Katalytische bioraffinage in n-butanol/water: de omzetting van lignocellulose naar fenolen, polyolen en cellulose

Elias Cooreman
Het huidige gebruik van aardolie voor de productie van materialen en chemicaliën is binnen afzienbare tijd onhoudbaar. De vraag naar duurzame alternatieven klinkt dan ook steeds luider. Het gebruik van biomassa als koolstofbron voor hoogwaardige chemicaliën wordt met de dag actueler. De heterogeniteit en stabiliteit van biomassa zorgen echter voor moeilijke hindernissen. Deze scriptie beschrijft een proces dat deze problemen omzeilt en biomassa omzet in drie zuivere productstromen met een hoge toegepaste waarde.

Biomassa: de duurzame koolstofbron van de toekomst

Aardolie genoeg!(?)

“A century ago, petroleum - what we call oil - was just an obscure commodity; today it is almost as vital to human existence as water.”

~James Buchan

Het zijn wijdverbreide fenomenen: hoge benzineprijzen, sensibiliseringcampagnes voor recyclage en de zoektocht naar een groen alternatief voor de energieproductie. Dit alles is een gevolg van eenzelfde vaststelling: de projectie die aantoont dat vanaf 2020 de wereld meer fossiele olie zal verbruiken dan er gewonnen zal worden. De enorme olie-afhankelijkheid van onze samenleving induceerde fantastische technologische mirakels, maar deze gigantische industrie begint stilaan te wankelen. Achter de schermen wordt echter volop naar alternatieven gezocht.

De zoektocht naar alternatieven

Een concept dat de voorbije jaren aan populariteit won, is duurzame ontwikkeling. Dit wordt volgens het Brundtland-rapport gedefinieerd als de ontwikkeling die aan de noden van de huidige generatie voldoet zonder deze van de komende generatie te ondermijnen. Voor een belangrijke sector, zoals de chemische industrie, bestaat dit uit de omschakeling van niet duurzame grondstoffen naar meer hernieuwbare en ecologische koolstofbronnen. Het aanwenden van biomassa als grondstof voor materialen en chemicaliën biedt in deze context een alternatief. Biomassa, in de vorm van lignocellulose, wordt beschouwd als een veelbelovend alternatief. Hiernaast past het gebruik van lignocellulose als grondstof in het plaatje van een circulaire economie.

image

Biomassa als alternatief?

Lignocellulose biomassa heeft een zeer complexe samenstelling dat voornamelijk bestaat uit drie fracties (cellulose, hemicellulose en lignine). De start voor de opwaardering tot chemicaliën begint bij de scheiding van deze verschillende fracties. Deze scheiding wordt echter verhindert door de zogeheten recalcitrance. Dit is de weerstand van de verschillende fracties in de biomassa tegen chemische en enzymatische omzetting. Vooralsnog is er geen universele oplossing om dit probleem te omzeilen.

image

De voorbije 50 jaren zijn verscheidene fractionatieprocessen beschreven, elk met hun voor- en nadelen. Vele van deze omzettingsreacties beoogt de optimale scheiding van de suikerpolymeren (cellulose & hemicellulose) terwijl er een gedegradeerd lignineproduct verkregen wordt. Meer innovatieve technieken focussen eveneens op de stabilisatie van deze ligninefractie. Deze fractie, dat bestaat uit een complex fenolisch biopolymeer, is voornamelijk interessant voor de synthese van aromatische chemicaliën. Een interessante fractionatiemethode die gelijktijdig de stabilisatie van de ligninecomponenten garandeert, is de reductieve katalytische fractionatie (RCF).

Optimalisatie van de katalytische fractionatie

Deze masterproef richt zich op een alternatieve reductieve katalytische fractionatie die focust op de omzetting van lignocellulose biomassa in drie productstromen gedurende één RCF-stap. De drie gevormde productstromen zijn (i) lignine-afgeleide fenolen, (ii) suikerpolymeer-afgeleide polyolen en een celluloserijke pulp. Het innovatieve aspect van deze omzetting ligt voornamelijk in een hoge lignineconversie en een gelijktijdige stabilisatie van de opgeloste suikers, hetgeen vooralsnog niet zo succesvol was in één stap.

Een belangrijk aspect van de reactie is het gebruik van het solvent(mengsel), namelijk een n‑butanol/water mengsel. Dit mengsel heeft als belangrijke eigenschap dat deze tijdens de reactie éénfasig is, terwijl er op kamertemperatuur een fasescheiding zal optreden. Deze fasescheiding zorgt eveneens voor een productscheiding. De meer organische fenolen zullen zich eerder in de organische fase bevinden. Hiernaast zullen de meer polaire suikers en polyolen voornamelijk in de waterfase bevinden.

image

Deze reactie zorgt voor een maximale extractie van het ligninepolymeer uit het hout, gelijktijdig met de maximale omzetting tot stabiele monomeren. Deze aromatische monomeren kunnen worden gebruikt voor de productie van producten met een reeds bestaande markt (e.g. fenolen, propeen,…) maar ook nieuwe producten (e.g. bisguaiacol F). De resterende dimerische of oligomerische fenolen kunnen worden gebruikt in de productie van harsen en waxen.

Aanvullend zijn de suikerproducten en polyolen voornamelijk uit de (minder stabiele) hemicellulosefractie afkomstig. Hoe strenger de gebruikte reactiecondities, hoe vollediger de omzetting van dit biopolymeer tot stabiele polyolen. Deze suikerafgeleiden kunnen op hun beurt worden gebruikt als zoetstof, maar ook als bouwblok voor de productie van polymeren.

Tot slot resulteert het streven naar de maximale omzetting van lignine en de productie van stabiele polyolen in een celluloserijke pulp. Deze celluloserijke pulp kan gebruikt worden voor de productie van papier, maar eveneens voor de synthese van groene solventen (zoals bio-ethanol).

Conclusie

Dit onderzoek toont dus aan dat het mogelijk is om alle fracties van hout om te zetten naar producten met een hoge toegepaste waarde. De toepasbaarheid van deze scriptie op de industrie ligt in het feit dat deze voor de eerste maal beschrijft hoe men biomassa kan omzetten in haar drie fracties zonder degradatie van minstens één van deze fracties en dit gedurende één stap.

“A distinction between renewable and not renewable is academic.”

~ Carlo Rubbia

Het onderzoek achter de schermen is bewijs dat prof. Rubbia binnen de kortste keren zijn stelling zal moeten aanpassen. Groene alternatieven voor petroleum liggen op de loer en zullen zich weldra een weg banen in het dagelijks leven.

Bibliografie

1.          Brundtland, G. H. & Development., W. C. on E. and. Our common future. (Oxford University Press, 1987).

2.          Demirbas, A. Biorefineries. Biorefineries : For Biomass Upgrading Facilities (London : Springer London, 2010).

3.          Chen, H. Gas explosion technology and biomass refinery. (2015).

4.          Dey, P. M. & Brinson, K. Plant cell walls. Adv. Carbohydr. Chem. Biochem. 42, 265–382 (1984).

5.          Chen, H. Biotechnology of Lignocellulose: Theory and Practice. Theory and Practice (SPRINGER, 2014).

6.          Kumar, P., Barrett, D. M., Delwiche, M. J. & Stroeve, P. Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Ind. Eng. Chem. Res. 48, 3713–3729 (2009).

7.          Xiao, L.-P., Song, G.-Y. & Sun, R.-C. Effect of Hydrothermal Processing on Hemicellulose Structure. in Hydrothermal Processing in Biorefineries: Production of Bioethanol and High Added-Value Compounds of Second and Third Generation Biomass (eds. Ruiz, H. A., Hedegaard Thomsen, M. & Trajano, H. L.) 45–94 (Springer International Publishing, 2017).

8.          cellulose. Britannica Online Academic Edition (2017).

9.          Klemm, D., Heublein, B., Fink, H. P. & Bohn, A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chemie - Int. Ed. 44, 3358–3393 (2005).

10.        Dadi, A., Schall, C. & Varanasi, S. Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl. Biochem. Biotechnol. 137, 407–421 (2007).

11.        Ruiz, H. A., Thomsen, M. H. & Trajano, H. L. Hydrothermal Processing in Biorefineries: Production of Bioethanol and High Added-Value Compounds of Second and Third Generation Biomass. (2017).

12.        Puls, J. Chemistry and biochemistry of hemicelluloses: Relationship between hemicellulose structure and enzymes required for hydrolysis. Macromol. Symp. 120, 183–196 (1997).

13.        Gibson, L. J. The hierarchical structure and mechanics of plant materials. J. R. Soc. Interface 9, 2749 LP-2766 (2012).

14.        Davison, B. H., Parks, J., Davis, M. F. & Donohoe, B. S. Plant Cell Walls: Basics of Structure, Chemistry, Accessibility and the Influence on Conversion. Aqueous Pretreat. Plant Biomass Biol. Chem. Convers. to Fuels Chem. 23–38 (2013).

15.        Saake, B. & Lehnen, R. Lignin. in Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH Verlag GmbH & Co. KGaA, 2000).

16.        Boerjan, W., Ralph, J. & Baucher, M. Lignin Biosynthesis. Annu. Rev. Plant Biol. 54, 519–546

17.        Yuan, T. Q., Sun, S. N., Xu, F. & Sun, R. C. Characterization of lignin structures and lignin-carbohydrate complex (LCC) linkages by quantitative 13C and 2D HSQC NMR spectroscopy. J. Agric. Food Chem. 59, 10604–10614 (2011).

18.        Del Río, J. C., Marques, G., Rencoret, J., Martínez, Á. T. & Gutiérrez, A. Occurrence of naturally acetylated lignin units. J. Agric. Food Chem. 55, 5461–5468 (2007).

19.        Vanholme, R., Demedts, B., Morreel, K., Ralph, J. & Boerjan, W. Lignin Biosynthesis and Structure. Plant Physiol. 153, 895-905 (2010).

20.        Vanholme, R. et al. Metabolic engineering of novel lignin in biomass crops. New Phytol. 196, 978–1000 (2012).

21.        Mansfield, S. D., Kim, H., Lu, F. & Ralph, J. Whole plant cell wall characterization using solution-state 2D NMR. Nat. Protoc. 7, 1579–1589 (2012).

22.        Li, C., Zhao, X., Wang, A., Huber, G. W. & Zhang, T. Catalytic Transformation of Lignin for the Production of Chemicals and Fuels. Chem. Rev. 115, 11559–11624 (2015).

23.        Parthasarathi, R., Romero, R. A., Redondo, A. & Gnanakaran, S. Theoretical study of the remarkably diverse linkages in lignin. J. Phys. Chem. Lett. 2, 2660–2666 (2011).

24.        Azadi, P., Inderwildi, O. R., Farnood, R. & King, D. A. Liquid fuels, hydrogen and chemicals from lignin: A critical review. Renew. Sustain. Energy Rev. 21, 506–523 (2013).

25.        Rinaldi, R. et al. Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis. Angew. Chemie - Int. Ed. 55, 8164–8215 (2016).

26.        Laskar, D. D., Yang, B., Wang, H. & Lee, J. Pathways for biomass-derived lignin to hydrocarbon fuels. Biofuels, Bioprod. Biorefining 7, 602–626 (2013).

27.        Balakshin, M., Capanema, E., Gracz, H., Chang, H. min & Jameel, H. Quantification of lignin-carbohydrate linkages with high-resolution NMR spectroscopy. Planta 233, 1097–1110 (2011).

28.        Chundawat, S. P. S., Beckham, G. T., Himmel, M. E. & Dale, B. E. Deconstruction of Lignocellulosic Biomass to Fuels and Chemicals. Annu. Rev. Chem. Biomol. Eng. 2, 121–145 (2011).

29.        Constant, S. et al. New insights into the structure and composition of technical lignins: a comparative characterisation study. Green Chem. 18, 2651–2665 (2016).

30.        Ragauskas, A. J. et al. Lignin Valorization: Improving Lignin Processing in the Biorefinery. Science (80-. ). 344, 1246843–1246843 (2014).

31.        Calvo-Flores, F. G. & Dobado, J. A. Lignin as renewable raw material. ChemSusChem 3, 1227–1235 (2010).

32.        Van den Bosch, S. et al. Integrating lignin valorization and bio-ethanol production: on the role of Ni-Al 2 O 3 catalyst pellets during lignin-first fractionation. Green Chem. 19, 3313–3326 (2017).

33.        Trajano, H. L. & Wyman, C. E. Fundamentals of Biomass Pretreatment at Low pH. Aqueous Pretreat. Plant Biomass Biol. Chem. Convers. to Fuels Chem. 103–128 (2013).

34.        Gellerstedt, G. Softwood kraft lignin: Raw material for the future. Ind. Crops Prod. 77, 845–854 (2015).

35.        Ragnar, M. et al. Pulp. Ullmann’s Encycl. Ind. Chem. (2014).

36.        Gierer, J. Chemical aspects of kraft pulping. Wood Sci. Technol. 14, 241–266 (1980).

37.        Chakar, F. S. & Ragauskas, A. J. Review of current and future softwood kraft lignin process chemistry. Ind. Crops Prod. 20, 131–141 (2004).

38.        Gierer, J. Chemistry of Delignification. Wood Sci. Technol. 20, 1–33 (1986).

39.        Gierer, J. Chemistry of delignification - Part 1: General concept and reactions during pulping. Wood Sci. Technol. 19, 289–312 (1985).

40.        Prinsen, P. et al. Modification of the lignin structure during alkaline delignification of eucalyptus wood by kraft, soda-AQ, and soda-O2 cooking. Ind. Eng. Chem. Res. 52, 15702–15712 (2013).

41.        Chundawat, S. P. S. et al. Primer on Ammonia Fiber Expansion Pretreatment. Aqueous Pretreat. Plant Biomass Biol. Chem. Convers. to Fuels Chem. 169–200 (2013).

42.        Balan, V., Bals, B., Chundawat, S. P. S., Marshall, D. & Dale, B. E. Biofuels. 581, 61–77 (2009).

43.        Kim, J. S., Lee, Y. Y. & Kim, T. H. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol. 199, 42–48 (2016).

44.        Mittal, A. et al. Ammonia Pretreatment of Corn Stover Enables Facile Lignin Extraction. ACS Sustain. Chem. Eng. 5, 2544–2561 (2017).

45.        Galkin, M. V. & Samec, J. S. M. Lignin Valorization through Catalytic Lignocellulose Fractionation: A Fundamental Platform for the Future Biorefinery. ChemSusChem 9, 1544–1558 (2016).

46.        Pu, Y., Hu, F., Huang, F. & Ragauskas, A. J. Lignin Structural Alterations in Thermochemical Pretreatments with Limited Delignification. Bioenergy Res. 8, 992–1003 (2015).

47.        Lancefield, C. S., Panovic, I., Deuss, P. J., Barta, K. & Westwood, N. J. Pre-treatment of lignocellulosic feedstocks using biorenewable alcohols: towards complete biomass valorisation. Green Chem. 19, 202–214 (2017).

48.        Adler, E. Wood Science anci Technology. 8, (1977).

49.        Article, O. Revisiting the mechanism of β-O-4 bond cleavage during acidolysis of lignin IV : dependence of acidolysis reaction on the type of acid. 219–225 (2011).

50.        Deuss, P. J. et al. Aromatic Monomers by in Situ Conversion of Reactive Intermediates in the Acid-Catalyzed Depolymerization of Lignin Table of Contents and Lists of Schemes , Tables and Figures General remarks Synthesis of β-O-4 model compound s S8 Procedures and additiona.

51.        Pu, Y., Hu, F., Huang, F., Davison, B. H. & Ragauskas, A. J. Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnol. Biofuels 6, 15 (2013).

52.        Liu, C. & Wyman, C. E. The Effect of Flow Rate of Very Dilute Sulfuric Acid on Xylan, Lignin, and Total Mass Removal from Corn Stover. Ind. Eng. Chem. Res. 43, 2781–2788 (2004).

53.        Bhagia, S., Li, H., Gao, X., Kumar, R. & Wyman, C. E. Flowthrough pretreatment with very dilute acid provides insights into high lignin contribution to biomass recalcitrance. Biotechnol. Biofuels 9, 245 (2016).

54.        Zhuang, X. et al. Decomposition behavior of hemicellulose and lignin in the step-change flow rate liquid hot water. Appl. Biochem. Biotechnol. 168, 206–218 (2012).

55.        Trajano, H. L. et al. The fate of lignin during hydrothermal pretreatment. Biotechnol. Biofuels 6, 110 (2013).

56.        Grande, P. M. et al. Fractionation of lignocellulosic biomass using the OrganoCat process. Green Chem. 17, 3533–3539 (2015).

57.        Deuss, P. J. et al. Phenolic acetals from lignins of varying compositions via iron( <scp>iii</scp> ) triflate catalysed depolymerisation. Green Chem. 19, 2774–2782 (2017).

58.        Novo, L. P., Gurgel, L. V. A., Marabezi, K. & Curvelo, A. A. da S. Delignification of sugarcane bagasse using glycerol-water mixtures to produce pulps for saccharification. Bioresour. Technol. 102, 10040–10046 (2011).

59.        Snelders, J. et al. Biorefining of wheat straw using an acetic and formic acid based organosolv fractionation process. Bioresour. Technol. 156, 275–282 (2014).

60.        Zhao, X., Cheng, K. & Liu, D. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl. Microbiol. Biotechnol. 82, 815–827 (2009).

61.        Shuai, L. et al. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science 354, (2016).

62.        Upton, B. M. & Kasko, A. M. Strategies for the conversion of lignin to high-value polymeric materials: Review and perspective. Chem. Rev. 116, 2275–2306 (2016).

63.        Lee, H. shik, Jae, J., Ha, J. M. & Suh, D. J. Hydro- and solvothermolysis of kraft lignin for maximizing production of monomeric aromatic chemicals. Bioresour. Technol. 203, 142–149 (2016).

64.        Gosselink, R. J. A. et al. Lignin depolymerisation in supercritical carbon dioxide/acetone/water fluid for the production of aromatic chemicals. Bioresour. Technol. 106, 173–177 (2012).

65.        Ye, Y., Zhang, Y., Fan, J. & Chang, J. Novel method for production of phenolics by combining lignin extraction with lignin depolymerization in aqueous ethanol. Ind. Eng. Chem. Res. 51, 103–110 (2012).

66.        Schutyser, W. et al. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. (2018).

67.        Zakzeski, J., Bruijnincx, P. C. A., Jongerius, A. L. & Weckhuysen, B. M. The Catalytic Valorization of Ligning for the Production of Renewable Chemicals. Chem. Rev. 110, 3552–3599 (2010).

68.        Bridgwater, A. V. Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy 38, 68–94 (2012).

69.        Wang, S., Ru, B., Lin, H., Sun, W. & Luo, Z. Pyrolysis behaviors of four lignin polymers isolated from the same pine wood. Bioresour. Technol. 182, 120–127 (2015).

70.        Shen, D. K., Gu, S., Luo, K. H., Wang, S. R. & Fang, M. X. The pyrolytic degradation of wood-derived lignin from pulping process. Bioresour. Technol. 101, 6136–6146 (2010).

71.        Zhang, H. et al. Co-catalytic pyrolysis of biomass and waste triglyceride seed oil in a novel fluidized bed reactor to produce olefins and aromatics integrated with self-heating and catalyst regeneration processes. RSC Adv. 3, 5769 (2013).

72.        SU, S., LI, W., BAI, Z., XIANG, H. & BAI, J. Production of hydrogen by steam gasification from lignin with Al2O3·Na2O·xH2O/NaOH/Al(OH)3 catalyst. J. Fuel Chem. Technol. 38, 270–274 (2010).

73.        Deepa, A. K. & Dhepe, P. L. Solid acid catalyzed depolymerization of lignin into value added aromatic monomers. RSC Adv. 4, 12625 (2014).

74.        Huang, X., Zhu, J., Korányi, T. I., Boot, M. D. & Hensen, E. J. M. Effective Release of Lignin Fragments from Lignocellulose by Lewis Acid Metal Triflates in the Lignin-First Approach. ChemSusChem 9, 3261 (2016).

75.        Zhang, X. et al. Phenolics Production through Catalytic Depolymerization of Alkali Lignin with Metal Chlorides. Bioresources.com 9, 3347–3360 (2014).

76.        Katahira, R. et al. Base-Catalyzed Depolymerization of Biorefinery Lignins. ACS Sustain. Chem. Eng. 4, 1474–1486 (2016).

77.        Kruger, J. S. et al. Lignin Depolymerization with Nitrate-Intercalated Hydrotalcite Catalysts. ACS Catal. 6, 1316–1328 (2016).

78.        Dabral, S. et al. Mechanistic Studies of Base-Catalyzed Lignin Depolymerization in Dimethyl Carbonate. Green Chem. 170–182 (2017).

79.        Dai, J., Patti, A. F. & Saito, K. Recent developments in chemical degradation of lignin: catalytic oxidation and ionic liquids. Tetrahedron Lett. 57, 4945–4951 (2016).

80.        Fache, M., Boutevin, B. & Caillol, S. Vanillin Production from Lignin and Its Use as a Renewable Chemical. ACS Sustain. Chem. Eng. 4, 35–46 (2016).

81.        Ma, R., Guo, M. & Zhang, X. Recent advances in oxidative valorization of lignin. Catal. Today 302, 50–60 (2018).

82.        Hasegawa, I., Inoue, Y., Muranaka, Y., Yasukawa, T. & Mae, K. Selective production of organic acids and depolymerization of lignin by hydrothermal oxidation with diluted hydrogen peroxide. Energy and Fuels 25, 791–796 (2011).

83.        Yuan, Z., Tymchyshyn, M. & Xu, C. (Charles). Reductive Depolymerization of Kraft and Organosolv Lignin in Supercritical Acetone for Chemicals and Materials. ChemCatChem 8, 1968–1976 (2016).

84.        Song, Q. et al. Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation–hydrogenolysis process. Energy Environ. Sci. 6, 994 (2013).

85.        Van den Bosch, S. et al. Tuning the lignin oil OH-content with Ru and Pd catalysts during lignin hydrogenolysis on birch wood. Chem. Commun. 51, 13158–13161 (2015).

86.        Shen, X. J. et al. Efficient and Product-Controlled Depolymerization of Lignin Oriented by Raney Ni Cooperated with CsxH3 − xPW12O40. Bioenergy Res. 10, 1155–1162 (2017).

87.        Bouxin, F. P. et al. Catalytic depolymerisation of isolated lignins to fine chemicals using a Pt/alumina catalyst: part 1—impact of the lignin structure. Green Chem. 17, 1235–1242 (2015).

88.        Kumar, C. R. et al. Solvent free depolymerization of Kraft lignin to alkyl-phenolics using supported NiMo and CoMo catalysts. Green Chem. 17, 4921–4930 (2015).

89.        Zakzeski, J., Jongerius, A. L., Bruijnincx, P. C. A. & Weckhuysen, B. M. Catalytic lignin valorization process for the production of aromatic chemicals and hydrogen. ChemSusChem 5, 1602–1609 (2012).

90.        Lin, K.-H., Huang, M.-H. & Chang, A. C.-C. Liquid phase reforming of rice straw for furfural production. Int. J. Hydrogen Energy 38, 15794–15800 (2013).

91.        Huang, X., Korányi, T. I., Boot, M. D. & Hensen, E. J. M. Ethanol as capping agent and formaldehyde scavenger for efficient depolymerization of lignin to aromatics. Green Chem. 17, 4941–4950 (2015).

92.        Van den Bosch, S. et al. Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps. Energy Environ. Sci. 8, 1748–1763 (2015).

93.        Galkin, M. V. & Samec, J. S. M. Selective route to 2-propenyl aryls directly from wood by a tandem organosolv and palladium-catalysed transfer hydrogenolysis. ChemSusChem 7, 2154–2158 (2014).

94.        Renders, T., Van den Bosch, S., Koelewijn, S.-F., Schutyser, W. & Sels, B. F. Lignin-first biomass fractionation: the advent of active stabilisation strategies. Energy Environ. Sci. 10, 1551–1557 (2017).

95.        Garrett, M. D., Bennett, S. C., Hardacre, C., Patrick, R. & Sheldrake, G. N. New methods in biomass depolymerisation: catalytic hydrogenolysis of barks. RSC Adv. 3, 21552–21557 (2013).

96.        Yan, N. et al. Selective degradation of wood lignin over noble-metal catalysts in a two-step process. ChemSusChem 1, 626–629 (2008).

97.        Schutyser, W. et al. Influence of bio-based solvents on the catalytic reductive fractionation of birch wood. Green Chem. 17, 5035–5045 (2015).

98.        Renders, T. et al. Synergetic Effects of Alcohol/Water Mixing on the Catalytic Reductive Fractionation of Poplar Wood. ACS Sustain. Chem. Eng. 4, 6894–6904 (2016).

99.        Renders, T. et al. Influence of acidic (H3PO4) and alkaline (NaOH) additives on the catalytic reductive fractionation of lignocellulose Influence of acidic (H3PO4) and alkaline (NaOH) additives on the catalytic reductive fractionation of lignocellulose. 1–21 (2016).

100.      Huang, X. et al. Selective production of mono-aromatics from lignocellulose over Pd/C catalyst: the influence of acid co-catalysts. Faraday Discuss. (2017).

101.      Ferrini, P. & Rinaldi, R. Catalytic biorefining of plant biomass to non-pyrolytic lignin bio-oil and carbohydrates through hydrogen transfer reactions. Angew. Chemie - Int. Ed. 53, 8634–8639 (2014).

102.      Sun, Z., Fridrich, B., de Santi, A., Elangovan, S. & Barta, K. Bright Side of Lignin Depolymerization: Toward New Platform Chemicals. Chem. Rev. acs.chemrev.7b00588 (2018).

103.      Chen, J. et al. High Yield Production of Natural Phenolic Alcohols from Woody Biomass Using a Nickel-Based Catalyst. ChemSusChem 9, 3353–3360 (2016).

104.      Anderson, E. M. et al. Flowthrough Reductive Catalytic Fractionation of Biomass. Joule 1, 613–622 (2017).

105.      Xia, Q. et al. Direct hydrodeoxygenation of raw woody biomass into liquid alkanes. Nat. Commun. 7, 1–10 (2016).

106.      Liu, X. & Zhang, S. Efficient iron/copper-cocatalyzed o-arylation of phenols with bromoarenes. Synlett 268–272 (2011).

107.      Yu, J., Wang, Y., Zhang, P. & Wu, J. Direct amination of phenols under metal-free conditions. Synlett 24, 1448–1454 (2013).

108.      Iranpoor, N., Panahi, F. & Jamedi, F. Nickel-catalyzed one-pot synthesis of biaryls from phenols and arylboronic acids via C-O activation using TCT reagent. J. Organomet. Chem. 781, 6–10 (2015).

109.      Koelewijn, S.-F. et al. Sustainable bisphenols from renewable softwood lignin feedstock for polycarbonates and cyanate ester resins. Green Chem. 19, 2561–2570 (2017).

110.      Prasomsri, T., Shetty, M., Murugappan, K. & Román-Leshkov, Y. Insights into the catalytic activity and surface modification of MoO 3 during the hydrodeoxygenation of lignin-derived model compounds into aromatic hydrocarbons under low hydrogen pressures. Energy Environ. Sci. 7, 2660–2669 (2014).

111.      Schutyser, W. et al. Selective Conversion of Lignin-Derivable 4-Alkylguaiacols to 4-Alkylcyclohexanols over Noble and Non-Noble-Metal Catalysts. ACS Sustain. Chem. Eng. 4, 5336–5346 (2016).

112.      Shu, R. et al. Controllable production of guaiacols and phenols from lignin depolymerization using Pd/C catalyst cooperated with metal chloride. Chem. Eng. J. 338, 457–464 (2018).

113.      Schutyser, W. et al. Regioselective synthesis of renewable bisphenols from 2,3-pentanedione and their application as plasticizers. Green Chem. 16, 1999–2007 (2014).

114.      Salanti, A., Orlandi, M., Tolppa, E. L. & Zoia, L. Oxidation of isoeugenol by salen complexes with bulky substituents. Int. J. Mol. Sci. 11, 912–926 (2010).

115.      Linger, J. G. et al. Lignin valorization through integrated biological funneling and chemical catalysis. Proc. Natl. Acad. Sci. 111, 12013 LP-12018 (2014).

116.      Cao, Z. et al. Catalysis Meets Nonthermal Separation for the Production of (Alkyl)phenols and Hydrocarbons from Pyrolysis Oil. Angew. Chemie - Int. Ed. 56, 2334–2339 (2017).

117.      Liu, Q. et al. Production of C5/C6 Sugar Alcohols by Hydrolytic Hydrogenation of Raw Lignocellulosic Biomass over Zr Based Solid Acids Combined with Ru/C. ACS Sustain. Chem. Eng. 5, 5940–5950 (2017).

118.      Ennaert, T., Feys, S., Hendrikx, D., Jacobs, P. A. & Sels, B. F. Reductive splitting of hemicellulose with stable ruthenium-loaded USY zeolites. Green Chem. 18, 5295–5304 (2016).

119.      Liu, S. et al. Selective transformation of hemicellulose (xylan) into n-pentane, pentanols or xylitol over a rhenium-modified iridium catalyst combined with acids. Green Chem. 18, 165–175 (2016).

120.      Deng, W., Tan, X., Fang, W., Zhang, Q. & Wang, Y. Conversion of cellulose into sorbitol over carbon nanotube-supported ruthenium catalyst. Catal. Letters 133, 167–174 (2009).

121.      Zhang, X., Fevre, M., Jones, G. O. & Waymouth, R. M. Catalysis as an Enabling Science for Sustainable Polymers. Chem. Rev. acs.chemrev.7b00329 (2017).

122.      Ooms, R. et al. Conversion of sugars to ethylene glycol with nickel tungsten carbide in a fed-batch reactor: high productivity and reaction network elucidation. Green Chem. 16, 695–707 (2014).

123.      Beine, A. K. et al. Selective production of glycols from xylitol over Ru on covalent triazine frameworks – suppressing decarbonylation reactions. Green Chem. 1316–1322 (2018).

124.      Ferrini, P., Rezende, C. A. & Rinaldi, R. Catalytic Upstream Biorefining through Hydrogen Transfer Reactions: Understanding the Process from the Pulp Perspective. ChemSusChem 9, 3171–3180 (2016).

125.      Cellulase, O. & Enzyme, B. Accellerase ® trioTM.

126.      Luque de Castro, M. D. & Priego-Capote, F. Soxhlet extraction: Past and present panacea. J. Chromatogr. A 1217, 2383–2389 (2010).

127.      NREL. Biomass Compositional Analysis Laboratory Procedures. (2018). Available at: https://www.nrel.gov/bioenergy/biomass-compositional-analysis.html. (Accessed: 5th April 2018)

128.      Ewing, M. B. Solubility data series. The Journal of Chemical Thermodynamics 12, (1980).

129.      Calvaruso, G. et al. On the Reactivity of Dihydro-p-coumaryl Alcohol towards Reductive Processes Catalyzed by Raney Nickel. ChemCatChem 9, 2627–2632 (2017).

130.      Nunes, C. A. et al. Determination of Eucalyptus spp lignin S/G ratio: A comparison between methods. Bioresour. Technol. 101, 4056–4061 (2010).

131.      Rencoret, J. et al. Lignin Composition and Structure in Young versus Adult Eucalyptus globulus Plants. Plant Physiol. 155, 667–682 (2011).

132.      kumaniaev, I. et al. Lignin depolymerization to monophenolic compounds in a flow-through system. Green Chem. 19, 5767–5771 (2017).

133.      Palkovits, R., Tajvidi, K., Ruppert, A. M. & Procelewska, J. Heteropoly acids as efficient acid catalysts in the one-step conversion of cellulose to sugar alcohols. Chem. Commun. 47, 576–578 (2011).

134.      Dietrich, K., Hernandez-Mejia, C., Verschuren, P., Rothenberg, G. & Shiju, N. R. One-Pot Selective Conversion of Hemicellulose to Xylitol. Org. Process Res. Dev. 21, 165–170 (2017).

135.      Pienaar, A. D. & De Klerk, A. Nickel catalyst stability toward carboxylic acids. Ind. Eng. Chem. Res. 47, 4962–4965 (2008).

136.      Zhai, Y. et al. Depolymerization of lignin via a non-precious Ni–Fe alloy catalyst supported on activated carbon. Green Chem. 19, 1895–1903 (2017).

137.      Bernas, H., Plomp, A. J., Bitter, J. H. & Murzin, D. Y. Influence of reaction parameters on the hydrogenolysis of hydroxymatairesinol over carbon nanofibre supported palladium catalysts. Catal. Letters 125, 8–13 (2008).

138.      Galkin, M. V. et al. Hydrogen-free catalytic fractionation of woody biomass. ChemSusChem 9, 3280–3287 (2016).

139.      Yamaguchi, A., Sato, O., Mimura, N. & Shirai, M. Catalytic production of sugar alcohols from lignocellulosic biomass. Catal. Today 265, 199–202 (2016).

140.      He, J., Zhao, C. & Lercher, J. A. Impact of solvent for individual steps of phenol hydrodeoxygenation with Pd/C and HZSM-5 as catalysts. J. Catal. 309, 362–375 (2014).

141.      Ralph, J. et al. Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenyl- propanoids. Phytochem. Rev. 3, 29–60 (2004).

142.      Dooleweerdt, K., Fors, B. P. & Buchwald, S. L. Pd-catalyzed cross-coupling reactions of amides and aryl mesylates. Org. Lett. 12, 2350–2353 (2010).

143.       Quasdorf, K. W., Riener, M., Petrova, K. V. & Garg, N. K. Suzuki-Miyaura coupling of aryl carbamates, carbonates, and sulfamates. J. Am. Chem. Soc. 131, 17748–17749 (2009).

Universiteit of Hogeschool
Bio-ingenieurswetenschappen: katalytische technologie
Publicatiejaar
2018
Promotor(en)
Prof. Ir. Bert Sels
Kernwoorden
Deel deze scriptie