518

Reglodi D, Renaud J, Tamas A, Tizabi Y, Socias B, Del-Bel E, Raisman-Vozari R (2015) Novel tactics for neuroprotection in Parkinson's disease: Role of antibiotics, polyphenols and neuropeptides. Prog Neurobiol

Reichenbach A, Bringmann A (2010) Muller cells in the healthy and diseased retina, New York: Springer.

Resnikoff S, Pascolini D, Mariotti SP, Pokharel GP (2008) Global magnitude of visual impairment caused by uncorrected refractive errors in 2004. Bull World Health Organ 86: 63-70

Riento K, Ridley AJ (2003) Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol 4: 446-456

Riordan-Eva P, Cunningham E (2011) Vaughan & Asbury's General Ophthalmology, Vol. 18th Edition: Mc Graw Hill Medical.

Rubinsztein DC (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443: 780-786

Rulli E, Biagioli E, Riva I, Gambirasio G, De Simone I, Floriani I, Quaranta L (2013) Efficacy and safety of trabeculectomy vs nonpenetrating surgical procedures: a systematic review and meta-analysis. JAMA Ophthalmol 131: 1573-1582

Runkle EA, Antonetti DA (2011) The blood-retinal barrier: structure and functional significance. Methods Mol Biol 686: 133-148

Sagawa H, Terasaki H, Nakamura M, Ichikawa M, Yata T, Tokita Y, Watanabe M (2007) A novel ROCK inhibitor, Y-39983, promotes regeneration of crushed axons of retinal ganglion cells into the optic nerve of adult cats. Exp Neurol 205: 230-240

Saito A, Inoue M, Kon H, Imaruoka S, Basaki K, Midorikawa H, Sasaki T, Nishijima M (2015) Effectiveness of intraarterial administration of fasudil hydrochloride for preventing symptomatic vasospasm after subarachnoid hemorrhage. Acta Neurochir Suppl 120: 297-301

Salerno L, Sorrenti V, Di Giacomo C, Romeo G, Siracusa MA (2002) Progress in the development of selective nitric oxide synthase (NOS) inhibitors. Curr Pharm Des 8: 177-200

Satoh S, Ikegaki I, Kawasaki K, Asano T, Shibuya M (2014) Pleiotropic effects of the rho-kinase inhibitor fasudil after subarachnoid hemorrhage: a review of preclinical and clinical studies. Curr Vasc Pharmacol 12: 758-765

Schmidt KG, Bergert H, Funk RH (2008) Neurodegenerative diseases of the retina and potential for protection and recovery. Curr Neuropharmacol 6: 164-178

Schofield AV, Bernard O (2013) Rho-associated coiled-coil kinase (ROCK) signaling and disease. Crit Rev Biochem Mol Biol 48: 301-316

Scott RW, Olson MF (2007) LIM kinases: function, regulation and association with human disease. J Mol Med (Berl) 85: 555-568

Semeraro F, Cancarini A, dell'Omo R, Rezzola S, Romano MR, Costagliola C (2015) Diabetic Retinopathy: Vascular and Inflammatory Disease. J Diabetes Res 2015: 582060

Sharma RK, Netland PA (2007) Early born lineage of retinal neurons express class III beta-tubulin isotype. Brain Res 1176: 11-17

Shi SR, Shi Y, Taylor CR (2011) Antigen retrieval immunohistochemistry: review and future prospects in research and diagnosis over two decades. J Histochem Cytochem 59: 13-32

Shimizu Y, Thumkeo D, Keel J, Ishizaki T, Oshima H, Oshima M, Noda Y, Matsumura F, Taketo MM, Narumiya S (2005) ROCK-I regulates closure of the eyelids and ventral body wall by inducing assembly of actomyosin bundles. J Cell Biol 168: 941-953

Slamenova D, Kozics K, Hunakova L, Melusova M, Navarova J, Horvathova E (2013) Comparison of biological processes induced in HepG2 cells by tert-butyl hydroperoxide (t-BHP) and hydroperoxide (H2O2): The influence of carvacrol. Mutat Res 757: 15-22

Smedowski A, Pietrucha-Dutczak M, Kaarniranta K, Lewin-Kowalik J (2014) A rat experimental model of glaucoma incorporating rapid-onset elevation of intraocular pressure. Sci Rep 4: 5910

Song WT, Zhang XY, Xiong SQ, Wen D, Jiang J, Xia XB (2013) Comparison of two methods used to culture and purify rat retinal Muller cells. Int J Ophthalmol 6: 778-784

Stitt AW, Lois N, Medina RJ, Adamson P, Curtis TM (2013) Advances in our understanding of diabetic retinopathy. Clin Sci (Lond) 125: 1-17

Sucher NJ, Lipton SA, Dreyer EB (1997) Molecular basis of glutamate toxicity in retinal ganglion cells. Vision Res 37: 3483-3493

Sun F, Park KK, Belin S, Wang D, Lu T, Chen G, Zhang K, Yeung C, Feng G, Yankner BA, He Z (2011) Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature 480: 372-375

Suzumura A (2013) Neuron-microglia interaction in neuroinflammation. Curr Protein Pept Sci 14: 16-20

Swaroop A, Kim D, Forrest D (2010) Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina. Nat Rev Neurosci 11: 563-576

Tan SM, Deliyanti D, Figgett WA, Talia DM, de Haan JB, Wilkinson-Berka JL (2015) Ebselen by modulating oxidative stress improves hypoxia-induced macroglial Muller cell and vascular injury in the retina. Exp Eye Res 136: 1-8

Tapp RJ, Shaw JE, Harper CA, de Courten MP, Balkau B, McCarty DJ, Taylor HR, Welborn TA, Zimmet PZ (2003) The prevalence of and factors associated with diabetic retinopathy in the Australian population. Diabetes Care 26: 1731-1737

Taylor L, Arner K, Taylor IH, Ghosh F (2014) Feet on the Ground: Physical Support of the Inner Retina Is a Strong Determinant for Cell Survival and Structural Preservation In Vitro. Investigative Ophthamology & Visual Science 55: 2200-2213

Taylor L, Moran D, Arner K, Warrant E, Ghosh F (2013) Stretch to see: lateral tension strongly determines cell survival in long-term cultures of adult porcine retina. Invest Ophthalmol Vis Sci 54: 1845-1856

Taylor SR, Aylward GW (2005) Endophthalmitis following 25-gauge vitrectomy. Eye (Lond) 19: 1228-1229

Tezel G (2006) Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences. Prog Retin Eye Res 25: 490-513

Thompson LM (2008) Neurodegeneration: A question of balance. Nature 452: 707-708

Thumkeo D, Keel J, Ishizaki T, Hirose M, Nonomura K, Oshima H, Oshima M, Taketo MM, Narumiya S (2003) Targeted disruption of the mouse rho-associated kinase 2 gene results in intrauterine growth retardation and fetal death. Mol Cell Biol 23: 5043-5055

Tian T, Li Z, Lu H (2015) Common pathophysiology affecting diabetic retinopathy and Parkinson's disease. Med Hypotheses 85: 397-398

Tkatchenko TV, Shen Y, Tkatchenko AV (2010) Analysis of postnatal eye development in the mouse with high-resolution small animal magnetic resonance imaging. Invest Ophthalmol Vis Sci 51: 21-27

Tsukita S, Yonemura S (1999) Cortical actin organization: lessons from ERM (ezrin/radixin/moesin) proteins. J Biol Chem 274: 34507-34510

Van de Velde S, De Groef L, Stalmans I, Moons L, Van Hove I (2015) Towards axonal regeneration and neuroprotection in glaucoma: Rho kinase inhibitors as promising therapeutics. Prog Neurobiol 131: 105-119

Van de Velde S, Van Bergen T, Sijnave D, Hollanders K, Castermans K, Defert O, Leysen D, Vandewalle E, Moons L, Stalmans I (2014) AMA0076, a novel, locally acting Rho kinase inhibitor, potently lowers intraocular pressure in New Zealand white rabbits with minimal hyperemia. Invest Ophthalmol Vis Sci 55: 1006-1016

Vecino E, Rodriguez FD, Ruzafa N, Pereiro X, Sharma SC (2015) Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res

Venkatesh K, Chivatakarn O, Sheu SS, Giger RJ (2007) Molecular dissection of the myelin-associated glycoprotein receptor complex reveals cell type-specific mechanisms for neurite outgrowth inhibition. J Cell Biol 177: 393-399

Wan TT, Li XF, Sun YM, Li YB, Su Y (2015) Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy. Biomed Pharmacother 74: 145-147

Wan X, Cheng Q, Peng R, Ma Z, Chen Z, Cao Y, Jiang B (2014) ROCK1, a novel target of miR-145, promotes glioma cell invasion. Mol Med Rep 9: 1877-1882

Wang J, Liu X, Zhong Y (2013) Rho/Rho-associated kinase pathway in glaucoma (Review). Int J Oncol 43: 1357-1367

Wang J, Shanmugam A, Markand S, Zorrilla E, Ganapathy V, Smith SB (2015) Sigma 1 receptor regulates the oxidative stress response in primary retinal Muller glial cells via NRF2 signaling and system xc(-), the Na(+)-independent glutamate-cystine exchanger. Free Radic Biol Med 86: 25-36

Wang KC, Koprivica V, Kim JA, Sivasankaran R, Guo Y, Neve RL, He Z (2002) Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 417: 941-944

Wang Q, Burkhalter A (2007) Area map of mouse visual cortex. J Comp Neurol 502: 339-357

Wang SK, Chang RT (2014) An emerging treatment option for glaucoma: Rho kinase inhibitors. Clin Ophthalmol 8: 883-890

Watabe H, Abe S, Yoshitomi T (2011) Effects of Rho-associated protein kinase inhibitors Y-27632 and Y-39983 on isolated rabbit ciliary arteries. Jpn J Ophthalmol 55: 411-417

Weinreb RN, Aung T, Medeiros FA (2014) The pathophysiology and treatment of glaucoma: a review. JAMA 311: 1901-1911

Weinreb RN, Khaw PT (2004) Primary open-angle glaucoma. The Lancet 363: 1711-1720

Winkler J, Hagelstein S, Rohde M, Laqua H (2002) Cellular and cytoskeletal dynamics within organ cultures of porcine neuroretina. Exp Eye Res 74: 777-788

Xu HZ, Song Z, Fu S, Zhu M, Le YZ (2011) RPE barrier breakdown in diabetic retinopathy: seeing is believing. J Ocul Biol Dis Infor 4: 83-92

Xu J, Wei WB, Yuan MX, Yuan SY, Wan G, Zheng YY, Li YB, Wang S, Xu L, Fu HJ, Zhu LX, Pu XL, Zhang JD, Du XP, Li YL, Ji Y, Gu XN, Li Y, Pan SF, Cui XL et al. (2012) Prevalence and risk factors for diabetic retinopathy: the Beijing Communities Diabetes Study 6. Retina 32: 322-329

Yildirim O, Ates NA, Tamer L, Muslu N, Ercan B, Atik U, Kanik A (2004) Changes in antioxidant enzyme activity and malondialdehyde level in patients with age-related macular degeneration. Ophthalmologica 218: 202-206

Yin Y, Cui Q, Gilbert HY, Yang Y, Yang Z, Berlinicke C, Li Z, Zaverucha-do-Valle C, He H, Petkova V, Zack DJ, Benowitz LI (2009) Oncomodulin links inflammation to optic nerve regeneration. Proc Natl Acad Sci U S A 106: 19587-19592

Yin Y, Henzl MT, Lorber B, Nakazawa T, Thomas TT, Jiang F, Langer R, Benowitz LI (2006) Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nat Neurosci 9: 843-852

Yiu G, He Z (2006) Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7: 617-627

Yonemura S, Matsui T, Tsukita S (2002) Rho-dependent and -independent activation mechanisms of ezrin/radixin/moesin proteins: an essential role for polyphosphoinositides in vivo. J Cell Sci 115: 2569-2580

Yu J, Luan X, Lan S, Yan B, Maier A (2015a) Fasudil, a Rho-Associated Protein Kinase Inhibitor, Attenuates Traumatic Retinal Nerve Injury in Rabbits. J Mol Neurosci

Yu Y, Chen H, Su SB (2015b) Neuroinflammatory responses in diabetic retinopathy. J Neuroinflammation 12: 141

Zhang K, Hopkins JJ, Heier JS, Birch DG, Halperin LS, Albini TA, Brown DM, Jaffe GJ, Tao W, Williams GA (2011a) Ciliary neurotrophic factor delivered by encapsulated cell intraocular implants for treatment of geographic atrophy in age-related macular degeneration. Proc Natl Acad Sci U S A 108: 6241-6245

Zhang W, Liu H, Rojas M, Caldwell RW, Caldwell RB (2011b) Anti-inflammatory therapy for diabetic retinopathy. Immunotherapy 3: 609-628

 

 

Universiteit of Hogeschool
Biologie
Publicatiejaar
2016
Promotor(en)
Lieve Moons
Kernwoorden
Share this on: