(Zie bijlage voor volledig artikel)
Het ’s werelds grootste door de mens gemaakt meer is blank terrein voor wetenschappers. Voor het eerst trokken biologen met moderne moleculaire technieken naar het Karibameer om de diversiteit aan trematode wormparasieten te bestuderen. Al ooit gehoord van schistosomiase, leverbot of een ‘zombieslak’?
Sinds de constructie van de Karibadam in de Zambezi rivier, vormt het Karibameer de grens tussen Zambia en Zimbabwe. Vermits het karibameer een ondergelopen vallei is, is al het leven in en rond het meer hier nieuw en zeer interessant voor biologen. Het meer is, zoals alle Afrikaanse meren, een broeikas voor heel wat parasieten, waaronder de trematoden. Trematoden zijn een grote groep parasitaire wormen die leven in het bloed, de lever of het spijsverteringstelsel van mens en dier. Infectie gebeurt via de huid of via consumptie van met larven besmet voedsel of drinkwater. De eieren van de volwassen wormen komen via excreta terug in het water terecht. Hier, ontluiken de eitjes tot larven die zoetwaterslakken infecteren en zich hierin vermenidgvuldigen, waarna ze de slak opnieuw verlaten. De meest gekende trematodesoort is Schistosoma, hij veroorzaakt de ziekte schistosomiase of bilharzia, wat op malaria na de meest problematische parasitaire ziekte ter wereld is. Er zijn echter meer dan 18000 verschillende soorten trematoden gekend en nieuwe soorten worden jaarlijks beschreven. De ziekten die trematoden teweegbrengen zijn wetenschappelijk erg onderbelicht, daarom worden ze ook 'verwaarloosde ziekten' genoemd.
Een alledaags zicht in Kariba: op de voorgrond waadvogels, op de achtergrond dode bomen, overblijfselen van de beboste vallei die onderliep in de jaren 60’.
Voor mijn thesis reisde ik samen met parasitologe Tine Huyse van het Belgisch Koninklijk Museum voor Centraal Afrika naar Kariba, een dorpje aan de rand van het Karibameer te Zimbabwe. Hier verzamelden we gedurende zes weken zoetwaterslakken om de trematoden die ze verspreiden te onderzoeken in het lab. Kennis over het voorkomen van zowel de trematoden als hun slakkengastheer is essentieel om te begrijpen hoe ze zich verspreiden en hoe we deze transmissie kunnen controleren en voorspellen. Daarvoor zijn efficiënte identificatiemiddelen noodzakelijk. De meest moderne methoden zijn gebasseerd op DNA analyse en worden moleculaire methoden genoemd. Landen waar tropische parasieten het meest talrijk zijn, zoals Zimbabwe, hebben vaak niet de middelen om zulke moleculaire technieken te ontwikkelen. Daarom was het voornaamste doel van mijn thesisonderzoek om een op DNA gebaseerde methode te ontwikkelen om zo goedkoop en efficient mogelijk trematode-infecties in slakken te diagnosticeren. De techniek vermenigvuldigd specifieke DNA fragmenten van de parasiet in wat men noemt de polymerase kettingreactie. Eens het DNA voldoende vermenigvuldigd is kan het zichtbaar gemaakt worden als een bandenpatroon. We hebben deze techniek toegepast om te onderzoeken welke slakkensoorten er geïnfecteerd zijn en of dit parasieten waren die de mens, al dan niet kunnen infecteren. Een tweede doelstelling was het identificeren van alle slakken- en trematodensoorten in het Karibameer op basis van DNA sequentie analyse. De zoetwaterslakjes zijn soms maar enkele millimeters groot terwijl de parasietenlarven amper waar te nemen zijn met het blote oog. Vergeleken met klassieke identificatie op basis van uiterlijke kenmerken, is identificatie op basis van DNA veel nauwkeuriger.
Onze zoektocht leverde verrassende resultaten op. Zo vonden we ondermeer slakken die geïnfecteerd waren met visparasieten. Dit kan erg belangrijk zijn voor de lokale bevolking daar de visserij en viskweek één van de meest belangrijke economische activiteiten zijn van het Karibameer en Zimbabwe.
Boten varen in de ochtend uit voor het vissen van Kapenta, één van de voornaamste activiteiten in het Karibameer.
We ontdekten ook dat het meer enkele nieuwe en invasieve slakken en trematodensoorten herbergt. Invasieve soorten zijn plant- of diersoorten die buiten hun leefgebied voorkomen en daar de inheemse of lokale soorten verdringen. Ze doen met andere woorden aan ‘invasie’ van andere leefgebieden. Eén van de meest opmerkelijke ontdekkingen was de invasieve slak Pseudosuccinea columella uit Noord-Amerika, die frequent voorkomt in het Karibameer en die een trematodensoort van het Fasciola geslacht kan verspreiden. Fasciola staat bekend als de leverbotworm en kan de lever van mensen, vee en zelfs olifanten infecterenNooit eerder werd deze slakkensoort en parasiet waargenomen in het meer, nog in Zimbabwe. Verder vonden we een invasieve slakkensoort uit Zuidoost-Azië en verschillende trematodensoorten die nog nooit in Zimbabwe of zelfs Afrika zijn waargenomen. Een voorbeeld hiervan is de parasiet Leucochloridium die bekend staat om het brein van zijn slakgastheer over te nemen. De ‘zombieslak’ zoekt dan hoger gelegen, zonnige plekken op terwijl de parasiet in de antennen van de slak kruipt, waar hij pulserende kleurrijke banden vormt. Zo wordt de slak opgemerkt door de eindgastheer van de parasiet: een vogel met een appetijt voor slakken.
Een ‘zombieslak’ geinfecteerd met Leucochloridium. © Gilles San Martin
Tenslotte onderzochten we de ecologische voorkeuren van de verschillende slakkensoorten. Ecologie is de studie van de biotische (of levende) en abiotische (of niet-levende) factoren in het leefmilieu van een organisme. We onderzochten hoe het aantal slakken wordt beïnvloed door de waterkwaliteit, waterplantvegetatie en tal van andere factoren op verschillende plaatsen rond het meer. Zo konden we aantonen dat sommige slakkensoorten eerder voorkomen in vervuild water en andere soorten in wateren waar de invasieve waterhyacint (Eicchornia crassipes) aanwezig is. We bewezen zo dat kunstmatige waterreservoirs zoals het Karibameer, kansen creëren voor invasieve soorten zoals de waterhyacinth en de slak Pseudosuccinea columella. Zowel slak als plant zijn van Amerikaanse oorsprong en waarschijnlijk geïntroduceerd via handel in waterplanten zoals de waterhacinth, die wereldwijd als sierplant voor vijvers wordt verkocht. Zij kunnen het risico op de verspreiding van lokale èn invasieve parasieten in het gebied aanzienlijk vergroten met catastrofale gevolgen. De waterhyacinth zorgt ook voor tal van andere problemen, zo bedekt hij uitgestrekte delen van het meer die hierdoor niet meer toegankelijk zijn voor boten, dieren en mensen. Het bestrijden van zulke invasieve plantensoorten zou daarom meerdere voordelen kunnen hebben.
Behalve de opmerkelijke diversiteit aan slakken en parasieten, is het Karibameer een verborgen schat aan wetenschappelijke informatie.
Abbasi, I. et al. (2012) ‘Differentiating Schistosoma haematobium from related animal schistosomes by PCR amplifying inter-repeat sequences flanking newly selected repeated sequences’, American Journal of Tropical Medicine and Hygiene, 87(6), pp. 1059–1064. doi: 10.4269/ajtmh.2012.12-0243.
Adams, C. S. et al. (2002) ‘The dynamics and ecology of exotic tropical species in floating plant mats: Lake Naivasha, Kenya’, Hydrobiologia, 488, pp. 115–122. doi: 10.1023/A:1023322430005.
Adema, C. M. et al. (2012) ‘Will all scientists working on snails and the diseases they transmit please stand up?’, PLoS Neglected Tropical Diseases, 6(12), pp. 5–6. doi: 10.1371/journal.pntd.0001835.
Adenowo, A. F. et al. (2015) ‘Impact of human schistosomiasis in sub-Saharan Africa’, Brazilian Journal of Infectious Diseases. Elsevier Editora Ltda, 19(2), pp. 196–205. doi: 10.1016/j.bjid.2014.11.004.
Van Aken, D. and Brandt, J. (1987) ‘Preliminary observations on the detection of the larval stages of Fasciola hepatica in Lymnaea truncatula by enzyme-electrophoresis’, Ann. Soc. belge Méd. trop., 67, pp. 295–298.
Akinwale, O. P. et al. (2014) ‘Differentiating Schistosoma haematobium from Schistosoma magrebowiei and other closely related schistosomes by polymerase chain reaction amplification of a species specific mitochondrial gene.’, Tropical parasitology, 4(1), pp. 38–42. doi: 10.4103/2229-5070.129163.
Alasaad, S. et al. (2011) ‘A TaqMan real-time PCR-based assay for the identification of Fasciola spp.’, Veterinary Parasitology, 179(1–3), pp. 266–271. doi: 10.1016/j.vetpar.2011.01.059.
Alexander, S. J. and McLaughlin, J. D. (1997) ‘A checklist of helminths from the respiratory system and gastrointestinal tracts of African Anatidae’, Onderstepoort Journal of Veterinary Research, 64(November 1996), pp. 5–16.
Altschul, S. F. et al. (1990) ‘Basic local alignment search tool.’, Journal of molecular biology, 215(3), pp. 403–10. doi: 10.1016/S0022-2836(05)80360-2.
Amarir, F. et al. (2014) ‘Schistosoma haematobium detection in snails by DraI PCR and Sh110/Sm-Sl PCR: Further evidence of the interruption of schistosomiasis transmission in Morocco’, Parasites and Vectors, 7(1), pp. 1–8. doi: 10.1186/1756-3305-7-288.
Appleton, C. C. (2003) ‘Alien and invasive freshwater gastropoda in South Africa’, African Journal of Aquatic Science, 28(1), pp. 69–81. doi: 10.2989/16085914.2003.9626602.
Appleton, C. C. and Madsen, H. (2012) ‘Human schistosomiasis in wetlands in southern Africa’, Wetlands Ecology and Management, 20(3), pp. 253–269. doi: 10.1007/s11273-012-9266-2.
Appleton, C. and Miranda, N. (2015) ‘Locating bilharzia transmission sites in South Africa: guidelines for public health personnel’, Southern African Journal of Infectious Diseases. Taylor & Francis, 30(3), pp. 95–102. doi: 10.1080/23120053.2015.1074438.
Ashrafi, K., Bargues, M. D. and Neill, S. O. (2014) ‘Fasciolosis : A worldwide parasitic disease of importance in travel medicine’, Travel Medicine and Infectious Disease. Elsevier Ltd, 12(6), pp. 636–649. doi: 10.1016/j.tmaid.2014.09.006.
Atopkin, D. M. (2011) ‘Genetic characterization of the Psilotrema (Digenea: Psilostomatidae) genus by partial 28S ribosomal DNA sequences’, Parasitology International. Elsevier Ireland Ltd, 60(4), pp. 541–543. doi: 10.1016/j.parint.2011.09.005.
Berg, H. et al. (1996) ‘Managing aquaculture for sustainability in tropical Lake Kariba, Zimbabwe’, Ecological Economics, 18(2), pp. 141–159. doi: 10.1016/0921-8009(96)00018-3.
Bindernagel, J. A. (1972) ‘Liver fluke fasciola gigantica in african buffalo and antelopes in uganda, east africa’, Journal of Wildlife Diseases, 8(4), pp. 315–317.
Bocxlaer, B. Van and Schultheiß, R. (2010) ‘Comparison of morphometric techniques for shapes with few homologous landmarks based on machine-learning approaches to biological discrimination’, Paleobiology, 36(03), pp. 497–515. doi: 10.1666/08068.1.
Borcard, D. et al. (2011) Numerical Ecology with R, Springer. Edited by R. Gentleman, K. Hornik, and G. G. Permigiani. Springer. doi: 10.1007/978-1-4419-7976-6.
Born-Torrijos, A. et al. (2014) ‘Estimating trematode prevalence in snail hosts using a single-step duplex PCR: how badly does cercarial shedding underestimate infection rates?’, Parasites & Vectors, 7(1), p. 243. doi: 10.1186/1756-3305-7-243.
Bouchet, P. et al. (2005) Classification and nomenclator of gastropod families, Malacologia. doi: 3-925919-72-4.
Brackenbury, T. D. and Appleton, C. c. (1991) ‘Effect of controlled temperatures on gametogenesis in the gastropods Physa acuta (physidae) and Bulinus tropicus (planorbidae)’, Journal of Molluscan Studies, 57(4), pp. 461–469. doi: 10.1093/mollus/57.4.461.
Brendonck, L. et al. (2003) ‘The impact of water hyacinth (Eichhornia crassipes) in a eutrophic subtropical impoundment (Lake Chivero, Zimbabwe). II. Species diversity’, Archiv für Hydrobiologie, 158(3), pp. 389–405. doi: 10.1127/0003-9136/2003/0158-0389.
Van den Broeck, F. et al. (2011) ‘Optimal sample storage and extraction procotols for reliable multilocus genotyping of the human parasite Schistosoma mansoni’, Infection, Genetics and Evolution. Elsevier B.V., 11(6), pp. 1413–1418. doi: 10.1016/j.meegid.2011.05.006.
Brown, D. S. (1994) Freshwater snails of Africa and their medical importance. 2nd edn, Transactions of the Royal Society of Tropical Medicine and Hygiene. 2nd edn. UK Taylor & Francis Ltd. doi: 10.1016/0035-9203(81)90097-3.
Brown, D. S. and van Eeden, J. A. (1969) ‘The molluscan genus Gyraulus (Gastropoda: Planorbidae) in Southern Africa’, pp. 305–331.
Van Bruggen, A. C. and Appleton, C. C. (1977) ‘Studies on the ecology and systematics of the terrestrial molluscs of the lake Sibaya area of Zululand, South Africa.’, Zoologische verhandelingen, 154.
Cañete, R. et al. (2004) ‘Population dynamics of intermediate snail hosts of Fasciola hepatica and some environmental factors in San Juan y Martinez Municipality, Cuba’, Memorias do Instituto Oswaldo Cruz, 99(3), pp. 257–262. doi: /S0074-02762004000300003.
Caron, Y. et al. (2011) ‘An optimized DNA extraction and multiplex PCR for the detection of Fasciola sp. in lymnaeid snails’, Veterinary Parasitology. Elsevier B.V., 178(1–2), pp. 93–99. doi: 10.1016/j.vetpar.2010.12.020.
Caron, Y., Rondelaud, D. and Losson, B. (2008) ‘The detection and quantification of a digenean infection in the snail host with special emphasis on Fasciola sp.’, Parasitology Research, 103(4), pp. 735–744. doi: 10.1007/s00436-008-1086-1.
Casey, S. P. et al. (2003) ‘Use of ITS rDNA for discrimination of European green- and brown-banded sporocysts within the genus Leucochloridium Carus, 1835 (Digenea: Leucochloriidae)’, Systematic Parasitology, 56(3), pp. 163–168. doi: 10.1023/B:SYPA.0000003809.15982.ca.
Chai, J. Y. et al. (2009) ‘Foodborne intestinal flukes in Southeast Asia’, Korean Journal of Parasitology, 47(SUPPL.), pp. 69–102. doi: 10.3347/kjp.2009.47.S.S69.
Chimbari, M. J. et al. (2003) ‘Transmission of schistosomiasis in Kariba, Zimbabwe, and a cross-sectional comparison of schistosomiasis prevalences and intensities in the town with those in Siavonga in Zambia’, Annals of Tropical Medicine & Parasitology, 97(6), pp. 605–616. doi: 10.1179/000349803225001508.
Chimbari, M. J. (2012) ‘Enhancing schistosomiasis control strategy for Zimbabwe: Building on past experiences’, Journal of Parasitology Research, 2012. doi: 10.1155/2012/353768.
Chimbari, M. J. and Chirundu, D. (2003) ‘Prevalence and intensity of the schistosomiasis situation along the Zimbabwean urban and peri-urban shoreline of lake Kariba.’, The Central African Journal Of Medicine, 49(January), pp. 8–12.
Chingwena, G. et al. (2002) ‘Larval trematode infections in freshwater snails from the highveld and lowveld areas of Zimbabwe’, Journal of Helminthology. KU Leuven Libraries, 76(4), pp. 283–293. doi: 10.1079/JOH2002132.
Chingwena, G. et al. (2004) ‘Population dynamics and ecology of freshwater gastropods in the highveld and lowveld regions of Zimbabwe, with emphasis on schistosome and amphistome intermediate hosts’, African Zoology, 39(1), pp. 55–62. doi: 10.1080/15627020.2004.11407286.
De Clercq, D. (1987) ‘La situation malacologique à Kinshasa et description d’un foyer autochtone de schistosomiase à Schistosoma intercalatum’, Annales de la Société Belge de Médecine Tropicale, pp. 345–352.
Correa, A. C. et al. (2010) ‘Bridging gaps in the molecular phylogeny of the Lymnaeidae (Gastropoda: Pulmonata), vectors of Fasciolosis’, BMC Evolutionary Biology. BioMed Central Ltd, 10(1), p. 381. doi: 10.1186/1471-2148-10-381.
Cucher, M. A. et al. (2006) ‘PCR diagnosis of Fasciola hepatica in field-collected Lymnaea columella and Lymnaea viatrix snails’, Veterinary Parasitology, 137(1–2), pp. 74–82. doi: 10.1016/j.vetpar.2005.12.013.
Davies, C. M. et al. (1999) ‘Host-parasite population genetics: A cross-sectional comparison of Bulinus globosus and Schistosoma haematobium’, Parasitology, 119(3), pp. 295–302. doi: 10.1017/S0031182099004722.
DiNardo, A. (2015) Helminth Infections and Their Impact on Global Public Health, Clinical Infectious Diseases. doi: 10.1093/cid/ciu891.
Dinnik, J. A. (1965) ‘The Snail Hosts of Certain Paramphistomatidae and Gastrothylacidae (Trematoda) Discovered by the late Dr. P. L. LeRoux in Africa’, Journal of Helminthology, 39(2), pp. 141–150.
Dinnik, J. A. and Dinnik, N. N. (1961) ‘On the Morphology and Life History of Fasciola nyanzae Leiper, 1910 from the Hippopotamus’, Journal of Helminthology, 35(S1), pp. 53–62. doi: 10.1017/S0022149X00017570.
Dreyfuss, G. and and Rondelaud, D. (1994) ‘Fasciola hepatica: A study of the shedding of cercariae from Lymnaea truncatula raised under constant conditions of temperature and photoperiod.’, Parasite, 75(11), pp. 401–404.
Edgar, R. C. (2004) ‘MUSCLE: Multiple sequence alignment with high accuracy and high throughput’, Nucleic Acids Research, 32(5), pp. 1792–1797. doi: 10.1093/nar/gkh340.
van Eeden, J. A. and Brown, D. S. (1966) ‘Colonization of Fresh waters in the Rupublic of South Africa by Lymnaea columnella Say (Mollusca: Gastropoda)’, Nature, 209, pp. 694–696. Available at: https://www.nature.com/articles/2101172a0.
Esch, G. W., Curtis, L. A. and Barger, M. A. (2001) ‘A perspective on the ecology of trematode communities in snails’, Parasitology, 123(07). doi: 10.1017/S0031182001007697.
Esteban, J. G. and Bargues, M. D. (1999) ‘Epidemiology of human fasciolosis: a review and proposed new classification’, 77(4), pp. 340–346.
Fox, J. and Weisberg, S. (2011) No An {R} Companion to Applied Regression, Second Edition. Thousand Oaks CA : Sage, Sage. Available at: http://socserv.socsci.mcmaster.ca/jfox/Books/Companion.
Frandsen, F. and Christensen, N. O. (1984) ‘An introductory guide to the identification of cercariae from African freshwater snails with special reference to cercariae of trematode species of medical and veterinary importance.’, Acta tropica, 41, pp. 181–202. doi: 10.1016/S0020-7519(03)00049-3.
Fried, B. and Toledo, R. (2009) The biology of Echinostomes - from the molecule to the community. Springer. doi: 10.1007/978-0-387-09577-6.
Gakkai, N. K. and Akao, Y. (1973) ‘Description of Psilorchis hominis sp. nov. from man (Trematoda: Echinostomatoidea: Psilostomidae)’, Japanese Journal of Parasitology. Elsevier, 22(3), pp. 111–15. Available at: https://www.cabdirect.org/cabdirect/abstract/19742900546 (Accessed: 12 May 2018).
Galindo, L. A. et al. (2014) ‘Using microwaves to prepare gastropods for DNA barcoding’, Molecular Ecology Resources, 14(4), pp. 700–705. doi: 10.1111/1755-0998.12231.
Gandasegui, J. et al. (2016) ‘Biompha-LAMP: a new rapid loop-mediated isothermal amplification assay for detecting Schistosoma mansoni in Biomphalaria glabrata snail host’, PLoS Neglected Tropical Diseases, 10(12). doi: 10.1371/journal.pntd.0005225.
Gebremedhn, H. G. and Tsegay, A. K. (2017) ‘Review on distribution of endo-parasites of fish in Ethiopia’, Parasite Epidemiology and Control. Elsevier, 2(4), pp. 42–47. doi: 10.1016/j.parepi.2017.10.002.
Giannelli, A. et al. (2016) ‘Gastropod-Borne Helminths: a look at the snail-parasite interplay’, Trends in Parasitology. Elsevier Ltd, 32(3), pp. 255–264. doi: 10.1016/j.pt.2015.12.002.
Gilbertson, C. R. and Wyatt, J. D. (2016) ‘Evaluation of euthanasia techniques for an invertebrate species, land snails (Succinea putris).’, Journal of the American Association for Laboratory Animal Science : JAALAS, 55(5), pp. 577–81.
Giovanelli, A. et al. (2005) ‘Habitat preference of freshwater snails in relation to environmental factors and the presence of the competitor snail Melanoides tuberculatus (Müller, 1774)’, Memorias do Instituto Oswaldo Cruz, 100(2), pp. 169–176. doi: 10.1590/S0074-02762005000200010.
Gonchar, A. and Galaktionov, K. V. (2017) ‘Life cycle and biology of Tristriata anatis (Digenea: Notocotylidae): morphological and molecular approaches’, Parasitology Research. Parasitology Research, 116(1), pp. 45–59. doi: 10.1007/s00436-016-5260-6.
Gower, C. M., Vince, L. and Webster, J. P. (2017) ‘Should we be treating animal schistosomiasis in Africa? The need for a One Health economic evaluation of schistosomiasis control in people and their livestock’, Transactions of The Royal Society of Tropical Medicine and Hygiene, 111(6), pp. 244–247. doi: 10.1093/trstmh/trx047.
Grabner, D. S. et al. (2014) ‘Invasion biology meets parasitology: A case study of parasite spill-back with egyptian Fasciola gigantica in the invasive snail Pseudosuccinea columella’, PLoS ONE, 9(2), pp. 1–7. doi: 10.1371/journal.pone.0088537.
Grobbelaar, A. et al. (2014) ‘Ecology of diplostomid (Trematoda: Digenea) infection in freshwater fish in southern Africa’, African Zoology, 49(2), pp. 222–232. doi: 10.1080/15627020.2014.11407638.
Gryseels, B. et al. (2006) ‘Human schistosomiasis’, Lancet, 368(9541), pp. 1106–1118. doi: 10.1016/S0140-6736(06)69440-3.
Hamburger, J. et al. (2013) ‘Evaluation of loop-mediated isothermal amplification suitable for molecular monitoring of schistosome-infected snails in field laboratories’, American Journal of Tropical Medicine and Hygiene, 88(2), pp. 344–351. doi: 10.4269/ajtmh.2012.12-0208.
Harhay, M. O., Horton, J. and Olliaro, P. L. (2010) ‘Epidemiology and control of human gastrointestinal parasites in children’, Expert Review of Anti-Infective Therapy, 8 (2), pp. 219–234. doi: http://dx.doi.org/10.1586/14737140.8.2.219.
Hashizume, H. et al. (2017) ‘Application of environmental DNA analysis for the detection of Opisthorchis viverrini DNA in water samples’, Acta Tropica, 169, pp. 1–7. doi: 10.1016/j.actatropica.2017.01.008.
Hebert, P. D. N. et al. (2003) ‘Biological identifications through DNA barcodes.’, Proceedings. Biological sciences / The Royal Society, 270(1512), pp. 313–321. doi: 10.1098/rspb.2002.2218.
Hebert, P. D. N. and Beaton, M. J. (1993) ‘Methodologies for allozyme analysis using cellulose acetate electrophoresis’, Zoology, (January 1989), p. 32.
Hira, P. R. (1969) ‘Transmission of schistosomiasis in lake Kariba, Zambia’, Nature, 224(5220), pp. 177–178. doi: 10.1038/224488a0.
ten Hove, R. J. et al. (2008) ‘Multiplex real-time PCR for the detection and quantification of Schistosoma mansoni and S. haematobium infection in stool samples collected in northern Senegal’, Transactions of the Royal Society of Tropical Medicine and Hygiene, 102(2), pp. 179–185. doi: 10.1016/j.trstmh.2007.10.011.
Huyse, T. et al. (2009) ‘Bidirectional introgressive hybridization between a cattle and human schistosome species.’, PLoS pathogens. Public Library of Science, 5(9), p. e1000571. doi: 10.1371/journal.ppat.1000571.
Johansen, M. V., Lier, T. and Sithithaworn, P. (2015) ‘Towards improved diagnosis of neglected zoonotic trematodes using a One Health approach’, Acta Tropica, 141(Part B), pp. 161–169. doi: 10.1016/j.actatropica.2013.07.006.
Johnson, P. T. J. et al. (2004) ‘Review of the trematode genus Ribeiroia (Psilostomidae): Ecology, life history and pathogenesis with special emphasis on the amphibian malformation problem’, Advances in Parasitology, 57(04), pp. 191–253. doi: 10.1016/S0065-308X(04)57003-3.
Jones, C. S. et al. (1999) ‘Molecular identification of schistosome intermediate hosts: case studies of Bulinus forskalii group species (Gastropoda: Planorbidae) from Central and East Africa’, Biological Journal of the Linnean Society, 68(1–2), pp. 215–240. doi: 10.1006/bijl.1999.0339.
Jørgensen, A. et al. (2007) ‘Molecular phylogenetic investigations of Bulinus (Gastropoda: Planorbidae) in Lake Malawi with comments on the topological incongruence between DNA loci’, Zoologica Scripta, 36(6), pp. 577–585. doi: 10.1111/j.1463-6409.2007.00298.x.
Jothikumar, N. et al. (2015) ‘Real-time PCR and sequencing assays for rapid detection and identification of avian schistosomes in environmental samples’, Applied and Environmental Microbiology, 81(12), pp. 4207–4215. doi: 10.1128/AEM.00750-15.
Junker, K., Horak, I. G. and Penzhorn, B. (2015) ‘History and development of research on wildlife parasites in southern Africa, with emphasis on terrestrial mammals, especially ungulates’, International Journal for Parasitology: Parasites and Wildlife. The Authors, 4(1), pp. 50–70. doi: 10.1016/j.ijppaw.2014.12.003.
Kane, R. A. et al. (2008) ‘Molecular characterization of freshwater snails in the genus Bulinus: A role for barcodes?’, Parasites and Vectors, 1(1), pp. 1–15. doi: 10.1186/1756-3305-1-15.
Kane, R. A. et al. (2013) ‘Detection and quantification of schistosome DNA in freshwater snails using either fluorescent probes in real-time PCR or oligochromatographic dipstick assays targeting the ribosomal intergenic spacer’, Acta Tropica. Elsevier B.V., 128(2), pp. 241–249. doi: 10.1016/j.actatropica.2011.10.019.
Kaplan, R. M. et al. (1995) ‘A repetitive DNA probe for the sensitive detection of Fasciola hepatica infected snails’, International Journal for Parasitology, 25(5), pp. 601–610. doi: 10.1016/0020-7519(94)00159-L.
Kassambara, A. and Mundt, F. (2017) ‘Factoextra: extract and visualize the results of multivariate data analyses’, R package version, 1(3), pp. 1–76. Available at: http://www.sthda.com/english/rpkgs/factoextra%0ABugReports.
Keiser, J., Duthaler, U. and Utzinger, J. (2010) ‘Update on the diagnosis and treatment of food-borne trematode infections.’, Current opinion in infectious diseases, 23(5), pp. 513–20. doi: 10.1097/QCO.0b013e32833de06a.
De Kock, K. N., Joubert, P. H. and Pretorius, S. J. (1989) ‘Geographical distribution and habitat preferences of the invader freshwater snail species Lymnaea columella (Mollusca: Gastropoda) in South Africa.’, The Onderstepoort journal of veterinary research, 56(4), pp. 271–5. Available at: http://www.ncbi.nlm.nih.gov/pubmed/2626264 (Accessed: 25 May 2018).
Krämer, F. and Schnieder, T. (1998) ‘Sequence heterogeneity in a repetitive DNA element of Fasciola’, International Journal for Parasitology, 28(12), pp. 1923–1929. doi: 10.1016/S0020-7519(98)00162-3.
Kudlai, O. et al. (2017) ‘The Psilostomidae Looss, 1900 (sensu stricto) (Digenea: Echinostomatoidea): description of three new genera and a key to the genera of the family’, Systematic Parasitology. Springer Netherlands, 94(1), pp. 21–33. doi: 10.1007/s11230-016-9681-5.
Kumar, S. et al. (2015) ‘MEGA7: Molecular Evolutionary Genetics Analysis version 7.0.’, Molecular Biology and Evolution, submitted(12), pp. 2725–2729. doi: 10.1093/molbev/mst197.
Laidemitt, M. R. et al. (2017) ‘Loads of trematodes: Discovering hidden diversity of paramphistomoids in Kenyan ruminants’, Parasitology, 144(2), pp. 131–147. doi: 10.1017/S0031182016001827.
Lake Harvest TM (no date) Lake Harvest - fish farms - Kariba, Zimbabwe. Available at: http://www.lakeharvest.com/fish-farms/ (Accessed: 13 May 2018).
Lawton, S. P. et al. (2015) ‘Unravelling the riddle of Radix: DNA barcoding for species identification of freshwater snail intermediate hosts of zoonotic digeneans and estimating their inter-population evolutionary relationships’, Infection, Genetics and Evolution. Elsevier B.V., 35, pp. 63–74. doi: 10.1016/j.meegid.2015.07.021.
Legendre, P. and De Cáceres, M. (2013) ‘Beta diversity as the variance of community data: Dissimilarity coefficients and partitioning’, Ecology Letters, 16(8), pp. 951–963. doi: 10.1111/ele.12141.
Legendre, P. and Gallagher, E. D. (2001) ‘Ecologically meaningful transformations for ordination of species data’, Oecologia, 129(2), pp. 271–280. doi: 10.1007/s004420100716.
Lodge, D. M. et al. (1987) ‘Distribution of freshwater snails : spatial scale and the relative importance of physicochemical and biotic factors’, American Malacological Bulletin, 5(1), pp. 73–84.
Loker, E. S., Moyo, H. G. and Gardner, S. L. (1981) ‘Trematode–gastropod associations in nine non-lacustrine habitats in the Mwanza region of Tanzania’, Parasitology, 83(02), pp. 381–399. doi: 10.1017/S0031182000085383.
Lotfy, W. M. et al. (2008) ‘Evolutionary origins, diversification, and biogeography of liver flukes (Digenea, Fasciolidae)’, American Journal of Tropical Medicine and Hygiene, 79(2), pp. 248–255. doi: 79/2/248
Ma, J. et al. (2016) ‘Mitochondrial genome of Ogmocotyle sikae and implications for phylogenetic studies of the Notocotylidae trematodes’, Infection, Genetics and Evolution. Elsevier B.V., 37, pp. 208–214. doi: 10.1016/j.meegid.2015.11.018.
Mabika, N. et al. (2016) ‘Taxonomy, distribution and prevalence of parasites of tigerfish, Hydrocynus vittatus (Castelnau, 1861) in the Sanyati basin, Lake Kariba, Zimbabwe’, Acta Parasitologica, 61(3), pp. 614–620. doi: 10.1515/ap-2016-0082.
Madamombe, L. (2002) The economic development of the kapenta fishery in lake Kariba. Norwegian college of fishery science, tromso. Available at: https://munin.uit.no/bitstream/handle/10037/336/thesis.pdf?sequence=1&i…
Madsen, H. and Frandsen, F. (1989) ‘The spread of freshwater snails including those of medical and veterinary importance’, Acta Tropica, 46(3), pp. 139–146. doi: 10.1016/0001-706X(89)90030-2.
Magalhães, K. G., Jannotti Passos, L. K. and Dos Santos Carvalho, O. (2004) ‘Detection of Lymnaea columella infection by Fasciola hepatica through multiplex-PCR’, Memorias do Instituto Oswaldo Cruz, 99(4), pp. 421–424. doi: /S0074-02762004000400013.
Mandahl-Barth, G. (1962) ‘Key to the identification of east and central African freshwater snails of medical and veterinary importance.’, Bulletin of the World Health Organization, 27, pp. 135–150.
Manga-Gonzalez, Y., Gonzalez-Lanza, C. and Kanev, I. (1994) ‘Lymnaea Truncatula, Intermediate Host of some Plagiorchiidae and Notocotylidae Species in Leon, NW Spain’, Journal of Helminthology, 68(2), pp. 135–141. doi: 10.1017/S0022149X00013663.
Manning, S. D., Woolhouse, M. E. J. and Ndamba, J. (1995) ‘Geographic compatibility of the freshwater snail Bulinus globosus and schistosomes from the Zimbabwe highveld’, International Journal for Parasitology, 25(1), pp. 37–42. doi: 10.1016/0020-7519(94)00097-8.
McCauley, E. H., Tayeb, A. and Majid, A. A. (1983) ‘Owner survey of schitosomiasis mortality in sudanese cattle’, Tropical Animal Health and Production, 15(4), pp. 227–233. doi: 10.1007/BF02242065.
Mehmood, K. et al. (2017) ‘A review on epidemiology, global prevalence and economical losses of fasciolosis in ruminants’, Microbial Pathogenesis, 109, pp. 253–262. doi: 10.1016/j.micpath.2017.06.006.
Melo, F. L. et al. (2006) ‘Development of molecular approaches for the identification of transmission sites of schistosomiasis’, Transactions of the Royal Society of Tropical Medicine and Hygiene, 100(11), pp. 1049–1055. doi: 10.1016/j.trstmh.2005.12.008.
Minetti, C. et al. (2016) ‘Focusing nucleic acid-based molecular diagnostics and xenomonitoring approaches for human helminthiases amenable to preventive chemotherapy’, Parasitology Open, 2(November), p. e16. doi: 10.1017/pao.2016.13.
Morgan, J. A. T. et al. (2002) ‘A phylogeny of planorbid snails, with implications for the evolution of Schistosoma parasites’, Molecular Phylogenetics and Evolution, 25(3), pp. 477–488. doi: 10.1016/S1055-7903(02)00280-4.
Mostafa, O. M. S., Taha, H. A. and Ramadan, G. (2003) ‘Diagnosis of Fasciola gigantica in snail isung the polymerase chain reaction (PCR) assay’, J. Egypt Soc. Parasitol., 33(3), pp. 733–742.
Moszczynska, A. et al. (2009) ‘Development of primers for the mitochondrial cytochrome c oxidase i gene in digenetic trematodes (Platyhelminthes) illustrates he challenge of barcoding parasitic helminths’, Molecular Ecology Resources, 9(SUPPL. 1), pp. 75–82. doi: 10.1111/j.1755-0998.2009.02634.x.
Moyo, N. A. G. (2004) ‘The feeding habits of Sargochromis Codringtonii in Lake Kariba, Zimbabwe’, Hydrobiologia, 522(1–3), pp. 321–327. doi: 10.1023/B:HYDR.0000029966.30531.15.
Mubila, L. and Rollinson, D. (2002) ‘Snail-parasite compatibility and prevalence of Schistosoma haematobium on the shores of Lake Kariba, Zambia’, Annals of Tropical Medicine & Parasitology, 96(2), pp. 165–173. doi: 10.1179/000349802125000592.
Mukaratirwa, S. et al. (1996) ‘Genetic structure and parasite compatibility of Bulinus globosus (Gastropoda: Planorbidae) from two areas of different endemicity of Schistosoma haematobium in Zimbabwe’, International Journal for Parasitology, 26(3), pp. 269–280. doi: 10.1016/0020-7519(95)00130-1.
Mukaratirwa, S. et al. (1996) ‘Population genetics and genetic variability of Bulinus globosus (Gastropoda: Planorbidae) from the two main river systems in Zimbabwe’, Journal of Heredity, 87(4), pp. 288–294.
Mukaratirwa, S. et al. (1998) ‘Genetic and morphological variation of populations belonging to the Bulinus truncatus/tropicus complex ( gastropoda : Planorbidae ) in south western Zimbabwe’, pp. 435–446.
Mungomba, L. M., Chandiwana, S. K. and Madesen, H. (1993) ‘Schistosomiasis around Siavonga, on the shores of Lake Kariba, Zambia’, Annals of Tropical Medicine and Parasitology, 87(4), pp. 365–371. doi: 10.1080/00034983.1993.11812780.
Ndifon, G. T. and Ukoli, F. M. A. (1989) ‘Ecology of freshwater snails in south-western Nigeria. I: Distribution and habitat preferences’, Hydrobiologia, 171(3), pp. 231–253. doi: 10.1007/BF00008146.
Nei, M. and Kumar, S. (2000) Molecular Evolutionand Phylogenetics, Archives of virology. doi: 10.1046/j.1365-2540.2001.0923a.x.
Nolan, M. J. and Cribb, T. H. (2005) ‘The use and implications of ribosomal DNA sequencing for the discrimination of digenean species’, Advances in Parasitology, 60, pp. 101–163. doi: 10.1016/S0065-308X(05)60002-4.
von Oheimb, P. V. et al. (2011) ‘Freshwater biogeography and limnological evolution of the tibetan plateau - insights from a plateau-wide distributed gastropod taxon (radix spp.)’, PLoS ONE, 6(10). doi: 10.1371/journal.pone.0026307.
Oksanen, J. et al. (2016) ‘Vegan: community ecology package’, R package 2.3-3, p. Available at: https://cran.r-project.org/web/packa. doi: 10.4135/9781412971874.n145.
Olson, P. D. et al. (2003) ‘Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda)’, International Journal for Parasitology, 33(7), pp. 733–755. doi: 10.1016/S0020-7519(03)00049-3.
Otachi, E. O. et al. (2014) ‘Parasites of commercially important fish from Lake Naivasha, Rift Valley, Kenya’, Parasitology Research, 113(3), pp. 1057–1067. doi: 10.1007/s00436-013-3741-4.
Pande, B. P. and Bhatia, B. B. (1960) ‘On Ogmocotyle indica (Bhalerao, 1942) Ruiz, 1946 (Trematoda), the notocotylid monostome of Indian ovines, and its pathogenicity’, The journal of Parasitology, 46(6), pp. 800–802. Available at: http://www.jstor.orhg/stable/3275537.
Perissinotto, R. et al. (2014) ‘Biodiversity census of lake St Lucia, iSimangaliso Wetland Park (South Africa): Gastropod molluscs’, ZooKeys, 43(440), pp. 1–43. doi: 10.3897/zookeys.440.7803.
Pfenninger, M., Cordellier, M. and Streit, B. (2006) ‘Comparing the efficacy of morphologic and DNA-based taxonomy in the freshwater gastropod genus Radix (Basommatophora, Pulmonata)’, BMC Evolutionary Biology, 6, pp. 1–14. doi: 10.1186/1471-2148-6-100.
Pfukenyi, D M;Mukaratirwa, S;Willingham, A L;Monrad, J. (2005) ‘Epidemiological studies of amphistome infections in cattle in the highveld and lowveld communal grazing areas of Zimbabwe’, The Onderstepoort journal of veterinary research, 72, pp. 67–86.
Pfukenyi, D. et al. (2006) ‘Epidemiological studies of Schistosoma mattheei infections in cattle in the highveld and lowveld communal grazing areas of Zimbabwe.’, Onderstepoort J Vet Res, 73(2), pp. 179–191. doi: 10.4102/ojvr.v74i2.132.
Pfukenyi, D. et al. (2007) ‘Epidemiological studies of Fasciola gigantica infections in cattle in the highveld and lowveld communal grazing areas of Zimbabwe’, Onderstepoort J Vet Res, 74(2), pp. 129–142. doi: 10.4102/ojvr.v74i2.132.
Pfukenyi, D. M., Monrad, J. and Mukaratirwa, S. (2005) ‘Epidemiology and control of trematode infections in cattle in Zimbabwe: a review.’, Journal of the South African Veterinary Association, 76(1), pp. 9–17. doi: 10.4102/jsava.v76i1.387.
Phiri, A. M. et al. (2007) ‘Trematode infections in freshwater snails and cattle from the Kafue wetlands of Zambia during a period of highest cattle–water contact’, Journal of Helminthology, 81(01), pp. 85–92. doi: 10.1017/S0022149X07387786.
Phiri, A. M., Phiri, I. K. and Monrad, J. (2006) ‘Prevalence of amphistomiasis and its association with Fasciola gigantica; infections in Zambian cattle from communal grazing areas’, Journal of Helminthology. KU Leuven Libraries, 80(1), pp. 65–68. doi: 10.1079/JOH2005313.
Plummer, M. L. (2005) ‘Impact of invasive water hyacinth (Eichhornia crassipes) on snail hosts of schistosomiasis in Lake Victoria, East Africa’, EcoHealth, 2(1), pp. 81–86. doi: 10.1007/s10393-004-0104-8.
Pretorius, S. J., Joubert, P. H. and Kock, K. N. De (1989) ‘A review of the schistosomiasis risk in South African dams’, Water SA, 15(2), p. 4738.
R Development Core Team, R. (2011) R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing. doi: 10.1007/978-3-540-74686-7.
R Development Core Team, R. F. F. S. C. (2008) ‘R: A Language and Environment for Statistical Computing’, Vienna Austria R Foundation for Statistical Computing, 1(10), p. ISBN 3-900051-07-0. doi: 10.1007/978-3-540-74686-7.
Remigio, E. (2002) ‘Molecular phylogenetic relationships in the aquatic snail genus Lymnaea, the intermediate host of the causative agent of fasciolosis: Insights from broader taxon sampling’, Parasitology Research, 88(7), pp. 687–696. doi: 10.1007/s00436-002-0658-8.
Rosser, A. et al. (2015) ‘Isothermal recombinase polymerase amplification (RPA) of Schistosoma haematobium DNA and oligochromatographic lateral flow detection’, Parasites and Vectors. Parasites & Vectors, 8(1), pp. 1–5. doi: 10.1186/s13071-015-1055-3.
Routtu, J. et al. (2014) ‘Selective and universal primers for trematode barcoding in freshwater snails’, Parasitology Research, 113(7), pp. 2535–2540. doi: 10.1007/s00436-014-3903-z.
Salawu, O. T. and Odaibo, A. B. (2013) ‘Preliminary study on ecology of Bulinus jousseaumei in Schistosoma haematobium endemic rural community of Nigeria’, African Journal of Ecology, 51(3), pp. 441–446. doi: 10.1111/aje.12054.
Sanabria, R. and Romero, J. (2008) ‘Review and update of paramphistomosis’, Helminthologia, 45(2), pp. 64–68. doi: 10.2478/s11687-008-0012-5.
Scudder and Thayer (2005) The Kariba Case Study, Social science working paper. Pasadena, California. doi: June 2005.
Sey, O. and Graber, M. (1979) ‘Examination of amphistomes (Trematoda: Paramphistomidae) of some African mammals.’, The Revue d’élevage et médecine vétérinaire des pays tropicaux, 32(2), pp. 161–167.
Slootweg, R., Vroeg, P. A. and Wiersma, S. J. . (1993) ‘Effects of molluscivorous fish, water quality and pond management on the development of schistosomiasis vector snails in aquaculture ponds’, Aquaculture Research, 24(1), pp. 123–128. doi: 10.1111/j.1365-2109.1993.tb00835.x.
Van Someren, V. D. (1946) ‘The habitats and tolerance ranges of Lymnaea (Radix) caillaudi , the intermediate snail host of liver fluke in East Africa’, Journal of Animal Ecology, 15(2), pp. 170–197. Available at: url: http://www.jstor.org/stable/1557.
Sorenson, R. E. and Minchella, D. J. (2001) ‘Snail-trematode life history interactions : past trends and future directions’, Parasitology, 123(2001), pp. S3–S18. doi: 10.1017/S0031182001007843.
Van Steenkiste, N. et al. (2015) ‘New primers for DNA barcoding of digeneans and cestodes (Platyhelminthes)’, Molecular Ecology Resources, 15(4), pp. 945–952. doi: 10.1111/1755-0998.12358.
Stothard, J. R. et al. (1997) ‘Observations on shell morphology, enzymes and random amplified polymorphic DNA (RAPD) in Bulinus Africanus group snails (Gastropoda: Planorbidae) in Zanzibar ’, Journal of Molluscan Studies , 63(4), pp. 489–503. doi: 10.1093/mollus/63.4.489.
Strong, E. E. et al. (2008) ‘Global diversity of gastropods (Gastropoda; Mollusca) in freshwater’, Hydrobiologia, 595(1), pp. 149–166. doi: 10.1007/s10750-007-9012-6.
Tkach, V. V., Kudlai, O. and Kostadinova, A. (2016) ‘Molecular phylogeny and systematics of the Echinostomatoidea Looss, 1899 (Platyhelminthes: Digenea)’, International Journal for Parasitology. Australian Society for Parasitology Inc., 46(3), pp. 171–185. doi: 10.1016/j.ijpara.2015.11.001.
Toledo, R., Esteban, J. G. and Fried, B. (2012) ‘Current status of food-borne trematode infections’, European Journal of Clinical Microbiology and Infectious Diseases, 31(8), pp. 1705–1718. doi: 10.1007/s10096-011-1515-4.
Toledo, R. and Fried, B. (2014) Digenetic Trematodes, Advances in Experimental Medicine and Biology. Springer. doi: 10.1007/978-1-4939-0915-5.
Utzinger, J. et al. (2015) ‘New diagnostic tools in schistosomiasis’, Clinical microbiology and infection, In press(6), p. doi: 10.1016/j.cmi.2015.03.014. doi: 10.1016/j.cmi.2015.03.014.
Velusamy, R., Singh, B. P. and Raina, O. K. (2004) ‘Detection of Fasciola gigantica infection in snails by polymerase chain reaction’, Veterinary Parasitology, 120(1–2), pp. 85–90. doi: 10.1016/j.vetpar.2003.11.009.
Venables, W. N. and Ripley, B. D. (2002) ‘MASS: modern applied statistics with S’, Issues of Accuracy and Scale, (March), p. 868. doi: 10.1198/tech.2003.s33.
Vilas, R., Criscione, C. D. and Blouin, M. S. (2005) ‘A comparison between mitochondrial DNA and the ribosomal internal transcribed regions in prospecting for cryptic species of platyhelminth parasites’, Parasitology, 131(6), pp. 839–846. doi: 10.1017/S0031182005008437.
Watson, J. M. (1958) ‘Ecology and distribution of Bulinus truncatus in the Middle East; with comments on the effect of some human activities in their relationship to the snail host on the incidence of bilharziasis haematobia in the Middle East and Africa.’, Bulletin of the World Health Organization, 18(5–6), pp. 833–894.
Webster, B. L. et al. (2010) ‘Rapid diagnostic multiplex PCR (RD-PCR) to discriminate Schistosoma haematobium and S. bovis’, Journal of Helminthology, 84(01), p. 107. doi: 10.1017/S0022149X09990447.
Webster, M. H. (1960) ‘The medical aspects of the Kariba hydro-electric scheme’, Central African Journal of Medicine, 10, pp. 3–36. Available at: https://sci-hub.tw/https://www.ncbi.nlm.nih.gov/m/pubmed/13783665/.
Wei, T. and Simko, V. (2017) ‘R package corrplot: Visualization of a Correlation Matrix (Version 0.84)’. Available at: https://github.com/taiyun/corrplot (Accessed: 17 May 2018).
Wenseleers, T. (2016) Export: convert R graphs and statistical output to Microsoft Office / LibreOffice, HTML and Latex. Available at: https://github.com/tomwenseleers/export.
Wetzel, R. (2001) ‘Limnology, 3 E. Lake and River Ecosystems’, Academic Press, 525 B Street, Ste. 1900, San Diego, CA 92101, USA. 850, p. 850.
WHO (2017a) Schistosomiasis fact sheet (update of october 2017), WHO Media Centre.
WHO (2017b) WHO | Disability weights, discounting and age weighting of DALYs, WHO. World Health Organization.
Wilkinson, L. (2011) ‘ggplot2: elegant graphics for data analysis by WICKHAM, H.’, Biometrics, 67(2), pp. 678–679. doi: 10.1111/j.1541-0420.2011.01616.x.
Wilson, W. D. et al. (2005) ‘A molecular phylogenetic study of the genus Ribeiroia (Digenea): trematodes known to cause limb malformations in amphibians.’, The Journal of parasitology, 91(5), pp. 1040–1045. doi: 10.1645/GE-465R.1.
Woolhouse, M. E. J. and Chandiwana, S. K. (1989) ‘Spatial and temporal heterogeneity in the population dynamics of Bulinus Globosus and Biomphalaria pfeifferi and in the epidemiology of their infection with schistosomes’, Parasitology, 98(1), pp. 21–34. doi: 10.1017/S0031182000059655.
Woolhouse, M. E. J. and Chandiwana, S. K. (1990) ‘Population dynamics model for Bulinus globosus, intermediate host for Schistosoma haematobium, in river habitats’, Acta Tropica, 47(3), pp. 151–160. doi: 10.1016/0001-706X(90)90021-Q.
Worrell, C. et al. (2011) ‘Field detection of Schistosoma japonicum cercariae in environmental water samples by quantitative PCR’, Applied and Environmental Microbiology, 77(6), pp. 2192–2195. doi: 10.1128/AEM.01561-10.
Wright, C. A. and Rollinson, D. (1979) ‘Analysis of enzymes in the Bulinus africanus group (Mollusca: Planorbidae) by isoelectric focusing’, Journal of Natural History, 13(3), pp. 263–273. doi: 10.1080/00222937900770201.
Wright, C. A., Southgate, V. R. and Howard, G. W. (1979) ‘A note on the life-cycles of some amphistome flukes in Zambia’, Journal of Helminthology. Cambridge University Press, 53(03), p. 251. doi: 10.1017/S0022149X00006039.
Wright, C. a, Rollinson, D. and Goll, P. H. (1979) ‘Parasites in Bulinus senegalensis (Mollusca: Planorbidae) and their detection.’, Parasitology, pp. 95–105. doi: 10.1017/S0031182000051994.