Unravelling drought regulation of the wheat cultivar Hartog during grain filling

Sarah Verbeke
In deze scriptie werd een ecofysiologisch tarwemodel gebouwd dat de waterbalans in de plant onder droge condities simuleert. Ter illustratie van de kracht van het model, werd een tarwe plant onderworpen aan droogtestress en vergeleken met een controle plant. De gesimuleerde variabelen werden vergeleken met het resultaat van een proteoom analyse om te zien of deze gegevens in de toekomst in het model geïntegreerd kunnen worden.

Virtueel tarwe selecteren voor toekomstige klimaten

Stel u eens voor: in een belangrijk tarwe-producerend land voorspelt men dat binnen 20 jaar de regenval door klimaatverandering zal halveren, waardoor de huidige tarwesoorten nog weinig graan zullen produceren. Een niet zo ondenkbaar scenario met dramatische maatschappelijke gevolgen.  En stel u dan een virtuele wereld voor, waarin verschillende tarwegenen gecombineerd worden zodat een nieuwe, virtuele plant gecreëerd wordt die onder precies deze droge omstandigheden wel een hoge opbrengst heeft. Tien jaar later groeit deze virtuele plant in realiteit en kan het land zonder problemen zijn bevolking voeden in deze extreme condities. Dit schept het kader van mijn onderzoek.

Gewassen zoals tarwe worden al duizenden jaren verbeterd doordat de landbouwer de beste planten kiest om het volgende jaar opnieuw uit te zaaien. De laatste decennia is de wereldbevolking echter zodanig snel gestegen dat deze manier van selectie niet meer voldoet. Bovendien verandert het klimaat zo snel, dat de nieuwe tarwesoorten eigenlijk vijf jaar geleden nodig waren. Maar hoe kunnen we nu de beste planten kiezen voor de toekomst, als we het klimaat van de toekomst niet kennen? Met virtuele experimenten, is er geen nood aan uitgebreide tarweproeven waarbij honderden tot duizenden planten geteeld moeten worden: de ideale plant wordt namelijk virtueel gesimuleerd door een model. Zo kunnen klimaten van de toekomst snel getest worden.

Het veranderend klimaat zal op heel wat plaatsen een verminderde regenval veroorzaken. Bovendien zal drinkwater schaars worden en zal het niet meer ecologisch verantwoord zijn dit water te gebruiken voor landbouw. Tarwe planten zullen in de toekomst met minder water evenveel graan moeten produceren, wil men hongersnoden vermijden. Dit betekent dat nieuwe, beter aangepaste tarwesoorten ontwikkeld moeten worden. Soorten uit de toekomst zullen dan een nieuwe gen combinatie hebben die de plant een unieke eigenschap geeft zoals bijvoorbeeld een verbeterde droogteresistentie. Om dit te bereiken, kunnen nieuwe genen ingebouwd worden of verschillende ouderlijke genen gecombineerd worden. De nucleotidensequentie van een gen is intussen makkelijk te achterhalen. Maar wat betekent dit gen voor een plant concreet? Wat gebeurt er als dit gen er niet meer is, of juist meer actief is dan normaal? Dit wordt vandaag voor veel genen onderzocht, maar duurt zeer lang en kan voor slechts een aantal genen tegelijk uitgevoerd worden. Door de genen en hun expressie in te bouwen in een virtueel plantmodel, kan het effect van elk gen afzonderlijk of verschillende genen samen snel onderzocht worden.

Een virtueel plantmodel berekent het effect van droogte

In deze masterthesis werd een virtueel plantmodel gebouwd dat simuleert hoe water in een tarweplant wordt opgenomen, getransporteerd, opgeslagen en getranspireerd. Water wordt eigenlijk uit de plant ‘getrokken’ door de atmosfeer die het water uit de bladeren doet verdampen. Hierdoor wordt in de plant een onderdruk gecreëerd en wordt het water in de vaten van de stengel en wortels omhoog getrokken. Water zal dan via de wortels vanuit de bodem opgenomen worden om dit transpiratieverlies terug aan te vullen. Met kleine sensoren die op de stengel van de tarweplant geïnstalleerd worden, kan de snelheid van dit watertransport continue gemeten worden. Dit wordt de sapstroom genoemd. Vanuit de sapstroom berekent het model het functioneren van de plant. Bijvoorbeeld hoeveel water in de graankorrels wordt opgeslagen, of hoe sterk de plant groeit. Wanneer te weinig water in de bodem aanwezig is, zal de plant zijn interne waterreserves aanspreken met als gevolg dat hij minder snel groeit of zelfs krimpt. Het kunnen simuleren van deze droogterespons is van onschatbare waarde. Zo kan bijvoorbeeld de irrigatie afgestemd worden op de noden van de plant. Vergelijk dit met de kracht van weersvoorspellingen: met metingen van temperatuur en luchtdruk, wordt vandaag gesimuleerd hoeveel regen er morgen uit de lucht zal vallen. Deze voorspellingen zijn weliswaar niet altijd even accuraat, maar hebben u er hoogstwaarschijnlijk toch al vaak van behoed ergens doorweekt toe te komen. Diezelfde kracht rust in de simulaties van de droogterespons van planten. Hierdoor kunnen we voorspellen welke planten het goed zullen doen in toekomstige weersomstandigheden.

Niet enkel de plant respons, maar ook de eiwitten veranderen tijdens droogte

Tijdens het uitdrogen van tarweplanten werden op verschillende tijdstippen stalen genomen van de stengel om aanwezige eiwitten te analyseren. Eiwitten zijn het resultaat van de actieve genen in een plant: het zijn de werkers van de plantcellen. Door op verschillende tijdstippen deze eiwitten te bepalen, konden we een tijdsreeks opmaken en zien hoe de eiwitinhoud veranderde tijdens het uitdrogen. Vele eiwitten vertoonden eenzelfde trend als sommige plant responsen. Dit is bijzonder interessant aangezien deze eiwitten aangemaakt werden ten gevolge van droogte. Elke tarwesoort heeft een eigen, typische combinatie van eiwitten (of genen), een unieke vingerafdruk, waardoor een soort onderscheiden kan worden. We kunnen stellen dat een soort beschouwd kan worden als de som van al zijn eiwitten. Het onderzoek toonde aan dat het mogelijk is om deze eiwitten in te brengen in het virtuele plantmodel, zodat dit model soort-specifiek wordt. Met het model kan dan bepaald worden hoe een nieuwe soort reageert op droogte indien enkel de eiwitten, of genen, gekend zijn.

