Organen en weefsels bouwen in een labo: het klinkt futuristisch, maar toch krijgt dit meer en meer vorm. Dit zou natuurlijk een enorme stap voorwaarts zijn in de geneeskunde, want orgaandonoren zijn beperkt. Met behulp van nieuwe weefselbouw technologie wordt het misschien mogelijk om van onze eigen stamcellen organen te maken in een laboratorium. Hiermee zouden de huidige transplantatie problemen zoals het afstotingsgevaar kunnen omzeild worden. Wij doen onderzoek naar het maken van spieren.
Schade bestrijden met schade?
Ons lichaam bestaat voor ongeveer 40 % uit skeletspieren, die nodig zijn voor beweging. Schade aan deze spieren heeft dan ook een enorme invloed op onze levenskwaliteit. Gelukkig kan een skeletspier zichzelf herstellen na kleine letsels. Dit is mogelijk door de aanwezigheid van spierstamcellen die worden geactiveerd bij schade. Ze kunnen uitgroeien tot nieuwe spiervezels en zo de verloren spiermassa herstellen. Dit systeem schiet echter tekort in geval van groot spierverlies, bijvoorbeeld bij een verkeersongeval. De huidige aanpak van groot spierverlies is het transplanteren van een stuk gezonde spier elders uit het lichaam naar het beschadigde gebied. Er wordt dus een spierdefect gemaakt om een ander deels te herstellen, wat allesbehalve een ideale oplossing is.
Kunnen we al spieren maken in het lab? Ja!
Wat als we met behulp van de spierstamcellen in het labo skeletspierweefsel ‘kweken’ en dit gebruiken om die schade te herstellen? Deze vraag ligt aan de grondslag voor onderzoek naar de bouw van skeletspierweefsel. In ons labo kweken we menselijke spieren, iets wat vrij uniek is in de wereld van skeletspier weefselbouw technologie omdat veel andere onderzoekers werken met muizencellen. Het gebruik van menselijke cellen biedt ons een voorsprong wanneer we uiteindelijk met een werkende spier naar de kliniek zullen gaan. Ze is ook van onmiddellijk nut bij het verwerven van inzichten voor de mens. Om een menselijke spier te maken starten we met de spierstamcellen die aanwezig zijn in elke spier en verantwoordelijk zijn voor spiervezel aanmaak. We kunnen deze isoleren uit skeletspierweefsel en mengen deze met een natuurlijke gel. Deze gel ondersteunt de cellen en helpt ze spiervezels te vormen. Wanneer we gedurende minstens een week voldoende voedingsstoffen en groeifactoren voorzien, krijgen we op die manier een klein spierbundeltje van ongeveer 2 centimeter lang en 1 mm dik.
... maar we zijn er nog niet.
Zij die hun gymsessie al hebben geannuleerd in de hoop grote spieren te krijgen uit ons labo moeten we momenteel nog teleurstellen, want de huidige afmetingen zijn te klein in vergelijking met natuurlijke spieren. De gekweekte spieren groter maken is echter niet zo voor de hand liggend want meer cellen toevoegen betekent niet dat dit automatisch leidt tot grotere spieren. De voornaamste hinderpaal is de afwezigheid van bloedvaten in de gekweekte spier. Deze zijn nodig om alle cellen in de spier te voorzien van zuurstof en voedingsstoffen en om afvalstoffen af te voeren. Daarom onderzoeken we hoe bloedvaten kunnen aangemaakt worden in de kweekspier. Dit doen we door, naast spierstamcellen, ook cellen toe te voegen die de binnenste cellaag van bloedvaten vormen. Dankzij deze techniek slagen we erin om een kweekspier te maken met daarin een beginnend bloedvatennetwerk. De volgende stap is om deze netwerken verder te laten ‘rijpen’ zodat ze in staat zijn om hun functie volledig uit te voeren. Stof voor nog verschillende jaren onderzoek dus.
Steun gezocht
Een andere aanpak die onderzocht wordt is het gebruik van biomaterialen als ondersteunende draagstructuren voor de spiervezels. De meeste kweekspieren die vandaag worden gemaakt, in ons en in andere labo’s, worden ondersteund door een zachte gel, wat ze te weinig stevigheid geeft. Het idee is dat draagstructuren tijdelijk kunnen compenseren voor de gebrekkige stevigheid die de huidige constructen hebben. Zo’n draagstructuur moet echter aan heel wat vereisten voldoen. Zo moet ze stevig zijn maar toch volledig afbreekbaar want ze moet met de tijd volledig verdwijnen uit het lichaam. Het doel is namelijk dat de kweekspier niet meer te onderscheiden is van een gewone spier. Verder moet de draagstructuur biocompatibel zijn, dat betekent dat ze een optimale leefomgeving moet vormen voor de cellen die worden gebruikt om de kweekspier te maken. Dit is een cruciaal gegeven want eerdere experimenten met polymere draagstructuren moesten gestopt worden door een gebrek aan bio-compatibiliteit, de toegevoegde cellen overleefden niet. Ook moeten de mechanische eigenschappen ervan zo goed mogelijk deze van skeletspieren nabootsen. Elasticiteit is een belangrijke eigenschap van dynamische weefsels zoals spieren en pezen. Dergelijke elasticiteit kan voorzien worden door een groep polymeren genaamd elastomeren. Recent hebben we voor een aantal elastomeren getest hoe goed de menselijke spierstamcellen kunnen aanhechten, overleven, zich delen en spiervezels vormen. Binnen de groep van de elastomeren konden we er tot nu toe verschillende vinden die optimale cel overleving en vermenigvuldiging toelieten. We gaan verder op dit veelbelovende pad om een goede draagstructuur voor de cellen te vinden.
Een lijst vol toepassingen
Kweekspieren kunnen mogelijks in de toekomst dienen voor spierherstel zoals we hierboven al vermeldden, maar daarnaast zijn er nog andere veelbelovende toepassingen. Zo kan een menselijke kweekspier dienen als ziektemodel, om bijvoorbeeld onderzoek te doen naar spierziektes. Daarnaast kan het ook dienen als model om nieuwe geneesmiddelen te testen. Deze twee toepassingen kunnen ook gecombineerd worden en beiden laten toe om het gebruik van proefdieren te verminderen. Het kan ook dienen als een nieuwe manier om sportfysiologie te evalueren, door na te gaan wat het effect is van bepaalde supplementen en trainingsschema’s op de spieren. Tot slot is er de laatste tijd heel wat media aandacht voor het gebruik van dierlijke kweekspieren als alternatieve bron van vlees. Kortom, met ons onderzoek naar gekweekte spieren verwachten we vooruitgang te boeken die impact heeft op verschillende domeinen.
1. Pallua N, Suschek C V. Tissue Engineering. Pallua N, Suscheck C V., editors. Tissue Engineering: From Lab to Clinic. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011. 1-634 p.
2. Organ Donation Statistics: Why be an Organ Donor? [Internet]. organdonor. 2015 [cited 2018 Feb 1]. Available from: https://www.organdonor.gov/statistics-stories/statistics.html
3. Hrsa. OPTN : Organ Procurement and Transplantation Network. U. S. Department of Health and Human Services 1999 p. 23.
4. Frontera WR, Ochala J. Skeletal Muscle: A Brief Review of Structure and Function. Calcif Tissue Int. 2015;96(3):183–95.
5. Järvinen TAH, Järvinen TLN, Kääriäinen M, Kalimo H, Järvinen M. Muscle Injuries. Am J Sports Med. 2005;33(5):745–64.
6. Lieber RL, Ward SR. Skeletal muscle design to meet functional demands. Philos Trans R Soc B Biol Sci. 2011;366(1570):1466–76.
7. Gillies AR, Lieber RL. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve. 2011;44(3):318–31.
8. Musarò A. The Basis of Muscle Regeneration. Adv Biol. 2014;2014:1–16.
9. Mauro A. Satellite cell of skeletal muscle fibers. J Cell Biol. 1961;9(2):493–5.
10. Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA. Pax7 Is Required for the Specification of Myogenic Satellite Cells. Cell. 2000;102(6):777–86.
11. Sherwood RI, Christensen JL, Conboy IM, Conboy MJ, Rando TA, Weissman IL, et al. Isolation of Adult Mouse Myogenic Progenitors. Cell. 2004;119(4):543–54.
12. Hawke TJ, Garry DJ. Myogenic satellite cells: physiology to molecular biology. J Appl Physiol. 2001;91(8750–7587; 0161–7567; 2):534–51.
13. Lepper C, Partridge TA, Fan C-MC-M. An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development. 2011;138(17):3639–46.
14. Gal-Levi R, Leshem Y, Aoki S, Nakamura T, Halevy O. Hepatocyte growth factor plays a dual role in regulating skeletal muscle satellite cell proliferation and differentiation. Biochim Biophys Acta - Mol Cell Res. 1998;1402(1):39–51.
15. Lu H, Huang D, Saederup N, Charo IF, Ransohoff RM, Zhou L. Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury. FASEB J. 2011;25(1):358–69.
16. Camargo FD, Green R, Capetenaki Y, Jackson KA, Goodell MA. Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Nat Med. 2003;9(12):1520–7.
17. Chazaud B, Sonnet C, Lafuste P, Bassez G, Rimaniol A-C, Poron F, et al. Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth. J Cell Biol. 2003;163(5):1133–43.
18. Grefte S, Kuijpers-Jagtman AM, Torensma R, Von den Hoff JW. Skeletal Muscle Development and Regeneration. Stem Cells Dev. 2007;16(5):857–68.
19. Wagers AJ, Conboy IM. Cellular and Molecular Signatures of Muscle Regeneration: Current Concepts and Controversies in Adult Myogenesis. Cell. 2005;122(5):659–67.
20. Hernández-Hernández JM, García-González EG, Brun CE, Rudnicki MA. The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration. Semin Cell Dev Biol. 2017;72:10–8.
21. Chal J, Pourquié O. Making muscle: skeletal myogenesis in vivo and in vitro. Development. 2017;144(12):2104–22.
22. Wang YX, Rudnicki MA. Satellite cells, the engines of muscle repair. Nat Rev Mol Cell Biol. 2012;13(2):127–33.
23. Bischoff R. Proliferation of muscle satellite cells on intact myofibers in culture. Dev Biol. 1986;115(1):129–39.
24. Jonah D Lee BCS, Lisa M Larkin KWV. Isolation and Purification of Satellite Cells for Skeletal Muscle Tissue Engineering. J Regen Med. 2015;3(2).
25. Zammit PS, Partridge TA, Yablonka-Reuveni Z. The Skeletal Muscle Satellite Cell: The Stem Cell That Came in From the Cold. J Histochem Cytochem. 2006;54(11):1177–91.
26. Post MJ. Cultured meat from stem cells: Challenges and prospects. Meat Sci. 2012;92(3):297–301.
27. Bisson A, Le Corre S, Joly-Helas G, Chambon P, Demoulins L, Jean L, et al. Chromosomal Instability but Lack of Transformation in Human Myoblast Preparations. Cell Transplant. 2014;23(12):1475–87.
28. Zuk PA. Human Adipose Tissue Is a Source of Multipotent Stem Cells. Mol Biol Cell. 2002;13(12):4279–95.
29. Lin C-S, Lin G, Lue TF. Allogeneic and Xenogeneic Transplantation of Adipose-Derived Stem Cells in Immunocompetent Recipients Without Immunosuppressants. Stem Cells Dev. 2012;21(15):2770–8.
30. Ma T, Sun J, Zhao Z, Lei W, Chen Y, Wang X, et al. A brief review: adipose-derived stem cells and their therapeutic potential in cardiovascular diseases. Stem Cell Res Ther. 2017;8(1):124.
31. Di Rocco G, Iachininoto MG, Tritarelli A, Straino S, Zacheo A, Germani A, et al. Myogenic potential of adipose-tissue-derived cells. J Cell Sci. 2006;119(14):2945–52.
32. Yilgor Huri P, Cook CA, Hutton DL, Goh BC, Gimble JM, DiGirolamo DJ, et al. Biophysical cues enhance myogenesis of human adipose derived stem/stromal cells. Biochem Biophys Res Commun. 2013;438(1):180–5.
33. Goudenege S, Pisani DF, Wdziekonski B, Di Santo JP, Bagnis C, Dani C, et al. Enhancement of Myogenic and Muscle Repair Capacities of Human Adipose–derived Stem Cells With Forced Expression of MyoD. Mol Ther. 2009;17(6):1064–72.
34. LaBarge MA, Blau HM. Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucelate muscle fibers in response to injury. Cell. 2002;111:589–601.
35. Bayati V, Hashemitabar M, Gazor R, Nejatbakhsh R, Bijannejad D. Expression of surface markers and myogenic potential of rat bone marrow- and adipose-derived stem cells: a comparative study. Anat Cell Biol. 2013;46(2):113.
36. Natsu K, Ochi M, Mochizuki Y, Hachisuka H, Yanada S, Yasunaga Y. Allogeneic Bone Marrow-Derived Mesenchymal Stromal Cells Promote the Regeneration of Injured Skeletal Muscle without Differentiation into Myofibers. Tissue Eng. 2004;10(7–8):1093–112.
37. Merritt EK, Cannon M V, Hammers DW, Le LN, Gokhale R, Sarathy A, et al. Repair of Traumatic Skeletal Muscle Injury with Bone-Marrow-Derived Mesenchymal Stem Cells Seeded on Extracellular Matrix. Tissue Eng Part A. 2010;16(9):2871–81.
38. Helal MAM, Shaheen NEM, Abu Zahra FA. Immunomodulatory capacity of the local mesenchymal stem cells transplantation after severe skeletal muscle injury in female rats. Immunopharmacol Immunotoxicol. 2016;38(6):414–22.
39. Cho PS, Messina DJ, Hirsh EL, Chi N, Goldman SN, Lo DP, et al. Immunogenicity of umbilical cord tissue derived cells. Blood. 2008;111(1):430–8.
40. Zucconi E, Vieira NM, Bueno CR, Secco M, Jazedje T, Costa Valadares M, et al. Preclinical Studies with Umbilical Cord Mesenchymal Stromal Cells in Different Animal Models for Muscular Dystrophy. J Biomed Biotechnol. 2011;2011:1–9.
41. Nunes VA, Cavaçana N, Canovas M, Strauss BE, Zatz M. Stem cells from umbilical cord blood differentiate into myotubes and express dystrophin in vitro only after exposure to in vivo muscle environment. Biol Cell. 2007;99(4):185–96.
42. Gang EJ, Jeong JA, Hong SH, Hwang SH, Kom SW, Yang IH, et al. Skeletal Myogenic Differentiation of Mesenchymal Stem Cells Isolated from Human Umbelical Cord Blood. 2004;580–9.
43. Kocaefe Ç, Balcı D, Balcı Hayta B, Can A. Reprogramming of Human Umbilical Cord Stromal Mesenchymal Stem Cells for Myogenic Differentiation and Muscle Repair. Stem Cell Rev Reports. 2010;6(4):512–22.
44. Bautch VL. Stem cells and the vasculature. Nat Med. 2011;17(11):1437–43.
45. Sá da Bandeira D, Casamitjana J, Crisan M. Pericytes, integral components of adult hematopoietic stem cell niches. Pharmacol Ther. 2017;171:104–13.
46. Dellavalle A, Maroli G, Covarello D, Azzoni E, Innocenzi A, Perani L, et al. Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat Commun. 2011;2:499.
47. Dellavalle A, Sampaolesi M, Tonlorenzi R, Tagliafico E, Sacchetti B, Perani L, et al. Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol. 2007;9(3):255–67.
48. Fuoco C, Sangalli E, Vono R, Testa S, Sacchetti B, Latronico MVG, et al. 3D hydrogel environment rejuvenates aged pericytes for skeletal muscle tissue engineering. Front Physiol. 2014;5:203.
49. Amit M, Carpenter MK, Inokuma MS, Chiu C-P, Harris CP, Waknitz MA, et al. Clonally Derived Human Embryonic Stem Cell Lines Maintain Pluripotency and Proliferative Potential for Prolonged Periods of Culture. Dev Biol. 2000;227(2):271–8.
50. Bryja V, Bonilla S, Čajánek L, Parish CL, Schwartz CM, Luo Y, et al. An Efficient Method for the Derivation of Mouse Embryonic Stem Cells. Stem Cells. 2006;24(4):844–9.
51. Robertson JA. Embryo Stem Cell Research: Ten Years of Controversy. J Law, Med Ethics. 2010;38(2):191–203.
52. Lewis MP, Mudera V, Cheema U, Shah R. Muscle tissue engineering. In: Fundamentals of Tissue Engineering and Regenerative Medicine. 2009. p. 243–53.
53. Bhartiya D, Nagvenkar P, Sriraman K, Shaikh A. An Overview of Pluripotent Stem Cells. In: Pluripotent Stem Cells. InTech; 2013. p. 1–23.
54. Li M, Dickinson CE, Finkelstein EB, Neville CM, Sundback CA. The Role of Fibroblasts in Self-Assembled Skeletal Muscle. Tissue Eng Part A. 2011;17(21–22):2641–50.
55. Rao N, Evans S, Stewart D, Spencer KH, Sheikh F, Hui EE, et al. Fibroblasts influence muscle progenitor differentiation and alignment in contact independent and dependent manners in organized co-culture devices. Biomed Microdevices. 2013;15(1):161–9.
56. Risau W, Flamme I. Vasculogenesis. Annu Rev Cell Dev Biol. 1995;11(1):73–91.
57. Davis GE, Camarillo CW. An alpha2beta1 Integrin-Dependent Pinocytic Mechanism Involving Intracellular Vacuole Formation and Coalescence Regulates Capillary Lumen and Tube Formation in Three-Dimensional Collagen Matrix. Exp Cell Res. 1996;224(1):39–51.
58. Stratman AN, Davis MJ, Davis GE. VEGF and FGF prime vascular tube morphogenesis and sprouting directed by hematopoietic stem cell cytokines. Blood. 2011;117(14):3709–19.
59. Morin KT, Tranquillo RT. Guided sprouting from endothelial spheroids in fibrin gels aligned by magnetic fields and cell-induced gel compaction. Biomaterials. 2011;32(26):6111–8.
60. Waters JP, Kluger MS, Graham M, Chang WG, Bradley JR, Pober JS. In vitro Self-Assembly of Human Pericyte-Supported Endothelial Microvessels in Three-Dimensional Coculture: A Simple Model for Interrogating Endothelial-Pericyte Interactions. J Vasc Res. 2013;50(4):324–31.
61. Kim J, Chung M, Kim S, Jo DH, Kim JH, Jeon NL. Engineering of a Biomimetic Pericyte-Covered 3D Microvascular Network. Lee JW, editor. PLoS One. 2015;10(7):e0133880.
62. Stratman AN, Davis GE. Endothelial Cell-Pericyte Interactions Stimulate Basement Membrane Matrix Assembly: Influence on Vascular Tube Remodeling, Maturation, and Stabilization. Microsc Microanal. 2012;18(1):68–80.
63. Wang X, Phan DTT, Sobrino A, George SC, Hughes CCW, Lee AP. Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels. Lab Chip. 2016;16(2):282–90.
64. Moya ML, Hsu Y-H, Lee AP, Hughes CCW, George SC. In Vitro Perfused Human Capillary Networks. Tissue Eng Part C Methods. 2013;19(9):730–7.
65. Sasagawa T, Shimizu T, Sekiya S, Haraguchi Y, Yamato M, Sawa Y, et al. Design of prevascularized three-dimensional cell-dense tissues using a cell sheet stacking manipulation technology. Biomaterials. 2010;31(7):1646–54.
66. Gholobova D, Decroix L, Van Muylder V, Desender L, Gerard M, Carpentier G, et al. Endothelial Network Formation Within Human Tissue-Engineered Skeletal Muscle. Tissue Eng Part A. 2015;21(19–20):2548–58.
67. Koffler J, Kaufman-Francis K, Yulia S, Dana E, Daria AP, Landesberg A, et al. Improved vascular organization enhances functional integration of engineered skeletal muscle grafts. Proc Natl Acad Sci. 2011;36108108(10).
68. Jiang JXS, Choi RCY, Siow NL, Lee HHC, Wan DCC, Tsim KWK. Muscle induces neuronal expression of acetylcholinesterase in neuron-muscle co-culture: transcriptional regulation mediated by cAMP-dependent signaling. J Biol Chem. 2003;278(46):45435–44.
69. Williams ML, Kostrominova TY, Arruda EM, Larkin LM. Effect of implantation on engineered skeletal muscle constructs. J Tissue Eng Regen Med. 2013;7(6):434–42.
70. Thorrez L, Vandenburgh H, Callewaert N, Mertens N, Shansky J, Wang L, et al. Angiogenesis Enhances Factor IX Delivery and Persistence from Retrievable Human Bioengineered Muscle Implants. Mol Ther. 2006;14(3):442–51.
71. Martin NRW, Passey SL, Player DJ, Khodabukus A, Ferguson RA, Sharples AP, et al. Factors affecting the structure and maturation of human tissue engineered skeletal muscle. Biomaterials. 2013;34(23):5759–65.
72. Chapple CR, Raz S, Brubaker L, Zimmern PE. Mesh Sling in an Era of Uncertainty: Lessons Learned and the Way Forward. Eur Urol. 2013;64(4):525–9.
73. Ryan AJ, O’Brien FJ. Insoluble elastin reduces collagen scaffold stiffness, improves viscoelastic properties, and induces a contractile phenotype in smooth muscle cells. Biomaterials. 2015;73:296–307.
74. Liu X, Won Y, Ma PX. Porogen-induced surface modification of nano-fibrous poly(l-lactic acid) scaffolds for tissue engineering. Biomaterials. 2006;27(21):3980–7.
75. Wilkinson AE, McCormick AM, Leipzig ND. Central Nervous System Tissue Engineering: Current Considerations and Strategies. Synth Lect Tissue Eng. 2011;3(2):1–120.
76. Osses N, Brandan E. ECM is required for skeletal muscle differentiation independently of muscle regulatory factor expression. Am J Physiol Physiol. 2002;282(2):C383–94.
77. Nishimura T. The role of intramuscular connective tissue in meat texture. Anim Sci J. 2010;81(1):21–7.
78. Chattopadhyay S, Raines RT. Review collagen-based biomaterials for wound healing. Glick GD, editor. Biopolymers. 2014;101(8):821–33.
79. Pallua N, Suschek C V. Tissue Engineering: From Lab to clinic. Vol. 1. 2011.
80. Mazaki T, Shiozaki Y, Yamane K, Yoshida A, Nakamura M, Yoshida Y, et al. A novel, visible light-induced, rapidly cross-linkable gelatin scaffold for osteochondral tissue engineering. Sci Rep. 2015;4(1):4457.
81. Xia Y, Mei F, Duan Y, Gao Y, Xiong Z, Zhang T, et al. Bone tissue engineering using bone marrow stromal cells and an injectable sodium alginate/gelatin scaffold. J Biomed Mater Res Part A. 2012;100A(4):1044–50.
82. Bendall JR. The elastin content of various muscles of beef animals. J Sci Food Agric. 1967;18(12):553–8.
83. Chow JP, Simionescu DT, Carter AL, Simionescu A. Immunomodulatory effects of adipose tissue-derived stem cells on elastin scaffold remodeling in diabetes. Tissue Eng Regen Med. 2016;13(6):701–12.
84. Hafemann B, Ensslen S, Erdmann C, Niedballa R, Zühlke A, Ghofrani K, et al. Use of a collagen/elastin-membrane for the tissue engineering of dermis. Burns. 1999;25(5):373–84.
85. Vasconcelos DM, Gonçalves RM, Almeida CR, Pereira IO, Oliveira MI, Neves N, et al. Fibrinogen scaffolds with immunomodulatory properties promote in vivo bone regeneration. Biomaterials. 2016;111:163–78.
86. Sell SA, Francis MP, Garg K, McClure MJ, Simpson DG, Bowlin GL. Cross-linking methods of electrospun fibrinogen scaffolds for tissue engineering applications. Biomed Mater. 2008;3(4):45001.
87. McManus M, Boland E, Sell S, Bowen W, Koo H, Simpson D, et al. Electrospun nanofibre fibrinogen for urinary tract tissue reconstruction. Biomed Mater. 2007;2(4):257–62.
88. Kim DW, Lee OJ, Kim S-W, Ki CS, Chao JR, Yoo H, et al. Novel fabrication of fluorescent silk utilized in biotechnological and medical applications. Biomaterials. 2015;70:48–56.
89. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, et al. Silk-based biomaterials. Biomaterials. 2003;24(3):401–16.
90. Haupt J, García-López JM, Chope K. Use of a novel silk mesh for ventral midline hernioplasty in a mare. BMC Vet Res. 2015;11(1):58.
91. Seth A, Chung YG, Gil ES, Tu D, Franck D, Di Vizio D, et al. The performance of silk scaffolds in a rat model of augmentation cystoplasty. Biomaterials. 2013;34(20):4758–65.
92. Frazza EJ, Schmitt EE. A new absorbable suture. J Biomed Mater Res. 1971;5(2):43–58.
93. Takeuchi J, Suzuki H, Murata M, Kakei Y, Ri S, Umeda M, et al. Clinical evaluation of application of polyglycolic acid sheet and fibrin glue spray for partial glossectomy. J Oral Maxillofac Surg. 2013;71(2):e126–31.
94. Mundinger GS, Prucz RB, Rozen SM, Tufaro AP. Reconstruction of the Inferior Alveolar Nerve with Bioabsorbable Polyglycolic Acid Nerve Conduits. Plast Reconstr Surg. 2012;129(1):110e–117e.
95. Zambon JP, de Sá Barretto LS, Nakamura ANS e, Duailibi S, Leite K, Magalhaes RS, et al. Histological changes induced by Polyglycolic-Acid (PGA) scaffolds seeded with autologous adipose or muscle-derived stem cells when implanted on rabbit bladder. Organogenesis. 2014;10(2):278–88.
96. You Q, Wang F, Duan L, Du X, Xiao M, Shen Z. Construction of small-caliber, polydiaxanone cyclohexanone vascular stents. Cell Biochem Biophys. 2010;57(1):35–43.
97. Higgins SP, Solan AK, Niklason LE. Effects of polyglycolic acid on porcine smooth muscle cell growth and differentiation. J Biomed Mater Res. 2003;67A(1):295–302.
98. Zambon JP, De Sá Barretto LS, Sawaki E Nakamura AN, Duailibi S, Leite K, Magalhaes RS, et al. Histological changes induced by Polyglycolic-Acid (PGA) scaffolds seeded with autologous adipose or muscle-derived stem cells when implanted on rabbit bladder. Organogenesis. 2014;10(2):278–88.
99. Roman S, Urbánková I, Callewaert G, Lesage F, Hillary C, Osman NI, et al. Evaluating Alternative Materials for the Treatment of Stress Urinary Incontinence and Pelvic Organ Prolapse: A Comparison of the In Vivo Response to Meshes Implanted in Rabbits. J Urol. 2016;196(1):261–9.
100. Kakinoki S, Yamaoka T. Stable modification of poly(lactic acid) surface with neurite outgrowth-promoting peptides via hydrophobic collagen-like sequence. Acta Biomater. 2010;6(6):1925–30.
101. Lopes MS, Jardini AL, Filho RM. Poly (Lactic Acid) Production for Tissue Engineering Applications. Procedia Eng. 2012;42:1402–13.
102. Park BH, Zhou L, Jang KY, Park HS, Lim JM, Yoon SJ, et al. Enhancement of tibial regeneration in a rat model by adipose-derived stromal cells in a PLGA scaffold. Bone. 2012;51(3):313–23.
103. Kim M, Choi YS, Yang SH, Hong H-N, Cho S-W, Cha SM, et al. Muscle regeneration by adipose tissue-derived adult stem cells attached to injectable PLGA spheres. Biochem Biophys Res Commun. 2006;348(2):386–92.
104. Ko HJ, Suh JH, Choi SY, Choi JY, Moon HJ, Lee JW, et al. Two cases of upper lip correction using multipolydioxanone scaffold. Dermatol Ther. 2016;29(1):10–2.
105. Ko HJ, Choi JY, Moon HJ, Lee JW, Jang SI, Bae I-H, et al. Multi-polydioxanone (PDO) scaffold for forehead wrinkle correction: A pilot study. J Cosmet Laser Ther. 2016;18(7):405–8.
106. Alfaro De Prá MA, Ribeiro-do-Valle RM, Maraschin M, Veleirinho B. Effect of collector design on the morphological properties of polycaprolactone electrospun fibers. Mater Lett. 2017;193:154–7.
107. Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials. 2005;26(23):4817–27.
108. Chen Q, Liang S, Thouas GA. Elastomeric biomaterials for tissue engineering. Prog Polym Sci. 2013;38:584–671.
109. Wang Y, Ameer GA, Sheppard BJ, Langer R. A tough biodegradable elastomer. Nat Biotechnol. 2002;20(6):602–6.
110. Oh SJ, Woo JO, Park J-E, Son K. Thermal, mechanical, and morphological properties of polyol-based poly(ester amide) elastomers. Mater Lett. 2015;143:219–22.
111. Bruggeman JP, Bettinger CJ, Langer R. Biodegradable xylitol-based elastomers: In vivo behavior and biocompatibility. 2010;(1):92–104.
112. Wang Y, Kim YM, Langer R. In vivo degradation characteristics of poly(glycerol sebacate). J Biomed Mater Res. 2003;66A(1):192–7.
113. Chen Q, Yang X, Li Y. A comparative study on in vitro enzymatic degradation of poly(glycerol sebacate) and poly(xylitol sebacate). RSC Adv. 2012;2(10):4125.
114. Ifkovits JL, Padera RF, Burdick JA. Biodegradable and radically polymerized elastomers with enhanced processing capabilities. Biomed Mater. 2008;3(3):34104.
115. Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Vol. 32, Progress in Polymer Science (Oxford). Pergamon; 2007. p. 762–98.
116. Pomerantseva I, Krebs N, Hart A, Neville CM, Huang AY, Sundback CA. Degradation behavior of poly(glycerol sebacate). J Biomed Mater Res Part A. 2009;91A(4):1038–47.
117. Liu Q, Tan T, Weng J, Zhang L. Study on the control of the compositions and properties of a biodegradable polyester elastomer. Biomed Mater. 2009;4(2):25015.
118. Blanquer SBG, Gebraad AWH, Miettinen S, Poot AA, Grijpma DW, Haimi SP. Differentiation of adipose stem cells seeded towards annulus fibrosus cells on a designed poly(trimethylene carbonate) scaffold prepared by stereolithography. J Tissue Eng Regen Med. 2017;11(10):2752–62.
119. Zhang Z, Kuijer R, Bulstra SK, Grijpma DW, Feijen J. The in vivo and in vitro degradation behavior of poly(trimethylene carbonate). Biomaterials. 2006;27(9):1741–8.
120. Zhang C, Subramanian H, Grailer JJ, Tiwari A, Pilla S, Steeber DA, et al. Fabrication of biodegradable poly(trimethylene carbonate) networks for potential tissue engineering scaffold applications. Polym Adv Technol. 2009;20(9):742–7.
121. Encalada-Diaz I, Cole BJ, MacGillivray JD, Ruiz-Suarez M, Kercher JS, Friel NA, et al. Rotator cuff repair augmentation using a novel polycarbonate polyurethane patch: preliminary results at 12 months’ follow-up. J Shoulder Elb Surg. 2011;20(5):788–94.
122. Chen S, Nakamoto T, Kawazoe N, Chen G. Engineering multi-layered skeletal muscle tissue by using 3D microgrooved collagen scaffolds. Biomaterials. 2015;73:23–31.
123. Palma E, Inghilleri M, Conti L, Deflorio C, Frasca V, Manteca A, et al. Physiological characterization of human muscle acetylcholine receptors from ALS patients. Proc Natl Acad Sci. 2011;108(50):20184–8.
124. Kalman B, Monge C, Bigot A, Mouly V, Picart C, Boudou T. Engineering human 3D micromuscles with co-culture of fibroblasts and myoblasts. Comput Methods Biomech Biomed Engin. 2015;18(sup1):1960–1.
125. Hinds S, Bian W, Dennis RG, Bursac N. The role of extracellular matrix composition in structure and function of bioengineered skeletal muscle. Biomaterials. 2011;32(14):3575–83.
126. Roskelley C. A hierarchy of ECM-mediated signalling regulates tissue-specific gene expression. Curr Opin Cell Biol. 1995;7(5):736–47.
127. Watt FM, Jordan PW, O’Neill CH. Cell shape controls terminal differentiation of human epidermal keratinocytes. Proc Natl Acad Sci. 1988;85(15):5576–80.
128. Discher DE. Tissue Cells Feel and Respond to the Stiffness of Their Substrate. Science (80- ). 2005;310(5751):1139–43.
129. Dove A. Screening for content—the evolution of high throughput. Nat Biotechnol. 2003;21(8):859–64.
130. Madden L, Juhas M, Kraus WE, Truskey GA, Bursac N. Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs. Elife. 2015;4.
131. Vandenburgh H, Shansky J, Benesch-Lee F, Barbata V, Reid J, Thorrez L, et al. Drug-screening platform based on the contractility of tissue-engineered muscle. Muscle Nerve. 2008;37(4):438–47.
132. Vandenburgh H, Shansky J, Benesch-Lee F, Skelly K, Spinazzola JM, Saponjian Y, et al. Automated drug screening with contractile muscle tissue engineered from dystrophic myoblasts. FASEB J. 2009;23(10):3325–34.
133. Newswire PR, York N, York N. Intramuscular Drug Delivery Market & Pipeline Insight. 2017;1–3.
134. Lydia O, Eva W, Francesco T, Martin H. Advancing agricultural greenhouse gas quantification. Environ Res Lett. 2013;8(1):11002.
135. Post MJ. Cultured beef: medical technology to produce food. J Sci Food Agric. 2014;94(6):1039–41.
136. Cezar CA, Mooney DJ. Biomaterial-based delivery for skeletal muscle repair. Adv Drug Deliv Rev. 2015;84:188–97.
137. Rahaman MN, Mao JJ. Stem cell-based composite tissue constructs for regenerative medicine. Biotechnol Bioeng. 2005;91(3):261–84.
138. Dutt V, Gupta S, Dabur R, Injeti E, Mittal A. Skeletal muscle atrophy: Potential therapeutic agents and their mechanisms of action. Pharmacol Res. 2015;99:86–100.
139. LeRoith D. Non-islet cell hypoglycemia. Ann Endocrinol (Paris). 2004;65(1):99–103.
140. Fan Y, Maley M, Beilharz M, Grounds M. Rapid death of injected myoblasts in myoblast transfer therapy. Muscle Nerve. 1996;19(7):853–60.
141. Vandenburgh H, Tatto M Del, Shansky J, Goldstein L, Russell K, Genes N, et al. Attenuation of Skeletal Muscle Wasting with Recombinant Human Growth Hormone Secreted from a Tissue-Engineered Bioartificial Muscle. Hum Gene Ther. 1998;9(17):2555–64.
142. VandenDriessche T. Lentiviral vectors containing the human immunodeficiency virus type-1 central polypurine tract can efficiently transduce nondividing hepatocytes and antigen-presenting cells in vivo. Blood. 2002;100(3):813–22.
143. Hadjizadeh A, Doillon CJ. Directional migration of endothelial cells towards angiogenesis using polymer fibres in a 3D co-culture system. J Tissue Eng Regen Med. 2010;4(7):524–31.
144. Rangarajan S, Madden L, Bursac N. Use of Flow, Electrical, and Mechanical Stimulation to Promote Engineering of Striated Muscles. Ann Biomed Eng. 2014;42(7):1391–405.
145. Spitters TWGM, Leijten JCH, Deus FD, Costa IBF, van Apeldoorn AA, van Blitterswijk CA, et al. A Dual Flow Bioreactor with Controlled Mechanical Stimulation for Cartilage Tissue Engineering. Tissue Eng Part C Methods. 2013;19(10):774–83.
146. Liaw NY, Zimmermann W-H. Mechanical stimulation in the engineering of heart muscle. Adv Drug Deliv Rev. 2016;96:156–60.
147. Vandenburgh HH. Motion into mass: how does tension stimulate muscle growth? Med Sci Sports Exerc. 1987;19(5 Suppl):S142-9.
148. Moon DG, Christ G, Stitzel JD, Atala A, Yoo JJ. Cyclic mechanical preconditioning improves engineered muscle contraction. Tissue Eng Part A. 2008;14(4):473–82.
149. Handschin C, Mortezavi A, Plock J, Eberli D. External physical and biochemical stimulation to enhance skeletal muscle bioengineering. Adv Drug Deliv Rev. 2015;82–83:168–75.
150. Hornberger TA, Armstrong DD, Koh TJ, Burkholder TJ, Esser KA. Intracellular signaling specificity in response to uniaxial vs. multiaxial stretch: implications for mechanotransduction. Am J Physiol Physiol. 2005;288(1):C185–94.
151. Van der Schaft DWJ, van Spreeuwel ACC, Van Assen HC, Baaijens FPT. Mechanoregulation of Vascularization in Aligned Tissue-Engineered Muscle: A Role for Vascular Endothelial Growth Factor. Tissue Eng Part A. 2011;17(21–22):2857–65.
152. McCaig CD, Rajnicek AM, Song B, Zhao M. Controlling Cell Behavior Electrically: Current Views and Future Potential. Physiol Rev. 2005;85(3):943–78.
153. Hamid S, Hayek R. Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: An overview. Eur Spine J. 2008;17(9):1256–69.
154. Graupe D. An overview of the state of the art of noninvasive FES for independent ambulation by thoracic level paraplegics. Neurol Res. 2002;24(5):431–42.
155. Ikeda K, Ito A, Sato M, Kawabe Y, Kamihira M. Improved contractile force generation of tissue-engineered skeletal muscle constructs by IGF-I and Bcl-2 gene transfer with electrical pulse stimulation. Regen Ther. 2016;3:38–44.
156. Langelaan MLP, Boonen KJM, Rosaria-Chak KY, van der Schaft DWJ, Post MJ, Baaijens FPT. Advanced maturation by electrical stimulation: Differences in response between C2C12 and primary muscle progenitor cells. J Tissue Eng Regen Med. 2011;5(7):529–39.
157. Neville CM, Schmidt M, Schmidt J. Response of myogenic determination factors to cessation and resumption of electrical activity in skeletal muscle: a possible role for myogenin in denervation supersensitivity. Cell Mol Neurobiol. 1992;12(6):511–27.
158. Yu F, Li R, Jen N, Chi N, Lien C-L, Hsiai T. Canonical Wnt/β-catenin Signaling Pathway mediates Shear Stress-Activated Angiopoeitin-2 expression and vasculogenesis. FASEB J. 2013;27(1 Supplement):526.6-526.6.
159. Obi S, Masuda H, Shizuno T, Sato A, Yamamoto K, Ando J, et al. Fluid shear stress induces differentiation of circulating phenotype endothelial progenitor cells. Am J Physiol Physiol. 2012;303(6):C595–606.
160. Li R, Beebe T, Jen N, Yu F, Takabe W, Harrison M, et al. Shear Stress-Activated Wnt-Angiopoietin-2 Signaling Recapitulates Vascular Repair in Zebrafish Embryos. Arterioscler Thromb Vasc Biol. 2014;34(10):2268–75.
161. Lucitti JL, Jones EA V., Huang C, Chen J, Fraser SE, Dickinson ME. Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development. 2007;134(18):3317–26.
162. Meeson A, Palmer M, Calfon M, Lang R. A relationship between apoptosis and flow during programmed capillary regression is revealed by vital analysis. Development. 1996;122(12):3929–38.
163. Kochhan E, Lenard A, Ellertsdottir E, Herwig L, Affolter M, Belting H-G, et al. Blood Flow Changes Coincide with Cellular Rearrangements during Blood Vessel Pruning in Zebrafish Embryos. Hogan B, editor. PLoS One. 2013;8(10):e75060.
164. Ott M, Ballermann B. Shear stress-conditioned, endothelial cell-seeded vascular grafts: Improved cell adherence in response to in vitro shear stress. Surgery. 1995;117(3):334–9.
165. Inoguchi H, Tanaka T, Maehara Y, Matsuda T. The effect of gradually graded shear stress on the morphological integrity of a huvec-seeded compliant small-diameter vascular graft. Biomaterials. 2007;28(3):486–95.
166. Noria S, Cowan DB, Gotlieb AI, Langille BL. Transient and Steady-State Effects of Shear Stress on Endothelial Cell Adherens Junctions. Circ Res. 1999;85(6):504–14.
167. Cimetta E, Flaibani M, Mella M, Serena E, Boldrin L, De Coppi P, et al. Enhancement of Viability of Muscle Precursor Cells on 3D Scaffold in a Perfusion Bioreactor. Int J Artif Organs. 2007;30(5):415–28.
168. Gilles Carpentier research web site: computer image analysis [Internet]. [cited 2018 May 14]. Available from: http://image.bio.methods.free.fr/ImageJ/?lang=en
169. Thorrez L, Shansky J, Wang L, Fast L, Vandendriessche T, Chuah M, et al. Growth, differentiation, transplantation and survival of human skeletal myofibers on biodegradable scaffolds. Biomaterials. 2008;29(1):75–84.
170. Levenberg S, Rouwkema J, Macdonald M, Garfein ES, Kohane DS, Darland DC, et al. Engineering vascularized skeletal muscle tissue. Nat Biotechnol. 2005;23(7):879–84.
171. Lesman A, Habib M, Caspi O, Gepstein A, Arbel G, Levenberg S, et al. Transplantation of a Tissue-Engineered Human Vascularized Cardiac Muscle. Tissue Eng Part A. 2010;16(1):115–25.
172. Pedersen TO, Blois AL, Xing Z, Xue Y, Sun Y, Finne-Wistrand A, et al. Endothelial microvascular networks affect gene-expression profiles and osteogenic potential of tissue-engineered constructs. Stem Cell Res Ther. 2013;4(3):52.
173. Cook JL, Lewis AM. Immunological surveillance against DNA-virus-transformed cells: correlations between natural killer cell cytolytic competence and tumor susceptibility of athymic rodents. J Virol. 1987;61(7):2155–61.
174. Koike N, Fukumura D, Gralla O, Au P, Schechner JS, Jain RK. Creation of long-lasting blood vessels. Nature. 2004;428(6979):138–9.
175. Hellström M, Gerhardt H, Kalén M, Li X, Eriksson U, Wolburg H, et al. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol. 2001;152(3):543–53.
176. Sampaolesi M, Blot S, D’Antona G, Granger N, Tonlorenzi R, Innocenzi A, et al. Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature. 2006;444(7119):574–9.
177. Abou-Khalil R, Mounier R, Chazaud B. Regulation of myogenic stem cell behaviour by vessel cells: The “ménage à trois” of satellite cells, periendothelial cells and endothelial cells. Cell Cycle. 2010;9(5):892–6.
178. Kuraitis D, Berardinelli MG, Suuronen EJ, Musaro A. A necrotic stimulus is required to maximize matrix-mediated myogenesis in mice. Dis Model Mech. 2013;6(3):793–801.
179. Atrick CHWP. Three-Dimensional , Quantitative Analysis of Desmin and Smooth Muscle Alpha Actin Expression during Angiogenesis. Ann Biomed Eng. 2004;32(8):1100–7.
180. Urech L, Bittermann AG, Hubbell JA, Hall H. Mechanical properties, proteolytic degradability and biological modifications affect angiogenic process extension into native and modified fibrin matrices in vitro. Biomaterials. 2005;26(12):1369–79.
181. Jiang B, Waller TM, Larson JC, Appel AA, Brey EM. Fibrin-Loaded Porous Poly(Ethylene Glycol) Hydrogels as Scaffold Materials for Vascularized Tissue Formation. Tissue Eng Part A. 2013;19(1–2):224–34.
182. Lorentz KM, Kontos S, Frey P, Hubbell JA. Engineered aprotinin for improved stability of fibrin biomaterials. Biomaterials. 2011;32(2):430–8.
183. Latroche C, Weiss-Gayet M, Muller L, Gitiaux C, Leblanc P, Liot S, et al. Coupling between Myogenesis and Angiogenesis during Skeletal Muscle Regeneration Is Stimulated by Restorative Macrophages. Stem Cell Reports. 2017;9(6):2018–33.
184. Cleaver O, Melton DA. Endothelial signaling during development. Nat Med. 2003;9(6):661–8.
185. Rhoads RP, Johnson RM, Rathbone CR, Liu X, Temm-Grove C, Sheehan SM, et al. Satellite cell-mediated angiogenesis in vitro coincides with a functional hypoxia-inducible factor pathway. Am J Physiol Physiol. 2009;296(6):C1321–8.
186. Baldwin J, Antille M, Bonda U, De-Juan-Pardo EM, Khosrotehrani K, Ivanovski S, et al. In vitro pre-vascularisation of tissue-engineered constructs A co-culture perspective. Vasc Cell. 2014;6(1):13.
187. Kunz-Schughart LA, Schroeder JA, Wondrak M, van Rey F, Lehle K, Hofstaedter F, et al. Potential of fibroblasts to regulate the formation of three-dimensional vessel-like structures from endothelial cells in vitro. Am J Physiol Physiol. 2006;290(5):C1385–98.
188. Cittadella Vigodarzere G, Mantero S. Skeletal muscle tissue engineering: strategies for volumetric constructs. Front Physiol. 2014;5(September):362.
189. Vandenburgh HH. Functional Assessment and Tissue Design of Skeletal Muscle. Ann N Y Acad Sci. 2002;961(1):201–2.
190. Riboldi SA, Sampaolesi M, Neuenschwander P, Cossu G, Mantero S. Electrospun degradable polyesterurethane membranes: potential scaffolds for skeletal muscle tissue engineering. Biomaterials. 2005;26(22):4606–15.
191. Huang NF, Patel S, Thakar RG, Wu J, Hsiao BS, Chu B, et al. Myotube Assembly on Nanofibrous and Micropatterned Polymers. Nano Lett. 2006;6(3):537–42.
192. Agrawal CM, Ray RB. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res. 2001;55(2):141–50.
193. Gunatillake P. Biodegradable synthetic polymers for tissue engineering. Eur Cells Mater. 2003;5:1–16.
194. Hympanova L, Mori da Cunha MGMC, Rynkevic R, Zündel M, Gallego MR, Vange J, et al. Physiologic musculofascial compliance following reinforcement with electrospun polycaprolactone-ureidopyrimidinone mesh in a rat model. J Mech Behav Biomed Mater. 2017;74(March):349–57.
195. Chen Q-Z, Ishii H, Thouas GA, Lyon AR, Wright JS, Blaker JJ, et al. An elastomeric patch derived from poly(glycerol sebacate) for delivery of embryonic stem cells to the heart. Biomaterials. 2010;31(14):3885–93.
196. Engelmayr GC, Cheng M, Bettinger CJ, Borenstein JT, Langer R, Freed LE. Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat Mater. 2008;7(12):1003–10.
197. Gallik Stephen. Microscopic Study of Skeketal Muscle [Internet]. [cited 2018 May 12]. Available from: http://histologyolm.stevegallik.org/node/145
198. Cervelli M, Leonetti A, Duranti G, Sabatini S, Ceci R, Mariottini P. Skeletal Muscle Pathophysiology: The Emerging Role of Spermine Oxidase and Spermidine. Med Sci. 2018;6(1):14.