Maar genen interageren ook met de omgeving of hun microklimaat. Hoewel een plant de som is van zijn genen, moeten we er rekening mee houden dat genen worden aan- en uitgeschakeld door signalen vanuit de omgeving, waardoor eenzelfde plantensoort er heel anders kan uitzien in verschillende omstandigheden. Via het virtueel plantmodel kan bepaald worden welke omgevingsfactoren een invloed hebben en hoe groot die invloed juist is.

De combinatie genen en plantmodellering is noodzakelijk

De klimaatveranderingen in combinatie met een groeiende wereldbevolking zet een enorme druk op de landbouw. Vandaag moeten planten ontwikkeld worden die in het toekomstig klimaat een hoge opbrengst hebben. Een uitdagende taak. Genen onderscheiden een resistente van een gevoelige plant. Maar om een grote stap voorwaarts te kunnen zetten is het nodig genetisch onderzoek te combineren met virtuele plantmodellen die het effect van de omgeving op deze genen kunnen bepalen en voorspellen. Alleen zo kunnen we in toekomst de juiste keuzes maken en de best aangepaste planten kiezen voor de landbouw.

Bibliografie

Abe, H., Yamaguchi-Shinozaki, K., Urao, T., Toshisuke, I., Hosokawa, D., et al. 1997. Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell , 9(10), 1859–1868.

Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, Y., et al. 2003. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) functions as transcriptional activators in abscisic acid signaling. Plant Cell , 15(1), 63–78.

Adie, B.A.T., Perez-Perez, J., Perez-Perez, M.M., Godoy, M., Sanchez-Serrano, J.J., et al. 2007. ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell , 19(5), 1665–1681.

Ali, M., Jensen, C.R., Mogensen, V.O., Andersen, M.N., & Henson, I.E. 1999. Root signalling and osmotic adjustment during intermittent soil drying sustain grain yield of field grown wheat. Field Crops Research , 62(1), 35–52.

Allen, R.G., Pereira, L.S., Raes, D., & Smith, M. 1998. FAO Penman-Monteith equation. In: Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56. FAO - Food and Agriculture Organization of the United Nations.

Amelong, A., Gambin, B., Severini, A.D., & Borr’as, L. 2015. Predicting maize kernel number using QTL information. Field Crops Research , 172, 119–131.

Andrivon, D., Giorgetti, C., Baranger, A., Calonnec, A., Cartolaro, P., et al. 2013. Defining and designing plant architectural ideotypes to control epidemics? European Journal of Plant Pathology, 135(3), 611–617.

Araus, J.L., Gustavo, G.A., Royo, C., & Serret, M.D. 2008. Breeding for Yield Potential and Stress Adaptation in Cereals. Critical Reviews in Plant Sciences, 27(6), 377–41.

Asseng, S., Turner, N.C., Botwright, T., & Condon, A.G. 2003. Evaluating the impact of a trait for increased specific leaf area on wheat yields using a crop simulation model. Agronomy Journal , 95(1), 10–19.

Baert, A., De Schepper, V., & Steppe, K. 2015. Variable hydraulic resistances and their impact on plant drought response modelling. Tree Physiology , 35, 439–449.

Baker, R.J. 1988. Tests for crossover genotype-environmental interactions. Canadian Journal of Plant Science , 68(2), 405–410.

Baldazzi, V., Bertin, N., Genard, M., Gautier, H., Desnoues, E., et al. 2016. Challenges in Integrating Genetic Control in Plant and Crop Models. In: Yin, X., & Struik, P.C. (eds), Crop Systems Biology: Narrowing the Gaps between Crop Modelling and Genetics . Springer.

Band, L.R., Ubeda-Tomás, S., Dyson, R.J., Middleton, A.M., Hodgman, T.C., et al. 2012. Growth-induced hormone dilution can explain the dynamics of plant root cell elongation. Proc. Natl. Acad. Sci. U.S.A. , 109(19), 7577–7582.

Barnabas, B., Jaeger, K., & Feher, A. 2008. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell and Environment , 31(1), 11–38.

Bazargani, M.M., Sarhadi, E., Bushehri, A.A., Matros, A., Mock, H.P., et al. 2011. A proteomics view on the role of drought-induced senescence and oxidative stress defense in enhanced stem reserves remobilization in wheat. Journal of Proteomics , 74(10), 1959–1973.

Beemster, G.T.S., Vercruysse, S., De Veylder, L., Kuiper, M., & Inzé, D. 2006. The arabidopsis leaf as a model system for investigating the role of cell cycle regulation in organ growth. Journal of Plant Research, 119(1), 43–50.

Bernardo, R. 2004. What proportion of declared QTL in plants are false. Theoretical and Applied Genetics, 109(2), 419–424.

Blower, S.M., & Dowlatabadi, H. 1994. Sensitivity and uncertainty analysis of complexmodels of disease transmission - an HIV model, as an example. International Statistical Review , 62(2), 229–243.

Blum, A. 1998. Improving wheat grain filling under stress by stem reserve mobilisation. Euphytica , 100(3), 77–83.

Blum, A. 2005. Drought resistance, water-use efficiency, and yield potential– are they compatible, dissonant, or mutually exclusive? Australian Journal of Agricultural Research, 56(11), 1159–1168.

Blum, A. 2006. Drought adaptation in cereal crops: a prologue. Pages 3–15 of: Ribaut, J.M. (ed), Drought Adaptation in Cereals. Binghamton, NY: The Haworth Press, Inc .

Blum, A. 2009. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Research , 112(2-3), 119–123.

Blum, A., Sinmena, B., Mayer, J., Golan, G., & Shpiler, L. 1994. Stem reserve mobilization supports wheat grain filling under heat stress. Australian Journal of Agricultural Research, 21(6), 771–781.

Blum, A., Zhang, J.X., & Nguyen, H.T. 1999. Consistent differences among wheat cultivars in osmotic adjustment and their relationship to plant production. Field Crops Research , 64(3), 287–291.

Bogard, M., Ravel, C., Paux, E., Bordes, J., Balfourier, F., et al. 2014. Predictions of heading date in bread wheat (Triticum aestivum L.) using QTL-based parameters of an ecophysiological model. Journal of Experimental Botany , 65(20), 5849–5865.

Boote, J.K., Jones, J.W., Hoogenboom, G., & Pickering, N.B. 1998. The CROPGRO model for grain legumes. Pages 99–128 of: Tsuji, G.Y., Hoogenboom, G., & Thornton, P.K. (eds), Understanding Options for Agricultural Production. Dordrecht: Springer Netherlands.

Boote, K.J., Vallejos, C.E., Jones, J.W., & Correll, M.J. 2016. Crop Modeling Approaches for Predicting Phenotype of Grain Legumes with Linkage to Genetic Information. In: Yin, X., & Struik, P.C. (eds), Crop Systems Biology: Narrowing the Gaps between Crop Modelling and Genetics . Springer.

Brunel, S., Teulat-Merah, B., Wagner, M.H., Huguet, T., Posperi, J., et al. 2009. Using a model-based framework for analysing genetic diversity during germination and heterotrophic growth of Medicago truncatula. Annals of Botany , 103(7), 1103–1117.

Bustos-Korts, D., M.Malosetti, Chapman, S., & van Eeuwijk, F. 2016. Modelling of Genotype by Environment Interaction and Prediction of Complex Traits across Multiple Environments as a Synthesis of Crop Growth Modelling, Genetics and Statistics. In: Yin, X., & Struik, P.C. (eds), Crop Systems Biology: Narrowing the Gaps between Crop Modelling and Genetics . Springer.

Camargo, G.G.T., & Kemanian, A.R. 2016. Six crop models differ in their simulation of water uptake. Agricultural and Forest Meteorology, 220, 116–129.

Caruso, G., Cavaliere, C., Foglia, P., Gubbiotti, R., Samperi, R., et al. 2009. Analysis of drought responsive proteins in wheat (Triticum durum) by 2D-PAGE and MALDI-TOF mass spectrometry. Plant Science , 17(6), 570–576.

Chapman, S.C. 2008. Use of crop models to understand genotype by environment interactions for drought in real-world and simulated plant breeding trials. Euphytica , 161(1-2), 195–208.

Chapman, S.C., Cooper, M., & Hammer, G.L. 2002. Using crop simulation to generate genotype by environment interaction effects for sorghum in water-limited environments. Asutralian Journal of Agricultural Research, 53(4), 379–389.

Charmet, G. 2000. Power and accuracy of QTL detection: simulation studies if one-QTL models. Agronomie, 20(3), 309–323.

Cheng, M.C., Liao, P.M., Kuo, W.W., & Lin, T.P. 2013. The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiology, 162(3), 1566–1582.

Chenu, K., Chapman, S.C., Tardieu, F., McLean, G., Welcker, C., et al. 2009. Simulating the yield impacts of organ-level quantitative trait loci associated with drought response in maize: a "gene-to-phenotype" modeling approach. Genetics , 183(4), 1507–1523.

Choi, H.I., Park, H.J., Park, J.H., Kim, S., Im, M.Y., et al. 2005. Arabidopsis calciumdependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiology , 139(4), 1750–1761.

Christmann, A., Moes, D., Himmelbach, A., Yang, Y., Tang, Y., et al. 2006. Integration of abscisic acid signalling into plant responses. Plant Biology , 8(3), 314–325.

Christmann, A., Weiler, E.W., Steudle, E., & Grill, E. 2007. A hydraulic signal in root-to-shoot signalling of water shortage. Plant Journal , 52(1), 167–174.

Cowan, I.R., & Farquhar, G.D. 2012. Stomatal function in relation to leaf metabolism and environment. Pages 471–505 of: Jennings, D.H. (ed), Integration of Activity in the Higher Plant.

Crossa, J., Yang, R.C., & Cornelius, P. 2004. Studying crossover genotype x environment interaction using linear-bilinear models and mixed models. Journal of Agricultural Biological and Environmental Statistics, 9(3), 362–380.

Crossa, J., de los Campos, G., Pérez, P., D.Gianola, Burgueno, J., et al. 2010. Prediction of Genetic Values of Quantitative Traits in Plant Breeding Using Pedigree and Molecular Markers. Genetics, 186(2), 713–724.

Cushman, J.C., & Bohert, H.J. 2000. Genomic approaches to plant stress tolerance. Current Opinion in Plant Biology, 3(2), 117–124.

De Pauw, D.J.W., Steppe, K., & De Baets, B. 2008. Identifiablilty analysis and improvement of a tree water flow and storage model. Mathematical Biosciences, 211, 314–332.

De Swaef, T., Verbist, K., Cornelis, W., & Steppe, K. 2012. Tomato sap flow, stem and fruit growth in relation to water availability in rockwool growing medium. Plant Soil, 350, 237–252.

DeWitt, T.J., & Scheiner, S.M. 2004. Phenotypic plasticity: functional and conceptual approaches. Oxford University Press.

Dias, A.S., & Lidon, F.C. 2009. Evaluation of Grain Filling Rate and Duration in Bread and Durum Wheat, under Heat Stress after Anthesis. Journal of Agronomy and Crop Science, 195(2), 137–147.

Distelfeld, A., Li, C., & Dubcovsky, J. 2009. Regulation of flowering in temperate cereals. Current Opinion in Plant Biology , 12(2), 178–184.

Donald, C.M. 1968. The breeding of crop ideotypes. Euphytica, 17(3), 385–403.

Dougherty, C.T. 1974. The relationship between solar radiation, soil water, and water potential of ears of wheat. New Zealand Journal of Agricultural Research, 17(4), 459–463.

Duncan, O., Trösch, J., Fenske, R., Taylor, N.L., & Millar, A.H. 2017. Resource: Mapping the Triticum aestivum proteome. Plant Journal, 89, 601–616.

Duncan, W.G., McCloud, D.E., McGraw, R.L., & Boote, K.J. 1978. Physiological aspects of peanut yield improvement. Crop Science , 18(6), 1015–1020.

Edmeades, G.O., McMaster, G.S, White, J.W., & Campos, H. 2004. Genomics and the physiologist: bridging the gap between genes and crop response. Field Crops Research, 90(1), 5–18.

Elfving, D.C., Kaufmann, M.R., & Hall, A.E. 1972. Interpreting Leaf Water Potential Measurements with a Model of the Soil-Plant-Atmosphere Continuum. Physiologia Plantarum , 27(2), 161–168.

Elwell, D.L., Curry, R.B., & Keener, M.E. 1987. Determination of Potential Yield- Limiting Factors of Soybeans using SOYMOD/OARDC. Agricultural systems , 24(3), 221–242.

Fan, X.W., Li, F.M., Xiong, Y.C., An, L.Z., & Long, R.J. 2008. The cooperative relation between non-hydraulic root signals and osmotic adjustment under water stress improves grain formation for spring wheat varieties. Physiologia Plantarum , 132(3), 283–292.

Farooq, M., Hussain, M., & Siddique, K.H.M. 2014. Drought Stress in Wheat during Flowering and Grain-filling Periods. Critical Reviews in Plant Sciences, 33(4), 331–349.

Finkelstein, R., Gampala, S.S.L., Lynch, T.J., Thomas, T.L., & Rock, C.D. 2005. Redundant and distinct functions of the ABA response loci ABA-INSENSITIVE(ABI)5 and ABRE-BINDING FACTOR (ABF)3. Plant Molecular Biology , 59(2), 253–267.

Finkelstein, R.R., Gampala, S.S.L., & Rock, C.D. 2002. Abscisic acid signaling in seeds and seedlings. Plant Cell , 14, S15–S45.

Finlay, K.W., & Wilkinson, G.N. 1963. The analysis of adaptation in a plant-breeding programme. Asutralian Journal of Agricultural Research, 14(6), 742–754.

Ford, K.L., Cassin, A., & Bacic, A. 2011. Quantitative proteomic analysis of wheat cultivars with differing drought stress tolerance. Frontiers in Plant Science , 2(44).

Gebhardt, C., Ballvora, A., Walkemeier, B., Oberhagemann, P., & Schuler, K. 2004. Assessing genetic potential in germplasm collections of crop plants by marker-trait association: a case study for potatoes with quantitative variation of resistance to late blight and maturity type. Molecular Breeding, 13(1), 93–102.

Génard, M., Fishman, S., Vercambre, G., Huguet, J.G., Bussi, C., et al. 2001. A Biophysical Analysis of Stem and Root Diameter Variations in Woody Plants. Plant Physiology, 126(1), 188–202.

Génard, M., Bertin, N., Gautier, H., Lescourret, F., & Quilot, B. 2010. Virtual profiling: a new way to analyse phenotypes. Plant Journal , 62(2), 344–355.

Génard, M., Memmah, M.M., Quilot-Turion, B., Vercambre, G., Baldazzi, V., et al. 2016. Modelling of Genotype by Environment Interaction and Prediction of Complex Traits across Multiple Environments as a Synthesis of Crop Growth Modelling, Genetics and Statistics. In: Yin, X., & Struik, P.C. (eds), Crop Systems Biology: Narrowing the Gaps between Crop Modelling and Genetics . Springer.

Gu, J., Yin, X., Stomph, T.J., & Struik, P.C. 2014a. Can exploiting natural genetic variation in leaf photosynthesis contribute to increasing rice productivity? A simulation analysis. Plant Cell and Environment , 37(1), 22–34.

Gu, J., Yin, X., Zhang, C., Wang, H., & Struik, P.C. 2014b. Linking ecophysiological modelling with quantitative genetics to support marker-assisted crop design for improved rice (Oryza sativa L.) yields under drought stress. Annuals of Botany , 114(3), 499–511.

Guilfoyle, T.J., & Hagen, G. 2007. Auxin response factors. Current Opinion in Plant Biology , 10(5), 453–460.

Haake, V., Cook, D., Riechmann, J.L., Pineda, O., Thomashow, M.F., et al. 2002. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiology , 130(2), 639–648.

Hackett, C.A. 2002. Statistical methods for QTL mapping in cereals. Plant Molecular Biology, 48(5), 585–599.

Hagen, G., & Guilfoyle, T. 2002. Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Molecular Biology , 49(3-4), 373–385.

Hajheidari, M., Eivazi, A., Buchanan, B.B., Wong, J.H., Majidi, I., et al. 2007. Proteomics uncovers a role for redox in drought tolerance in wheat. Journal of Proteome Research , 6(4), 1451–1460.

Hamman, K.D., Williamson, R.L., Steffler, E.D., Wright, C.T., Hess, J.R., et al. 2005. Structural Analysis of Wheat Stems. Applied Biochemistry and Biotechnology, 121, 71–80.

Hammer, G., Messina, C., van Oosterom, E., Chapman, S., Singh, V, et al. 2016. Molecular Breeding for Complex Adaptive Traits: How Integrating Crop Ecophysiology and Modelling Can Enhance Efficiency. In: Yin, X., & Struik, P.C. (eds), Crop Systems Biology: Narrowing the Gaps between Crop Modelling and Genetics . Springer.

Hammer, G.L., Kropff, M.J., Sinclair, T.R., & Porter, J.R. 2002. Future contributions of crop modelling - from heuristics and supporting decision making to understanding genetic regulation and aiding crop improvement. European Journal of Agronomy, 18(1-2), 15–31.

Hammer, G.L., Sinclair, T.R., Chapman, S.C., & van Oosterom, E. 2004. On Systems Thinking, Systems Biology, and the in Silico Plant. Plant Physiology, 134(3), 909–911.

Hammer, G.L., Cooper, M., Tardieu, F., Welch, S., Walsh, B., et al. 2006. Models for navigating biological complexity in breeding improved crop plants. Trends in Plant Science , 11(12), 587–593.

Hammer, G.L., van Oosterom, E., McLean, G., Chapman, S.C., Broad, I., et al. 2010. Adapting APSIM to model the physiology and genetics of complex adaptive traits in field. Journal of Experimental Botany , 61(8), 2185–2202.

Hess, J.R., Carman, J.G., & Banowetz, G.M. 2002. Hormones in wheat kernels during embryony. Journal of Plant Physiology , 159, 379–386.

Hirel, B., Bertin, P., Quillere, I., Bourdoncle, W., Attagnant, C., et al. 2001. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiology, 125(3), 1258–1270.

Ho, L.C. 1988. Metabolism and compartmentation of imported sugars in sink organs in relation to sink strength. Annual Review of Plant Physiology and Plant Molecular Biology, 39, 355–378.

Holmes, M.G., & Keiller, D.R. 2002. Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: a comparison of a range of species. Plant Cell and Environment, 25(1), 85–93.

Hoogenboom, G., White, J.W., Jones, J.W., & Boote, K.J. 1994. BEANGRO - A process-oriented dry bean model with a versatile user-interface. Agronomy Journal, 86(1), 182–190.

Hoogenboom, G., White, J.W., & Messina, C.D. 2004. From genome to crop: integration through simulation modeling. Field Crops Research , 90(1), 145–163.

IPCC. 2014. Climate Change 2014, Synthesis Report, Summary for Policymakers. Tech. rept. Intergovernmental Panel on Climate Change.

Izanloo, A., Condon, A.G., & Langridge, P. 2008. Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars. Journal of Experimental Botany , 59(12), 3327–3346.

Johnson, R.R., Wagner, R.L., Verhey, S.D., & Walker-Simmons, M.K. 2002. The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences. Plant Physiology, 130(2), 837–846.

Jones, H.G. 1992. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology. 2nd edn. Cambridge University Press.

Kamal, A.H.M., Kim, K.H., Shin, K.H., Choi, J.S., Baik, B.K., et al. 2010. Abiotic stress responsive proteins of wheat grain determined using proteomics technique. Australian Journal of Crop Science , 4(3), 196–208.

Katul, G.G., Manzoni, S., Palmroth, S., & Oren, R. 2010. A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration. Annals of Botany, 105(3), 431–442.

Kearsey, M.J., & Farquhar, A.G.L. 1998. QTL analysis in plants; where are we now? Heredity, 80(2), 137–142.

King, C.A., Larry, L.C., & Brye, K.R. 2009. Differential Wilting among Soybean Genotypes in Response to Water Deficit. Crop Science , 49(1), 290–298.

Kuchen, E.E., Fox, S., de Reuille, P.B., Kennaway, R., Bensmihen, S., et al. 2012. Generation of leaf shape through early patterns of growth and tissue polarity. Science , 335(6072), 1092–1096.

Landivar, J.A., Baker, D.N., & Jenkins, J.N. 1983a. Application of GOSSYM to genetic feasibility studies. I. Analyses of fruit abscission and yield in okra-leaf cottons. Crop Science , 23(3), 497–504.

Landivar, J.A., Baker, D.N., & Jenkins, J.N. 1983b. Application of GOSSYM to genetic feasibility studies. II. Analyses of increasing photosynthesis, specific leaf weight and longevity of leaves in cotton. Crop Science , 23(3), 504–510.

Langensiepen, M., Kupisch, M., Graf, A., Schmidt, M., & Ewert, F. 2014. Improving the stem heat balance method for determining sap-flow in wheat. Agricultural and Forest Meteorology, 186(5), 34–42.

Laperche, A., Devienne-Baret, F., Maury, O., Le Gouis, J., & Ney, B. 2006. A simplified conceptual model of carbon/nitrogen functioning for QTL analysis of winter wheat adaptation to nitrogen deficiency. Theoretical and Applied Genetics, 113(6), 1131–1146.

Levchenko, V., Konrad, K.R., Dietrich, P., Roelfsema, M.R.G., & Hedrich, R. 2005. Cytosolic abscisic acid activates guard cell anion channels without preceding Ca2+ signals. Proc. Natl. Acad. Sci. U.S.A. , 102(1), 4203–4208.

Levitt, J. (ed). 1972. Responses of Plants to Environmental Stresses.

Liu, H., Able, A.J., & Able, J.A. 2016. Water-deficit stress responsive microRNAs and their targets in four durum wheat genotypes. Functional and Integrative Genomics , 17(237).

Liu, H., Able, A.J., & Able, J.A. 2017. Genotypic water-deficit stress response in durum wheat: association between physiological traits, microRNA regulatory modules and yield components. Functional Plant Biology, 44, 538–551.

Lockhart, J.A. 1965. An analysis of irreversible plant cell elongation. Journal of Theoretical Biology, 8(2), 264–275.

Ludwig-Müller, J. 2011. Auxin conjugates: their role for plant development and in the evolution of land plants. Journal of Experimental Botany , 62(6), 1757–1773.

Luquet, D., Clement-Vidal, A., & Fabre, D. 2008. Orchestration of transpiration, growth and carbohydrate dynamics in rice during a dry-down cycle. Functional Plant Biology, 35(8), 689–704.

Luquet, D., Rebolledo, C., Rouan, L., Soulie, J.C., & Dingkuhn, M. 2016. Heuristic Exploration of Theoretical Margins for Improving Adaptation of Rice through Crop-Model Assisted Phenotyping. In: Yin, X., & Struik, P.C. (eds), Crop Systems Biology: Narrowing the Gaps between Crop Modelling and Genetics . Springer.

Mammadov, J., Aggarwal, R., Buyyarapu, R., & Kumpatla, S. 2012. SNP Markers and Their Impact on Plant Breeding. International Journal of Plant Genomics , 2012.

Manzoni, S., Vico, G., Katul, G., Fay, P.A., Polley, W., et al. 2011. Optimizing stomatal conductance for maximum carbon gain under water stress. Functional Ecology , 25(3), 456–467.

Medlyn, B.E., Duursma, R.A., Eamus, D., Ellsworth, D.S., Prentice, I.C., et al. 2011. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Global Change Biology, 17(6), 2134–2144.

Merah, O. 2001. Potential importance of water status traits for durum wheat improvement under Mediterranean conditions. Journal of Agricultural Science , 137, 139–145.

Messina, C.D., Jones, J.W., Boote, K.J., & Vallejos, C.E. 2006. A gene-based model to simulate soybean development and yield responses to environment. Crop Science , 46(1), 456–466.

Morgan, J.M. 1984. Osmoregulation and Water-Stress in Higher Plants. Annual Review of Plant Physology and Plant Molecular Biology , 35, 299–319.

Munns, R. 1988. Why Measure Osmotic Adjustment? Australian Journal of Plant Physiology , 15(6), 717–726.

Myers, P.N., Setter, T.L., Madison, J.T., & Thompson, J.F. 1990. Abscisic acid inhibition of endosperm cell division in cultured maize kernels. Plant Physiology, 94(3), 1330–1336.

Nakagawa, H., Yamagishi, J., Miyamoto, N., Motoyama, M., Yano, M., et al. 2005. Flowering response of rice to photoperiod and temperature: a QTL analysis using a phenological model. Theoretical and Applied Genetics, 110(4), 778–786.

Palta, J.A., Kobata, T., Turner, N.C., & Fillery, I.R. 1994. Remobilization of carbon and nitrogen in wheat as influenced by post anthesis water deficits. Crop Science , 34(1), 118–124.

Palta, J.A., N.C.Turner, French, R.J., & Buirchell, B.J. 2007. Physiological responses of lupin genotypes to terminal drought in a Mediterranean-type environment. Annals of Applied Biology , 150(3), 269–279.

Pantin, F., Simonneau, T., Rolland, G., Dauzat, M., & Muller, B. 2011. Control of leaf expansion: a developmental switch from metabolics to hydraulics. Plant Physiology , 156(2), 803–815.

Papin, J.A., Price, N.D., Wiback, S.J., Fell, D.A., & Palsson, B.O. 2003. Metabolic pathways in the postgenome era. Trends in Biochemical Sciences , 28(5), 250–258.

Passioura, J.B. 1977. Grain yield, harvest index, and water use of wheat. Journal of the Australian Institute of Agricultural Science, 43(3-4), 117–120.

Peng, Z.Y., Wang, M.C., Li, F., Lu, H.J., Li, C.L., et al. 2009. A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. Molecular and Cellular Proteomics, 8(12), 2676–2686.

Plaut, Z., Butow, B.J., Blumenthal, C.S., & Wrigley, C.W. 2004. Transport of dry matter into developing wheat kernels and its contribution to grain yield under post-anthesis water deficit and elevated temperature. Field Crops Research, 86(2-3), 185–198.

Prentice, I.C., Dong, N., Gleason, S.M., Maire, V., & Wright, I.J. 2014. Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology. Ecology Letters , 17(1), 82–91.

Prioul, J.L., Quarrie, S., Causse, M., & de Vienne, D. 1997. Dissecting complex physiological functions through the use of molecular quantitative genetics. Journal of Experimental Botany, 48(311), 1151–1163.

Quilot, B., Kervella, J., Genard, M., & Lescourret, F. 2005. Analysing the genetic control of peach fruit quality through an ecophysiological model combined with a QTL approach. Journal of Experimental Botany , 56(422), 3083–3092.

Rabbani, M.A., Maruyama, K., Abe, H., Khan, M.A., Katsura, K., et al. 2003. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiology, 133(4), 1755–1767.

Raghavendra, A.S., Gonugunta, V.K., Christmann, A., & Grill, E. 2010. ABA perception and signalling. Trends in Plant Science, 15(7), 395–401.

Rebetzke, G.J., van Herwaarden, A.F., Jenkins, C., Weiss, M., Lewis, D., et al. 2008. Quantitative trait loci for water-soluble carbohydrates and associations with agronomic traits in wheat. Australian Journal of Agricultural Research, 59(10), 891–905.

Reuning, G.A., Bauerle, W.L., Mullen, J.L., & Mckay, J.K. 2015. Combining quantitative trait loci analysis with physiological models to predict genotype-specific transpiration rates. Plant Cell and Environment, 38(4), 710–717.

Reymond, M., Muller, B., Leonardi, A., Charcosset, A., & Tardieu, F. 2003. Combining quantitative trait loci analysis and an ecophysiological model to analyze the genetic variability of the responses of maize leaf growth to temperature and water deficit. Plant Physiology, 131(2), 664–675.

Reymond, M., Muller, B., & Tardieu, F. 2004. Dealing with the genotype x environment interaction via a modelling approach: a comparison of QTLs of maize leaf length or width with QTLs of model parameters. Journal of Experimental Botany , 55(407), 2461–2472.

Reynolds, M.P., Mujeeb-Kazi, A., & Sawkins, M. 2005. Prospects for utilising plantadaptive mechanisms to improve wheat and other crops in drought- and salinity-prone environments. Annals of Applied Biology, 146(2), 239–259.

Richards, R.A. 2006. Physiological traits used in the breeding of new cultivars for waterscarce environments. Agricultural Water Management , 80(1-3), 179–211.

Riera, M., Valon, C., Fenzi, F., Giraudat, J., & Leung, J. 2005. The genetics of adaptive responses to drought stress: abscisic acid-dependent and abscisic acid-independent signalling components. Physiologia Plantarum, 123(2), 111–119.

Sadok, W., & Sinclair, T.R. 2010. Genetic variability of transpiration response of soybean [Glycine max (L.) Merr.] shoots to leaf hydraulic conductance inhibitor AgNO3. Crop Science, 50(4), 1423–1430.

Salvi, S., Corneti, S., Bellotti, M., Carraro, N., Sanguienti, M.C., et al. 2011. Genetic dissection of maize phenology using an intraspecific introgression library. BMC Plant Biology, 11(4).

Sanguineti, M.C., Tuberosa, R., Landi, P., Salvi, S., Maccaferri, M., et al. 1999. QTL analysis of drought related traits and grain yield in relation to genetic variation for leaf abscisic acid concentration in field-grown maize. Journal of Experimental Botany, 50(337), 1289–1297.

Schilling, C.H., Letscher, D., & Palsson, B.O. 2000. Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathwayoriented perspective. Journal of Theoretical Biology, 203(3), 229–248.

Schon, C.C., Utz, H.F., Groh, S., Truberg, B., Openshaw, S., et al. 2004. Quantitative trait locus mapping based on resampling in a vast maize test cross experiment and its relevance to quantitative genetics for complex traits. Genetics, 167(1), 485–498.

Schuster, S., Fell, D.A., & Dandekar, T. 2000. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nature Biotechnology, 18(3), 326–332.

Seki, M., Narusaka, M., Abe, H., Kasuga, M., Yamaguchi-Shinozaki, K., et al. 2001. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell, 13(1), 61–72.

Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., et al. 2002. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant Journal, 31(3), 279–292.

Semenov, M.A., & Halford, N.G. 2009. Identifying target traits and molecular mechanisms for wheat breeding under a changing climate. Journal of Experimental Botany , 60(10), 2791–2804.

Serraj, R., & Sinclair, T.R. 2002. Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell and Environment , 25(2), 333–341.

Sharma, E., Sharma, R., Borah, P., Jain, M., & Khurana, J.P. 2015. Emerging roles of auxin in abiotic stress responses. Pages 299–328 of: Pandey, G.K. (ed), Elucidation of abiotic stress signaling in plants. Springer.

Sharp, R.E., Silk, W.K., & Hsiao, T.C. 1988. Growth of the maize primary root at low water potentials : I. Spatial distribution of expansive growth. Plant Physiology , 87(1), 50–57.

Shinozaki, K., & Yamaguchi-Shinozaki, K. 2000. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Current Opinion in Plant Biology, 3(3), 217–223.

Shinozaki, K., & Yamaguchi-Shinozaki, K. 2007. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 58(2), 221–227.

Shinozaki, K., Yamaguchi-Shinozaki, K., & Seki, M. 2003. Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology , 6(5), 410–417.

Siegel, R.S., Xue, S.W., Murata, Y., Yang, Y.Z., Nishimura, N., et al. 2009. Calcium elevation-dependent and attenuated resting calcium-dependent abscisic acid induction of stomatal closure and abscisic acid-induced enhancement of calcium sensitivities of S-type anion and inward-rectifying K+ channels in Arabidopsis guard cells. Plant Journal , 59(2), 207–220.

Simmons, S., Oelke, E., & Anderson, P. 1995. Growth and development guide for spring wheat. University of Minnesota. http://www.extension.umn.edu/agriculture/ small-grains/growth-and-development/spring-wheat/. (consulted 2-10-2016).

Simmons, S., Oelke, E., & Anderson, P. 2013. Growth and development guide for spring barley. University of Minnesota. http://www.extension.umn.edu/agriculture/ small-grains/growth-and-development/spring-barley/. (consulted 2-10-2016).

Simonneau, T., Habib, R., Goutouly, J.P., & Huguet, J.G. 1993. Diurnal changes in stem diameter depend upon variations in water content: direct evidence in peach trees. Journal of Experimental Botany , 44, 615–621.

Sinclair, T., Purcell, L., & Sneller, C.H. 2004. Crop transformation and the challenge to increase yield potential. Trends in Plant Science , 9(2), 70–75.

Sinclair, T.R., Messina, C.D., Beaty, A., & Samples, M . 2010. Assessment across the United States of the benefits of altered soybean drought traits. Agronomy Journal , 102(2), 475–482.

Sinclair, T.R., Devi, J.M., & Carter Jr., T.E. 2016. Limited-Transpiration Trait for Increased Yield for Water-Limited Soybean: From Model to Phenotype to Genotype to Cultivars. In: Yin, X., & Struik, P.C. (eds), Crop Systems Biology: Narrowing the Gaps between Crop Modelling and Genetics . Springer.

Singh, P., Boote, K.J., Kumar, U., Srinivas, K., Nigam, S.N., et al. 2012. Evaluation of genetic traits for improving productivity and adaptation of groundnut to climate change in India. Journal of Agronomy and Crop Science , 198(5), 399–413.

Sirichandra, C., Wasilewska, A., Vlad, F., Valon, C., & Leung, J. 2009. The guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action. Journal of Experimental Botany , 60(5), 1439–1463.

Slafer, G.A., Araus, J.L., Royo, C., & Garcia Del Moral, L.E. 2005. Promising ecophysiological traits for genetic improvement of cereal yields in Mediterranean environments. Annals of Applied Biology , 146(1), 61–70.

Snoussi, E.L. 1989. Qualitative dynamics of piecewise-linear differential equations: a discrete mapping approach. Dynamics and Stability of Systems , 4(3-4), 565–583.

Sperry, J.S., Venturas, M.D., Anderegg, W.R., M.Mencuccini, Mackay, D.S., et al. 2016. Predicting stomatal responses to the environment from the of photosynthetic gain and hydraulic cost. Plant Cell Environment.

Stam, P. 1998. Crop physiology, QTL analysis and plant breeding. In: Lambers, H., & van Vuuren, M.M.I (eds), Inherent variation in plant growth: physiological mechanisms and ecological consequences . Backhuys Publishers, Leiden.

Steppe, K., De Pauw, D.J.W., Lemeur, R., & Vanrolleghem, P.A. 2006. A mathematical model linking tree sap flow dynamics to daily stem diameter fluctuations and radial stem growth. Tree Physiology, 26, 257–273.

Steppe, K., De Pauw, D.J.W., & Lemeur, R. 2008. A step towards new irrigation scheduling strategies using plant-based measurements and mathematical modelling. Irrigation Science, 26(6), 505–517.

Stöckle, C.L., & Nelson, R. 2003. Cropping Systems Simulation Model User’s Manual. Washingtion State University, Biological Systems Engineering Department.

Stöckle, C.O., Donatelli, M., & Nelson, R. 2003. CropSyst, a cropping systems simulation model. European Journal of Agronomy, 18(3-4), 289–307.

Struik, X.Y. Yin P.C., Tang, J.J., Qi, C.H., & Liu, T.J. 2005. Model analysis of flowering phenology in recombinant inbred lines of barley. Journal of Experimental Botany, 56(413), 959–965.

Suriharn, B., Patanothai, A., Boote, K.J., & Hoogenboom, G. 2011. Designing a peanut ideotype for a target environment using the CSM-CROPGRO-peanut model. Crop Science, 51(5), 1887–1902.

Tambussi, E.A., Bort, J., & Araus, J.L. 2007. Water use efficiency in C3 cereals under Mediterranean conditions: a review of physiological aspects. Annals of Applied Biology, 150(3), 307–321.

Tardieu, F. 2003. Virtual plants: modelling as a tool for the genomics of tolerance to water deficit. Trends in Plant Science, 8(1), 9–14.

Tardieu, F., Reymond, M., Muller, B., Simonneau, T., Sadok, W., et al. 2005. Linking physiological and genetic analyses of the control of leaf growth under changing environmental conditions. Australian Journal of Agricultural Research , 56(9), 937–946.

Teulat, B., This, D., Khairallah, M., Borries, C., Ragot, C., et al. 1998. Several QTLs involved in osmotic adjustment trait variation in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 96(5), 688–698.

Tomita, M., Hashimoto, K., Takahashi, K., Shimizu, T.S., Matsuzaki, Y., et al. 1999. E-CELL: software environment for whole-cell simulation. Bioinformatics, 15(1), 72–84.

Ton, J., Flors, V., & Maunch-Mani, B. 2009. The multifaceted role of ABA in disease resistance. Trends in Plant Science, 14(6), 310–317.

Tuberosa, R. 2012. Phenotyping for drought tolerance of crops in the genomics era. Frontiers in Physiology, 3(UNSP 347).

Tuller, M., & Or, D. 2003. Retention of water in soil and the soil water characteristic curve.

Tuzet, A., Perrier, A., & Leuning, R. 2003. A coupled model of stomatal conductance, photosynthesis and transpiration. Plant Cell and Environment , 26, 1097–1116.

Tyree, M.T., & Sperry, J.S. 1988. Mechanisms of water stress-induced xylem embolism. Plant Physology , 88, 581–587.

Uptmoor, R., T.Schrag, Stuetzel, H., & Esch, E. 2008. Crop model based QTL analysis across environments and QTL based estimation of time to floral induction and flowering in Brassica oleracea. Molecular Breeding , 21(2), 205–216.

Urao, T., Yamaguchi-Shinozaki, K., Urao, S., & Shinozaki, K. 1993. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequences. Plant Cell, 5(11), 1529–1539.

van den Honert, T.H. 1948. Water transport in plants as a caternary process. Discussion of the Faraday Society , 3, 146–153.

van Eeuwijk, F.A., Malosetti, M., Yin, X., Struik, P.C., & Stam, P. 2005. Statistical models for genotype by environment data: from conventional ANOVA models to ecophysiological QTL models. Asutralian Journal of Agricultural Research, 56(9), 883–894.

Vu, L.D., Stes, E., Van Bel, M., Nelissen, H., Maddelein, D., et al. 2016. Up-to- Date Workflow for Plant (Phospho)proteomics Identiefies Differential Drought-Responsive Phosporylation Events in Maize Leaves. Journal of Proteome Research, 15, 4304–4317.

Welch, S.M., Roe, J.L., & Dong, Z. 2003. A genetic neural network model of flowering time control in Arabidopsis thaliana. Agronomy Journal , 95(1), 71–81.

Welch, S.M., Dong, Z., & Roe, J.L. 2016. Modelling gene networks controlling transition to flowering in arabidopsis. Pages 1–20 of: adn N. Turner, A. Fischer, Angus, J.F.,

McIntyre, L, Robertson, M.J., Borrell, A.K., et al. (eds), New directions for a diverse planet: proceedings for the 4th international crop science congress.

Welcker, C., Boussuge, B., Bencivenni, C., Ribaut, J.M., & Tardieu, F. 2007. Are source and sink strengths genetically linked in maize plants subjected to water deficit? A QTL study of the responses of leaf growth and of anthesis-silking Interval to water deficit. Journal of Experimental Botany , 58(2), 339–349.

White, J.W. 2006. From genome to wheat: Emerging opportunities for modelling wheat growth and development. European Journal of Agronomy, 25(2), 79–88.

White, J.W., & Hoogenboom, G. 1996. Simulating effects of gens for physiological traits in a process-oriented crop model. Agronomy Journal, 88(3), 416–422.

White, J.W., & Hoogenboom, G. 2003. Gene-based approaches to crop simulation: Past experiences and future opportunities. Agronomy Journal, 95(1), 52–64.

Wittmann, D.M., Krumsiek, J., Saez-Rodriguez, J., Da, L., Klamt, S., et al. 2009. Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling. BMC Systems Biology, 3(98).

Xu, L., & Buck-Sorlin, G. 2016. Simulating Genotype-Phenotype Interaction Using Extended Functional-Structural Plant Models: Approaches, Applications and Potential Pitfalls. In: Yin, X., & Struik, P.C. (eds), Crop Systems Biology: Narrowing the Gaps between Crop Modelling and Genetics . Springer.

Xu, L., Henke, M., Zhu, J., Kurth, W., & Buck-Sorlin, G. 2011. A functional-structural model of rice linking quantitative genetic information with morphological development and physiological processes. Annals of Botany, 107(5), 817–828.

Xu, L., Ding, W., Zhu, J., Henke, M., Kurth, W., et al. 2012. Simulating superior genotypes for plant height based on QTLs: towards virtual breeding of rice. Pages 447–454 of: Kang, M., Dumont, Y., & Guo, Y. (eds), IEEE 4th international symposium on plant growth modeling, simulation, visualization and applications (PMA12).

Yamaguchi-Shinozaki, K., & Shinozaki, K. 1993. The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Molecular and General Genetics , 138(1), 17–25.

Yamaguchi-Shinozaki, K., & Shinozaki, K. 1994. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell , 6(2), 251–264.

Yamaguchi-Shinozaki, K., & Shinozaki, K. 2005. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends in Plant Science , 10(2), 88–94.

Yamaguchi-Shinozaki, K., & Shinozaki, K. 2006. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology , 57, 781–803.

Yang, J., Zhang, J., Wang, Z., Xu, G., & Zhu, Q. 2004. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiology , 135(3), 1621–1629.

Yang, J.C., Zhang, J.H., Wang, Z.Q., Zhu, Q.S., & Wang, W. 2001. Remobilization of carbon reserves in response to water deficit during grain filling of rice. Field Crops Research, 71(1), 47–55.

Yin, X., & Struik, P.C. 2007. Crop systems biology: an approach to connect functional genomics with crop modelling. In: Spiertz, J.H.J., Struik, P.C., & van Laar, H.H. (eds), Scale and complexity in plant systems research: gene-plant-crop relations. Springer, Dordrecht .

Yin, X., & Struik, P.C. 2016. Crop Systems Biology: Where Are We and Where to Go? In: Yin, X., & Struik, P.C. (eds), Crop Systems Biology: Narrowing the Gaps between Crop Modelling and Genetics . Springer.

Yin, X., Struik, P.C., Gu, J., & Wang, H. 2016. Modelling QTL-Trait-Crop Relationships: Past Experiences and Future Prospects. In: Yin, X., & Struik, P.C. (eds), Crop Systems Biology: Narrowing the Gaps between Crop Modelling and Genetics . Springer.

Yin, X.Y., Chasalow, S.D., Dourleijn, C.J., Stam, P., & Kropff, M.J. 2000. Coupling estimated effects of QTLs for physiological traits to a crop growth model: predicting yield variation among recombinant inbred lines in barley. Heredity, 85(6), 539–549.

Zeevaart, J.A.D. 1980. Changes in the Levels of Abscisic Acid and Its Metabolites in Excised Leaf Blades of Xanthium strumarium during and after Water Stress. Plant Physiology , 66(4), 672–678.

Zhang, J.X., Nguyen, H.T., & Blum, A. 1999. Genetic analysis of osmotic adjustment in crop plants. Journal of Experimental Botany , 50(332), 291–302.

Zheng, B., Biddulph, B., Li, D., Kuchel, H., & Chapman, S. 2013. Quantification of the effects of VRN1 and Ppd-D1 to predict spring wheat (Triticum aestivum) heading time across diverse environments. Journal of experimental botany, 64(12), 3747–3761.

Zheng, B., Chenu, K., Doherty, A., & Chapman, S. 2014. The APSIM-Wheat Module (7.5 R3008).

Zhu, J.K. 2002. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology , 53, 247–273.

Zhu, S.Y., Yu, X.C., Wang, X.J., Zhao, R., Li, Y., et al. 2007. Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell , 19(10), 3019–3036.

Zweifel, R., Item, H., & Häsler, E. 2000. Stem radius changes and their relation to stored water in stems of young Norway spruce trees. Trees, 15, 50–75.

Zweifel, R., Item, H., & Häsler, E. 2001. Link between diurnal stem radius changes and tree water relations. Tree Physiology, 21, 869–877.

Zweifel, R., Böhm, J.P., & Häsler, R. 2002. Midday stomatal closure in Norway spruce–reactions in the upper and lower crown. Tree Physiology, 22, 1125–1136.

Zweifel, R., Steppe, K., & Sterck, F.J. 2007. Stomatal regulation by microclimate and tree water relations: interpreting ecophysiological field data with a hydraulic plant model. Journal of Experimental Botany, 58(8), 2113–2131.

Universiteit of Hogeschool
Bio-ingenieurswetenschappen, Cel- en genbiotechnologie
Publicatiejaar
2017
Promotor(en)
Kathy Steppe
Kernwoorden
Share this on: