Analyse van Hawaiiaanse bloemen leidt tot de ontdekking van twee nieuwe gistsoorten!

Joon
Klaps
  • Sergio
    Álvarez-Pérez

We hebben allemaal al wel gehoord van nectar, hiermee maken de bijen hun lekkere honing! Maar wist je dat het eigenlijk veel meer is dan alleen het hoofdingrediënt van honing? Het is één van de belangrijkste troeven die een bloem heeft om bestuivers aan te trekken! Liefst 90% van de bloeiende planten, waaronder het merendeel van onze landbouwgewassen, zijn afhankelijk van dieren voor hun bestuiving. Om bestuivers te lokken, rekenen bloemen niet alleen op hun bloemvorm, -kleur of –geur, maar bieden ze ook huisvesting aan gisten om bijkomende geurstoffen te kunnen produceren. Dergelijke nectargisten zouden kunnen ingezet worden om de bestuivingsefficiëntie van landbouwgewassen te verhogen, een steeds groter wordend probleem in tijden waarin insecten schaarser worden. Daarom zijn we in mijn masterproef op zoek gegaan naar gisten in Hawaiiaanse bloemen, wat onder meer leidde tot de ontdekking van twee nieuwe gistsoorten.

De bloem als waaier van habitats

De doelstelling van mijn masterproef bestond erin om voor de eerste keer in de geschiedenis de diversiteit aan kweekbare gisten in bloemen van de inheemse Hawaiiaanse boom Metrosideros polymorpha te bestuderen. Verschillende bloemdelen werden onderzocht: de stijl, de meeldraden en de nectar. Bekomen gisten werden geïdentificeerd met behulp van innovatieve DNA-methoden. De resultaten gaven aan dat de verscheidenheid aan gisten varieerde afhankelijk van het onderzochte bloemdeel: de meeste gistsoorten werden aangetroffen op de stijl en de minste in de nectar. Deze resultaten zijn in overeenkomst met verscheidene hypotheses rondom het microbiologisch filtrerend effect van nectar die zeer strenge groei condities bevat.

De ontdekking van twee nieuwe gisten

Uitermate interessant was de ontdekking van twee nieuwe gistsoorten die tot dusver nog niet gekend waren voor de wetenschap. Genetische testen, aangevuld met een reeks fenotypische testen, toonden aan dat de nieuwe gisten verwant zijn aan het Candida geslacht, wat zowel ziekteverwekkende als nuttige gisten omvat. Verder onderzoek is nodig om de gevonden soorten nog beter te karakteriseren, alsook om hun ecologie, en toepassingspotentieel beter te begrijpen.

Microscopische foto van gist

Microscopische foto van nieuwe gisten op schaal, behorend tot het geslacht Candida.

Bibliografie

Adler, L. S. (2000). The ecological significance of toxic nectar. Oikos, 91, 409-420.

Aizenberg-Gershtein, Y., Izhaki, I., & Halpern, M. (2013). Do honeybees shape the bacterial community composition in floral nectar? PLoS ONE, 8(7), e67556. doi:10.1371/journal.pone.0067556.

Aleklett, K., Hart, M., & Shade, A. (2014). The microbial ecology of flowers: an emerging frontier in phyllosphere research. Botany, 92, 253-266. doi:https://doi.org/10.1139/cjb-2013-0166

Alexander, H. M. (1990). Epidemiology of anther-smut infection of Silene alba caused by Ustilago violacea: Patterns of spore deposition and disease incindence. Journal of Ecology, 78, 166-179. doi:10.2307/2261043

Alvarez, M. E., Pennell, R. I., Meijer, P. , Ishikawa, A., Dixon, R. A., & Lamb, C. (1998). Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell, 92, 773-784.

Álvarez-Pérez, S., & Herrera, C. (2013). Composition, richnesss and nonrandom assembly of culturable bacterial-microfungal communities in floral nectar of Mediterranean plants. FEMS Microbiology Ecology, 83(3), 685-699. doi:10.1111/1574-6941.12027

Álvarez-Pérez, S., de Vega, C., Pozo, M. I., Lenaerts, M., Van Assche, A., Herrera, C. M.,  et al.,  (2016). Nectar yeasts of the Metschnikowia clade are highly susceptible to azole antifungals widely used in medicine and agriculture. FEMS Yeast Research, 16(1).

Álvarez-Pérez, S., Herrera, C. M., & de Vega, C. (2012). Zooming-in on floral nectar: a first exploration of nectar-associated bacteria in wild plant communities. FEMS Microbiology Ecology, 80(3), 519-602.

Álvarez-Pérez, S., Lievens, B., & Fukami, T. (2019). Yeast-bacterium interactions: the next frontier in nectar research. Trends in Plant Science, 24(5), 393-401. doi:10.1016/j.tplants.2019.01.012

Arbefeville, S., Harris, A., & Ferrieri, P. (2017). Comparison of sequencing the D2 region of the large subunit ribosomal RNA gene (MicroSEQ®) versus the internal transcribed spacer (ITS) regions using two public databases for identification of common and uncommon clinically relevant fungal species. Journal of Microbiological Methods, 140, 40-46.

Avise, J. C., & Ball, R. M. (1990). Principles of genealogical concordance in species concepts and biological taxonomy. In D. Futuyma, & J. Antonovics (eds.), Oxford Surveys in Evolutionary Biology, vol. 7 (pp. 45-67). Oxford, UK: Oxford University Press.

Bailes, E. J., Ollerton, J., Pattrick, J. G., & Glover, B. J. (2015). How can an understanding of plant-pollinator interactions contribute to global food-security. Current Opinion in Plant Biology., 26, 72-79.

Baker, H. G., & Baker, I. (1973). Amino-acids in nectar and their evolutionary significance. Nature, 241, 543-545.

Baker, H. G., & Baker, I. (1982). Chemical constituents of nectar in relation to pollination mechanisms and phylogeny. In H. Baker, I. Baker, & M. Nitecki (eds.), Biochemical Aspects of Evolutionary Biology (pp. 131-171). Chicago, IL, USA: University of Chicago Press.

Bandoni, R. (1995). Dimorphic heterobasidiomycetes: taxonomy and parasitism. Studies in Mycology, 38, 13-27.

Bang, S.-H., Han, S.-J., & Kim, D.-H. (2008). Hydrolysis of arbutin to hydroquinone by human skin bacteria and its effect on antioxidant activity. Journal of Cosmetic Dermatology, 7, 189-193.

Becker, A., Alix, K., & Damerval, C. (2011). The evolution of flower development: current understanding and future challenges. Annals of Botany, 107, 1427–1431. doi:10.1093/aob/mcr122

Belisle, M., Peay, K. G., & Fukami, T. (2012). Flowers as islands: spatial distribution of nectar-inhabiting microfungi among plants of Mimulus aurantiacus, a hummingbird-pollinated shrub. Microbial Ecology, 63(4), 711-718. doi:10.1007/s00248-011-9975-8

Bernardello, G. (2007). A systematic survey of floral nectaries. In S. W. Nicolson, M. Nepi, & E. Pacini (eds.), Nectaries and Nectar (pp. 19-129). Dordrecht, The Netherlands: Springer.

Brysch-Herzberg, M. (2004). Ecology of yeasts in plant-bumblebee mutualism in Central Europe. FEMS Microbiology Ecology., 50(2), 87-100. doi:10.1016/j.femsec.2004.06.003

Búrquez, A., & Corbet, S. A. (1991). Do flowers reabsorb nectar? Functional Ecology, 5(3), 369-379.

Buzzini, P., Lachance, M.-A., & Yurkov, A. (2017). Yeasts in Natural Ecosystems: Ecology. Cham, Switzerland: Springer International Publishing AG.

Canto, A., Herrera, C. M., & Rodriguez, R. (2017). Nectar-living yeasts of a tropical host plant community: Diversity and effects on community-wide floral nectar traits. PeerJ, 5, e3517. doi:doi:10.7717/peerj.3517

Canto, A., Herrera, C. M., Medrano, M., Pérez, R., & García, I. M. (2008). Pollinator foraging modifies nectar sugar composition in Helleborus foetidus L. (Ranunculaceae): an experimental test. American Journal of Botany, 95, 315-320.

Carlquist, S. (1980). Hawaii a Natural History. Lawai, Kauai, HI, USA: Pacific Tropical Gardens.

Carpenter, F. L. (1976). Plant-pollinator interactions in Hawaii: Pollination energetics of Metrosideros collina (Myrtaceae). Ecology, 57(6), 1125-1144.

Carter, C., & Thornburg, R. W. (2004). Is the nectar redox cycle a floral defense against microbial attack? Trends in Plant Science, 9(7), 320-324. doi:10.1016/j.tplants. 2004.05.008.

Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17, 540-552.

Cendejas-Bueno, E., Kolecka, A., Alastruey-Izquierdo, A., Theelen, B., Groenewald, M., Kostrzewa, M., et al., (2012). Reclassification of the Candida haemulonii complex as Candida haemulonii (C. haemulonii group I), C. duobushaemulonii sp. nov. (C. haemulonii group II), and C. haemulonii var. vulnera var. nov.: three multiresistant human pathogenic yeasts. Journal of Clinical Microbiology, 50(11), 3641-3651. doi:10.1128/JCM.02248-12.

Chamnongpol, S., Willekens, H., Moeder, W., Langebartels, C., Sandermann, H. J., Van Montagu, M., et al., (1998). Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. Proceedings of the National Academy of Sciences USA, 95, 5818-5823.

Cheung, A. Y. (1996). Pollen-pistil interactions during pollen-tube growth. Trends in Plant Science, 1, 45-51.

Christensen, W. B. (1946). Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. Journal of Bacteriology, 52(4), 461-466.

Colwell, R. K. (2009). EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples. Version 9.1. User's Guide and application. Retrieved from http://purl.oclc.org/estimates

Conroy, T. J., Palmer-Young, E. C., Irwin, R. E., & Adler, L. S. (2016). Food limitation affects prasite load and survival of Bimbus impatiens (Hymenoptera: apidae) infected with Crithidia (Trypanosomatida: trypanosomatidae). Environmental Entomology, 45, 1212-1219.

Corbet, S. A. (2003). Nectar sugar content: estimating standing crop and secretion rate in the field. Apidologie, 34, 1-10.

Corbet, S. A., Willmer, P. G., Beament, J. L., Unwin, D. M., & Prys-Jones, O. E. (1979). Post-secretory determinants of sugar concentration in nectar. Plant Cell and Environment , 2, 293-308.

Cowan, M. M. (1999). Plant products ans antimicrobial agents. Clinical Microbiology Reviews, 12(4), 546-582. doi:10.1128/CMR.12.4.564

Custer, M. T. (1940). Onderzoekingen over het Gistgeslacht Brettanomyces. Thesis, Delft.

Darriba, D., Taboada, G., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9(8), 772.

Davis, A. R. (2001). Searching and breeding for structural featuresof flowers correlated with high nectar-carbohydrate production. Acta Horticulturae, 561, 107-121.

Davis, A. R., Peterson, R. L., & Shuel, R. W. (1988). Vasculature and ultrastructure of the floral and stipular nectaries of Vicia faba (Leguminosae). Canadian Journal of Botany, 66, 1435-1448.

Dawson, J. W., & Stemmermann, R. L. (1999). Metrosideros Banks ex Gaertn. In W. L. Wagner, D. R. Herbst, & S. Sohmer, Manual of the flowering plants of Hawai'i. (pp. 964-970). Honolulu, HI, USA: University of Hawai'i Press.

De Craene, L. R. (2010). Floral Diagrams: An Aid to Understanding Flower Morphology and Evolution. Edinburgh, UK: Cambridge University Press.

de Queiroz, K. (1998). The general lineage concept of species, species criteria, and the process of speciation: A conceptual unification and terminological recommendations. In D. J. Howard, & S. H. Berlocher (eds.), Species and speciation (pp. 57-75). New York, NY, USA: Oxford University Press.

de Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology, 56(6), 879-886.

de Vega, C., & Herrera, C. M. (2012). Relationships among nectar-dwelling yeasts, flower and ants: patterns and incidence on nectar traits. Oikos, 121(11), 1878-1888. doi:10.1111/j.1365-2311.1979.tb00557.x

de Vega, C., & Herrera, C. M. (2013). Microorganisms transported by ants induce changes in floral nectar composition of an ant-pollinated plant. American Journal of Botany, 100(4), 792–800. doi:10.3732/ajb.1200626

de Vega, C., Albaladejo, R. G., & Lachance, M.-A. (2018). Metschnikowia maroccana f.a., sp. nov., a new yeast species associated with floral nectar from Morocco. International Journal of Systematic and Evolutionary Microbiology, 68, 2028–2035. doi:10.1099/ijsem.0.002784

de Vega, C., Albaladejo, R. G., Guzmán, B., Steenhuisen, S.-L., Johnson, S. D., Herrera, C. M., & Lachance, M.-A. (2017). Flowers as a reservoir of yeast diversity: description of Wickerhamiella nectarea f.a., sp. nov., and Wickerhamiella natalensis f.a., sp. nov. from South African flowers and pollinators, and transfer of related Candida species to the genus Wickerhamiella as new combinations. FEMS Yeast Research, 17, fox054. doi:10.1093/femsyr/fox054

de Vega, C., Guzmán, B., Lachance, M.-A., Steenhuisen, S.-L., Johnson, S. D., & Herrera, C. M. (2012). Metschnikowia proteae sp. nov., a nectarivorous insect-associated yeast species from Africa. International Journal of Systematic and Evolutionary Microbiology, 62(10), 2538-2545. doi:10.1099/ijs.0.040790-0

de Vega, C., Herrera, C. M., & Johnson, S. D. (2009). Yeasts in floral nectar of some

South African plants: quantification and associations with pollinator type. South African Journal of Botany, 75, 798-806.

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792-1797.

Eisikowitch, D., Lachance, M.-A., Kevan, P. G., Willis, S., & Collins-Thompson, D. L. (1990). The effect of the natural assemblage of microorganisms and selected strains of the yeast Metschnikowia reukaufii in controlling the germination of pollen of the common milkweed Asclepias syriaca. Candian Journal of Botany, 68(5), 1163-1165. doi:https://doi.org/10.1139/b90-147

Eldredge, N., & Cracraft, J. (1980). Phylogenetic patterns and the evolutionary process. New York, NY, USA: Columbia University Press.

Elias, T. S. (1983). Extrafloral nectaries: their structure and distribution. In: B. Bentley, & T. S. Elias (eds.), The biology of Nectaries, (pp. 174-203). New York, NY: Columbia University Press.

Fahn, A. (1988). Secretory tissues in vascular plants. New Phytologist, 108, 229-257.

Faith, D. P. (1992). Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1-10. doi:10.1016/0006-3207(92)91201-3

Fell, J. W., Boekhout, T., Fonseca, A., Scorzetti, G., & Statzell-tallman, A. (2000). Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. International Journal of Systematic and Evolutionary Microbiology, 50, 1351-1371.

Ferro Fontán, C., & Chirife, J. (1981). The evaluation of water-activity in aqueous-solutions from freezing-point depression. Journal of Food Technology, 16, 21-30.

Fonseca, A., & Inácio, J. (2006). Phylloplane Yeasts. In C. A. Rosa, & G. Peter (eds.), Biodiversity and Ecophysiology of Yeasts. The Yeast Handbook (pp. 263-301). Heidelberg, Germany: Springer.

Forsberg, K., Woodworth, K., Walters, M., Berkow, E., Jackson, B., Chiller, T., & Vallabhaneni, S. (2019). Candida auris: The recent emergence of a multidrug-resistant fungal pathogen. Medical Mycology, 57(1), 1-12. doi:10.1093/mmy/myy054

Fotedar, R., Fell, J., Boekhout, T., Kolecka, A., Zeyara, A., Kaul, R., et al. (2019a). Cystobasidium halotolerans sp. nov., a novel basidiomycetous yeast species isolated from the Arabian Gulf. International Journal of Systematic and Evolutionary Microbiology, 69(3), 839-845.

Fotedar, R., Kolecka, A., Boekhout, T., Fell, J., Zeyara, A., Malki, A., & Marri, M. (2019b). Kondoa qatarensis f.a., sp. nov., a novel yeast species isolated from marine water in Qatar. International Journal of Systematic and Evolutionary Microbiology, 69(2), 486-492.

Freitas, L., Barbosa, R., Sampaio, J., Lachance, M.-A., & Rosa, C. (2015). Starmera pilosocereana sp. nov., a yeast isolated from necrotic tissue of cacti in a sandy coastal dune ecosystem. International Journal of Systematic and Evolutionary Microbiology, 65(12), 4474-4478. doi:10.1099/ijsem.0.000596

Godfray, H. C., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., et al. (2010). Food security: the challenge of feeding 9 billion people. Science, 327, 812-818.

Guindon, S., & Gascuel, O. (2003). A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology, 52, 696-704.

Guindon, S., Dufayard, J., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology, 59(3), 307-321.

Gujjari, P., Suh, S. O., Coumes, K., et al. (2011). Characterization of oleaginous yeasts revealed two novel species: Trichosporon cacaoliposimilis sp. nov. and Trichosporon oleaginosus sp. nov. Mycologia, 103, 1110-1118.

Guzmán , B., Lachance, M.-Á., & Herrera, C. M. (2013). Phylogenetic analysis of the angiosperm-floricolous insect–yeast association: Have yeast and angiosperm lineages co-diversified? Molecular Phylogenetics and Evolution, 68, 161-175.

Hagler, A. N., & Ahearn, D. G. (1981). Rapid diazonium blue B test to detect basidiomycetous yeasts. International Journal of Systematic Bacteriology, 31(2), 204-208.

Harrison, J. P., Gheeraert, N., Tsigelnitskiy, D., & Cockell, C. S. (2013). The limits for life under multiple extremes. Trends in Microbiology, 21, 204-212.

Hassan, M., Blanc, P. J., & Pareilleux, A. (1995). Production of cocoa butter equivalents from prickly-pear juice fermentation by an unsaturated fatty acid auxotroph of Cryptococcus curvatus grown in batch culture. Process Biochemistry, 30, 629–34.

Hausdorf, B. (2011). Progress toward a general species concept. Evolution, 65, 923-931. doi:10.1111/j.1558-5646.2011.01231.x

Herrera, C. M. (1995). Microclimate and individual variation in pollinators: flowering plants are more than their flowers. Ecology, 76(5), 1516-1524.

Herrera, C. M. (2017). Scavengers that fit beneath a microscope lens. Ecology, 98, 2725-2726.

Herrera, C. M., & Pozo, M. I. (2010). Nectar yeasts warm the flowers of a winter-blooming plant. Proceedings of the Royal Society B: Biological Sciences, 277, 1827–1834. doi:10.1098/rspb.2009.2252

Herrera, C. M., Canto, A., Pozo, M. I., & Bazaga, P. (2010). Inhospitable sweetness: nectar filtering of pollinator-borne inocula leads to impoverished, phylogenetically clustered yeast communities. Proceedings of the Royal Society B: Biological Sciences, 277, 747-754. doi:10.1098/rspb.2009.1485

Herrera, C. M., de Vega , C., Canto, A., & Pozo, M. I. (2009). Yeasts in floral nectar: a quantitative survey. Annals of Botany, 103, 1415-1423. doi:10.1093/aob/mcp026

Herrera, C. M., García, I. M., & Ricardo, P. (2008). Invisible floral larcenies: microbial communities degrade floral nectar of bumble bee-pollinated plants. Ecology, 89(9), 2369-2376. doi:10.1890/08-0241.1

Herrera, C. M., Pozo, M. I., & Bazaga, P. (2014). Nonrandom genotype distribution among floral hosts contributes to local and regional genetic diversity in the nectar-living yeast Metschnikowia reukaufii. FEMS Microbiology Ecology., 87(3), 568-575. doi:10.1111/1574-6941.12245

Herrera, C. M., Pozo, M. I., & Medrano, M. (2013). Yeasts in nectar of an early-blooming herb: sought by bumble bees, detrimental to plant fecundity. Ecology, 94(2), 273-279. doi:10.1890/12-0595.1

Herrero, M. L., & Klemsdal, S. S. (1998). Identification of Pythium aphanidermatum using the RAPD technique. Mycological Research, 102(2), 136-140.

Heslop-Harrison, J., & Heslop-Harrison, Y. (1985). Surfaces and secretions in the pollen-stigma interaction: a brief review. Journal of Cell Science, 2, 287-300. doi:10.1242/jcs.1985.Supplement_2.15

Hillebrand, H. (2004). On the generality of the latitduinal diversity gradient. The American Naturalist, 163, 192-211.

Huang, M., Sanchez-Moreiras, A. M., Abel, C., Sohrabi, R., Lee, S., Gershenzon, J., & Tholl, D. (2012). The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)‐β‐caryophyllene, is a defense against a bacterial pathogen. New Phytologist, 193(4), 997-1008. doi:10.1111/j.1469-8137.2011.04001.x.

Index Fungorum Partnership. (2018). Index Fungorum. Retrieved December 13, 2018, from http://www.indexfungorum.org/Names/Names.asp

Inouye, D. W. (1980). The terminology of floral larceny. Ecology, 61, 1251-1253.

Irwin , R. E., Bronstein, J. L., Manson, J. S., & Richardson, L. (2010). Nectar robbing: ecological and evolutionary perspectives. Annual Review of Ecology, 41, 271-292. doi:10.1146/annurev.ecolsys.110308.120330

Jacquemyn, H., Lenaerts, M., Brys, R., Willems, K., Honnay, O., & Lievens, B. (2013b). Among-population variation in microbial community structure in the floral nectar of the bee-pollinated forest herb Pulmonaria officinalis L. PLOS One, 8(3), e56917.

Jacquemyn, H., Lenaerts, M., Tyteca, D., & Lievens, B. (2013a). Microbial diversity in the floral nectar of seven Epipactis (Orchidaceae) species. Micorbiology Open, 2(4), 644-658.

James, S. A., Puttock, C. F., Cordell, S., & Adams, R. P. (2004). Morphological and genetic variation within Metrosideros polymorpha (Myrtaceae) on Hawai'i. New Zealand Journal of Botany, 42(2), 263-270. doi:10.1080/0028825X.2004.9512903

Jenkins, C. N., Pimm, S. L., & Joppa, L. N. (2013). Global patterns of terrestrial vertebrate diversity and conservation. Proceedings of the National Academy of Sciences of the United States of America, 110(28), E2602-E2610. doi:10.1073/pnas.1302251110

Jennersten, O. (1988). Insect dispersal of fungal disease: effects of Ustilago infection on pollinator attraction in Viscaria vulgaris. Oikos, 51, 163-170. doi:10.2307/3565638

Junker, R. R., & Keller, A. (2015). Microhabitat heterogeneity across leaves and flower organs promotes bacterial diversity. FEMS Microbiology Ecology, 91(9), fiv097. doi:10.1093/femsec/fiv097

Junker, R. R., & Tholl, D. (2013). Volatile organic compound mediated interactions at the plant-microbe interface. Journal of Chemical Ecology, 39, 810-825. doi:10.1007/s10886-013-0325-9

Junker, R. R., Loewel, C., Gross, R., Dötterl, S., Keller, A., & Blüthgen, N. (2011). Composition of epiphytic bacterial communities differs on petals and leaves. Plant Biology, 13(6), 918–924. doi:10.1111/j.1438-8677.2011.00454.x.

Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., et al. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463-1464.

Knudsen, J., Eriksson , R., Gershenzon, J., & Ståhl, B. (2006). Diversity and distribution of floral scent. The Botanical Review, 72(1), 1-120. doi:10.1663/0006-8101

Kobayashi, R., Kanti, A., & Kawasaki, H. (2017). Three novel species of D-xylose-assimilating yeasts, Barnettozyma xylosiphila sp. nov., Barnettozyma xylosica sp. nov. and Wickerhamomyces xylosivorus f.a., sp. nov. International Journal of Systematic and Evolutionary Microbiology, 67(10), 3971-3976.

Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35, 1547-1549.

Kurtzman, C. P. (2010). Decription of new yeast species - is one strain enough? Bulletin of BISMiS, 1, 17-24.

Kurtzman, C. P., & Robnett, C. J. (1998). Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek, 73(4), 331-371.

Kurtzman, C. P., Fell, J. W., & Boekhout, T. (2011a). The Yeasts, a Taxonomic Study, 5th edn. Amsterdam, The Netherlands: Elsevier Science B.V.

Kurtzman, C. P., Fell, J. W., Boekhout, T., & Robert, V. (2011b). Methods for isolation, phenotypic characterization and maintenance of yeasts. In C. P. Kurtzman, & J. W. Fell (eds.), The Yeasts, a Taxonomic Study, 5th edn. (pp. 88-110). Amsterdam, The Netherlands: Elsevier Science B.V.

Kurtzman, C. P., Robnett, C. J., Ward, J. N., Brayton, C., Gorelick, P., & Walsh, T. (2005). Multigene phylogenetic analysis of pathogenic Candida species in the Kazachstania (Arxiozyma) telluris complex and description of their ascosporic states as Kazachstania bovina sp. nov., K. heterogenica sp. nov., K. pintolopessi sp. nov., and K. slooffiae. Journal of Clinical Microbiology, 43, 101-111.

Lachance, M.-A. (2006). Yeast biodiversity: How many and how much? In G. Péter, & C. Rosa (eds.), Biodiversity and Ecophysiology of Yeasts. The Yeast Handbook. (pp. 1-9). Berlin, Heidelberg, Germany: Springer.

Lachance, M.-A. (2011). Metschnikowia Kamienski (1899). In C. P. Kurtzman, J. W. Fell, & T. Boekhout (eds.), The Yeasts, a Taxonomic Study, 5th edn. (pp. 575-620). Amsterdam, The Netherlands: Elsevier Science B.V . doi:https://doi.org/10.1016/B978-0-444-52149-1.00046-X

Lachance, M.-A. (2012). In defense of yeast sexual life cycles: the forma asexualis- an informal proposal. Yeasts Newsletter, 61, 24-25.

Lachance, M.-A., & Fedor, A. (2014). Catching speciation in the act: Metschnikowia bowlesiae sp. nov., a yeast species found in nitidulid beetles of Hawaii and Belize. Antonie van Leeuwenhoek, 105(3), 541-550.

Lachance, M.-A., Anderson, T. M., & Starmer, W. T. (2006). A new subclade of haplontic Metschnikowia species associated with insects of morning glory flowers in Africa and description of Metschnikowia aberdeeniae sp. nov. . International Journal of Systematic and Evolutionary Microbiology, 56(5), 1141-1145.

Lachance, M.-A., Bowles, J. M., & Starmer, W. T. (2003). Geography and niche occupancy as determinants of yeast biodiversity: the yeast–insect–morning glory ecosystem of Kípuka Puaulu, Hawai’i. FEMS Yeast Research, 4(1), 105-111.

Lachance, M.-A., Ewing, C. P., Bowles, J. M., & Starmer, W. T. (2005). Metschnikowia hamakuensis sp. nov., Metschnikowia kamakouana sp. nov. and Metschnikowia mauinuiana sp. nov., three endemic yeasts from Hawaiian nitidulid beetles. International Journal of Systematic and Evolutionary Microbiology, 55,1369-1377.

Lachance, M.-A., Starmer, W. T., & Phaff, H. J. (1990). Metschnikowia hawaiiensis sp. nov. a heterothallic haploid yeast from Hawaiian morning glory and associated drosophilids. International Journal of Systematic Bacteriology, 40(4), 415-420.

Lachance, M.-A., Starmer, W. T., Rosa, C. A., Bowles, J. M., Barker, S, J., & Janzen, D. H. (2001). Biogeography of the yeasts of ephemeral flowers and their insects. FEMS Yeast Research, 1(1), 1-8. doi:10.1111/j.1567-1364.2001.tb00007.x

Lachance, M.-A., Vale, H., Sperandio, E., Carvalho, A., Santos, A., Grondin, C., et al. (2018). Wickerhamiella dianesei f.a., sp. nov. and Wickerhamiella kurtzmanii f.a., sp. nov., two yeast species isolated from plants and insects. International Journal of Systematic and Evolutionary Microbiology., 68(10), 3351-3355. doi:10.1099/ijsem.0.003000

Lagache, L., Leger, J., Daudin, J., Petit, R. J., & Vacher, C. (2013). Putting the biological species concept to the test: using mating networks to delimit species. PLoS ONE, 8(6), e682. doi:10.1371/journal.pone.0068267

Lane, D. J. (1991). 16S/23S rRNA sequencing. In E. Stackebrandt, & M. Goodfellow (eds.), Nucleic Acid Techniques in Bacterial Systematics (pp. 115-175). New York, NY, USA: John Wiley and Sons.

Lenaerts, M., Alvarez-Pérez, S., de Vega, C., Van Assche, A., Johnson, S., Willems, K., et al. (2014). Rosenbergiella australoborealis sp. nov., Rosenbergiella collisarenosi sp. nov. and Rosenbergiella epipactidis sp. nov., three novel bacterial species isolated from floral nectar. Systematic and Applied Microbiology, 37(6), 402-411. doi:10.1016/j.syapm.2014.03.002

Lievens , B., Hallsworth, J. E., Pozo, M. I., Belgacem, Z. B., Stevenson, A., Willems, K. A., & Jacquemyn, H. (2015). Microbiology of sugar-rich environments: diversity, ecology and system constraints. Environmental Microbiology, 17(2), 278-298. doi:10.1111/1462-2920.12570

Limtong, S., & Yonngmanitchai, W. (2010). Candida chanthaburiensis sp.nov., Candida kungkrabaensis sp. nov. and Candida suratensis sp. nov., three novel yeast species from decaying plant materials submerged in water of mangrove forests. Antoine van Leeuwenhoek, 98, 379-388.

Lin, X., Wang, Y., Zhang, S., et al. (2014). Functional integration of multiple genes into the genome of the oleaginous yeast Rhodosporidium toruloides. FEMS Yeast Research, 14, 547-555.

Lipscomb, D., Platnick, N., & Wheeler, Q. D. (2003). The intellectual content of taxonomy: a community analysis by high-throughput sequencing of amplified markers-a user's guide. New Phytologist, 199, 288-299.

Liti, G., Barton, D. B., & Louis, E. J. (2006). Sequence diversity, reproductive isolation and species concepts in Saccharomyces. Genetics, 174(2), 839-850.

Lopes, M., Santos, A., Moreira, J., Santa-Brígida, R., Martins, M., Pinto, F., et al. (2019). Kurtzmaniella hittingeri f.a., sp. nov., isolated from rotting wood and fruits, and transfer of three Candida species to the genus Kurtzmaniella as new combinations. International Journal of Systematic and Evolutionary Microbiology, 69(5), 1504-1508. doi:10.1099/ijsem.0.003337

Magyar, D., Gönczöl, J., Révay, A., Grillenzoni, F., & Seijo-Coello, M. D. (2005). Stauro- and scolecoconidia in floral and honeydew honeys. Fungal Diversity, 20, 103-120.

Mallet, J. (1995). Species definition for the modern synthesis. Trends in Ecology & Evolution, 10, 294-299. doi:10.1016/0169-5347(95)90031-4

Mannion, P. D., Upchurch, P., Benson, R. B., & Goswami, A. (2014). The latitudinal biodiversity gradient through deep time. Trends in Ecology & Evolution, 29, 42-50. doi:https://doi.org/10.1016/j.tree.2013.09.012.

Mayden, R. L. (1997). A hierarchy of species concepts: The denouement in the saga of the species problem. In M. F. Claridge, H. A. Dawah, & M. R. Wilson (eds.), Species: The units of biodiversity (pp. 381-424). London, UK: Chapman and Hall.

Mayr, E. (1940). Speciation phenomena in birds. American Naturalist, 74(752), 249-278.

Meirinho, C., Estevinho, M., & Choupina, A. (2011). Phylogeny and character evolution in the jelly fungi (Tremellomycetes, Basidiomycota, Fungi). Molecular Phylogenetics and Evolution, 61, 12-28.

Meyer, W., & Mitchell, T. G. (1995). Polymerase chain reaction fingerprinting in fungi using single primers specific to minisatellites and simple repetitive DNA sequences: strain variation in Cryptococcus neoformans. Electrophoresis, 16(9), 1648-1656.

Mishler, B. D. (1985). The morphological, developmental, and phylogenetic basis of species concepts in bryophytes. Bryologist, 88, 207-214. doi:10.2307/3243030

Mittelbach, G. G., Schemske, D. W., Cornell, H. V., Allen, A. P., Brown, J. M., Bush, M. B., et al. (2007). Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecology Letters, 10, 315-331. doi:10.1111/j.1461-0248.2007.01020.x

Mittelbach, M., Yurkov, A. M., Nocentini, D., Nepi, M., Weigend, M., & Begerow, D. (2015). Nectar sugars and bird visitation define a floral niche for basidiomycetous yeast on the Canary Islands. BMC Ecology, 15, 2.

Morais, C., Batista, T., Kominek, J., Borelli, B., Furtado, C., Moreira, R., et al. (2017). Spathaspora boniae sp. nov., a D-xylose-fermenting species in the Candida albicans/Lodderomyces clade. International Journal of Systematic and Evolutionary Microbiology, 67(10), 3798-3805.

Mueller-Dombois, D., & Fosberg, F. R. (1998). Vegetation of the Tropical Pacific Islands. New York, NY, USA: Springer-Verlag.

Mukherjee, V., Radecka, D., Aerts, G., Verstrepen, K., Lievens, B., & Thevelein, J. (2017). Phenotypic landscape of non-conventional yeast species for different stress tolerance traits desirable in bioethanol fermentation. Biotechnology and Biofuels, 10, 216. doi:10.1186/s13068-017-0899-5

Mukherjee, V., Steensels, J., Lievens, B., Van, d., Verplaetse, A., Aerts, G., et al. (2014). Phenotypic evaluation of natural and industrial Saccharomyces yeasts for different traits desirable in industrial bioethanol production. Applied Microbiology and Biotechnology, 98(22), 9483-9498. doi:10.1007/s00253-014-6090-z

Nelson, G., & Plantick, N. (1981). Systematics and Biogeography: Cladistics and Vicariance. New York, NY, USA: Columbia University Press.

Nepi, M., von Aderkas, P., Wagner, R., Mugnaini, S., Coulter, A., & Pacini, E. (2009). Nectar and pollination drops: how different are they? Annals of Botany, 104(2), 205-219.

Ngugi, H., & Scherm, H. (2006). Biology of flower infecting fungi. Annual Review of Phytopathology, 44, 261-282. doi: 10.1146/ annurev.phyto.44.070505.143405

Nicolson, S. W. (1994). Eucalyptus nectar: production, availability, composition and osmotic consequences for the larva of the eucalypt nectar fly Drosophila flavohirta. South African Journal of Science, 90, 75-79.

Nicolson, S. W. (1995). Direct demonstration of nectar reabsorption in the flowers of Grevillea robusta (Proteaceae). Functional Ecology, 9(4), 584-588.

Nicolson, S. W. (2002). Pollination by passerine birds: why are the nectars so dilute? Comparative Biochemistry and Physiology - Part B: Biochemistry and Molecular Biology, 131(4), 645-652.

Nicolson, S. W., & Thornburg, R. W. (2007). Nectar chemistry. In S. W. Nicolson, M. Nepi, & E. Pacini (eds.), Nectaries and Nectar (pp. 215-49). Dordrecht, The Netherlands: Springer.

Nicolson, S. W., de Veer, L., Köhler, A., & Pirk, C. W. (2013). Honeybees prefer warmer nectar and less viscous nectar, regardless of sugar concentration. Proceedings of the Royal Society B: Biological Sciences, 280, 20131597.

Orme, C. L., Davies, R. G., Burgress, M., Eigenbrod, F., & et al. (2005). Global hotspots of species richness are not congruent with endemism or threat. Nature, 436, 1016-1019.

Pacini, E., & Nicolson, S. W. (2007). Introduction: floral and extrafloral nectaries. In S. W. Nicolson, M. Nepi, & E. Pacini (eds.), Nectaries and Nectar (pp. 6-8). Dordrecht, The Netherlands: Springer.

Pacini, E., Nepi, M., & Vesprini, J. L. (2003). Nectar biodiversity: a short review. Plant Systematics and Evolution, 238, 7-21.

Parachnowitsch, A. L., Manson, J. S., & Sletvold, N. (2019). Evolutionary ecology of nectar. Annals of Botany, 123(2), 247-261.

Pate, J. S., Peoples, M. B., Storer, P. J., & Atkins, C. A. (1985). The extrafloral nectaries of cowpea (Vigna unguiculata (L.) Walp.) II. Nectar composition, origin of nectar solutes, and nectary functioning. Planta, 166(1), 28-38.

Peay, K. G. (2014). Back to the future: natural history and the way forward in modern fungal ecology. Fungal Ecology, 2, 4-9.

Peay, K. G., Belisle, M., & Fukami, T. (2012). Phylogenetic relatedness predicts priority effects in nectar yeast communities. Proceedings of the Royal Society Series B: Biological Sciences, 279(1729), 749-758. doi:10.1098/rspb.2011.1230

Polburee, P., Lertwattanasakul, N., Limtong, P., Groenewald, M., & Limtong, S. (2017). Nakazawaea todaengensis f.a., sp. nov., a yeast isolated from a peat swamp forest in Thailand. International Journal of Systematic and Evolutionary Microbiology, 67(7), 2377-2382.

Pozo, M. I., Herrera, C. M., & Bazaga, P. (2011). Species richness of yeast communities in floral nectar of Southern Spanish plants. Microbial Ecology, 61, 82-91. doi:10.1007/s00248-010-9682-x

Pozo, M. I., Lachance, M.-A., & Herrera, C. M. (2012). Nectar yeasts of two southern Spanish plants: the roles of immigration and physiological traits in community assembly. FEMS Microbiology Ecology, 80(2), 281-293. doi: 10.1111/j.1574-6941.2011.01286.x

Pozo, M., Herrera, C., Lachance, M., Verstrepen, K., Lievens, B., & Jacquemyn, H. (2016). Species coexistence in simple microbial communities: unravelling the phenotypic landscape of co-occurring Metschnikowia species in floral nectar. Environmental Microbiology, 18(6), 1850-1862. doi:10.1111/1462-2920.13037

Pozo, M., Lievens, B., & Jacquemyn, H. (2015). Impact of microorganisms on the nectar chemistry, pollinator attraction and plant fitness. In R. L. Peck (ed.), Nectar: Production, chemical composition and benefits to animals and plants. (pp. 1-40). New York, NY: Nova Science Publishers Inc.

Pusey, P. L. (2002). Biological control agents for the fire blight of apple compared under conditions limiting natural dispersal. Plant Disease, 86(6), 639-644. doi:10.1094/PDIS.2002.86.6.639

Pusey, P. L., Stockwell, V. O., & Mazzola, M. (2009). Epiphytic bacteria and yeasts on apple blossoms and their potential as antagonists of Erwinia amylora. Phytopathology, 99, 571-581.

R Core Team. (2019). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/

Rands, S. A., & Whitney, H. M. (2008). Floral temperature and optimal foraging: Is heat a feasible floral reward for pollinators. PLoS One, 3(4). doi:10.1371/journal.pone.0002007

Reynolds, D. R. (1993). The fungal holomorph: An overview. In D. R. Reynolds, & J. W. Taylor (eds.), The Fungal Holomorphs: Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics (pp. 15-25). Wallingford, UK: CAB International.

Richardson, L. L., Adler, L. S., Leonard, A. S., Andicoechea, J., Regan, K. H., Anthonay, W. E., et al. (2015). Secondary metabolites in floral nectar reduce parasite infections in bumblebees. Proceedings of the Royal Society B: Biological Sciences, 282, 20142471.

Rojas-Nossa, S. V., Sánchez, J. M., & Navarro, L. (2016). Nectar robbing: a common phenomenon mainly determined by accessibility constraints, nectar volume and density of energy rewards. Oikos, 125, 1044-1055. doi: 10.1111/oik.02685

Roshchina, V. V. (1993). Model Systems to Study the Excretory Function of Higher Plants. Dordrecht, The Nethelands: Springer.

Roy, R., Schmitt, A. J., Thomas, J. B., & Carter, C. J. (2017). Review: Nectar Biology: From molecules to ecosystems. Plant Science, 262, 148-164.

Ruben, R., Diego, H. C., Marilyn, P., Nicole, G., Wendy, C., Erika, S., et al. (2018). Emerging multidrug-resistant Candida duobushaemulonii infections in Panama hospitals: importance of laboratory surveillance and accurate identification. Journal of Clinical Microbiology, 56(7). pii: e00371-18. doi:10.1128/JCM.00371-18

Saluja, P., & Prasad, G. S. (2008). Candida ruellia sp. nov., a novel yeast species isolated from flowers of Ruellia sp. (Acanthaceae). FEMS Yeast Research, 8, 660-666.

Sanchez , A. M., Bosch , M., Bots, M., Nieuwland, J., Feron, R., & Mariani, C. (2004). Pistil factors controlling pollination. The Plant Cell, 16, S98-S106. doi:10.1105/tpc.017806.Pistil.

Sasabe, M., Takeuchi, K., Kamoun, S., Ichinose, Y., Govers, F., Toyoda, K., et al. (2000). Independent pathways leading to apoptotic cell death, oxidative burst and defense gene expression in response to elicitin in tobacco cell suspension culture. European Journal of Biochemistry, 267, 5005-5013.

Schloss, P. D., Westcott, S. L., Ryabin, T., & et al. (2009). Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23), 7537-7541.

Schmid, R. (1988). Reproductive versus extra-reproductive nectaries - historical perspective and terminological recommendations. Botanical Review, 54, 179-232.

Schooley, J. (1997). Introduction to Botany. Albany, NY, USA: Delmar Publishers.

Seberg, O., Humphries, C. J., Knapp, S., Stevenson, D. W., Petersen, G., Scharff, N., & Andersen, N. M. (2003). Shortcuts in systematics? A commentary on DNA-based taxonomy. Trends in Ecology & Evolution, 18, 63-65.

Seeley, H. W., & Vandemark, P. J. (1962). Microbes In Action: A laboratory manual of microbiology. San Francisco, CA, USA: W. H. Freeman & Co.

Simpson, B. B., & Neff, J. L. (1983). Evolution and diversity of floral rewards. In C. E. Jones, & R. J. Little (eds.), Handbook of Experimental Pollination Biology (pp. 142-159). New York, NY, USA: Van Nostrand Reinhold.

Simpson, G. C. (1961). Principles of Animal Taxonomy. New York, NY, USA: Columbia University Press.

Sipiczki, M., & Tap, R. M. (2016). Candida vulturna pro tempore sp. nov., a dimorphic yeast species related to the Candida haemulonis species complex isolated from flowers and clinical sample. International Journal of Systematic and Evolutionary Microbiology, 66(10), 4009-4015. doi:10.1099/ijsem.0.001302

Slifkin, M. (2000). Tween 80 opacity test responses of various Candida species. Journal of Clinical Microbiology, 38(12), 4626-4628.

Sobhy, I. S., Baets, D., Goelen, T., Herrera-Malaver, B., Bosmans, L., Van den Ende, W., et al. (2018). Sweet scents: nectar specialist yeast enhance nectar attraction of a generalist aphid parasitoid without affecting survivial. Frontiers in Plant Science, 9, 1009. doi:10.3389/fpls.2018.01009

Stockwell, V. (2005). Flowers: a unique microbial habitat. Phytopathology, 95(6, Suppl.), S128.

Stucky, J. B. (2012). SeqTrace: A graphical tool for rapidly processing DNA sequencing chromatograms. Journal of Biomolecular Technology, 23(3), 90-93.

Tchakouteu, S. S., Kalantzi, O., Gardeli, C., et al. (2015). Lipid production by yeasts growing on biodiesel-derived crude glycerol: strain selection and impact of substrate concentration on the fermentation efficiency. Journal of Applied Microbiology, 118, 911-927.

Thiru, M., Sankh, S., & Rangaswamy, V. (2011). Process for biodiesel production from Cryptococcus curvatus. Bioresource Technology, 102, 10436-10440.

Thornburg, R. W. (2007). Molecular biology of the Nicotiana floral nectary. In S. W. Nicolson, M. Nepi, & E. Pacini (eds.), Nectaries and Nectar (pp. 265-282). Dordrecht, The Netherlands: Springer.

Toju, H., Vannette, R. L., Gauthier, M. P. L., Dhami, M. K., & Fukami, T. (2018). Priority

effects can persist across floral generations in nectar microbial metacommunities. Oikos, 127, 345-352.

Tsuji, M., Tanabe, Y., Vincent, W., & Uchida, M. (2019). Vishniacozyma ellesmerensis sp. nov., a psychrophilic yeast isolated from a retreating glacier in the Canadian High Arctic. International Journal of Systematic and Evolutionary Microbiology, 69(3), 696-700.

Turland, N. J., Wiersema, J. H., Barrie, F. R., Greuter, W., Hawksworth, D. L., Herendeen, P. S., et al. (2018). International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen. China, July 2017: Regnum Vegetabile 159. Glashütten, Germany: Koeltz Botanical Books. doi:https://doi.org/10.12705/Code.2018

Turner, S., Pryer, K. M., Miao, V. P., & Palmer, J. (1999). Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. Journal of Eukaryotic Microbiology, 46(4), 327-338.

Vannette, R. L., & Fukami, T. (2017). Dispersal enhances beta diversity in nectar microbes. Ecology Letters, 20, 901-910.

Vannette, R. L., & Fukami, T. (2018). Contrasting effects of yeasts and bacteria on floral nectar traits. Annals of Botany, 121, 1343-1349.

Vannette, R., & Fukami, T. (2016). Nectar microbes can reduce secondary metabolites in nectar and alter effects on nectar consumption by pollinators. Ecology, 97(6), 1410-1419.

Varize, C. S., Cadete, R. M., Lopes, L. D., Christofoleti-Furlan, R. M., Lachance, M.-A., Rosa, C. A., & Basso, L. C. (2018). Spathaspora piracicabensis f. a., sp. nov., a D-xylose-fermenting yeast species isolated from rotting wood in Brazil. Antonie van Leeuwenhoek, 111(4), 525-531.

Vassart, G., Georges, M., Monsieur, R., Brocas, H., Lequarre, A., & Christophe, D. (1987). A sequence in M13 phage detects hypervariable minisatellites in human and animal DNA. Science, 235(4789), 683-684.

Vu, V. Q. (2011). A ggplot2 based biplot. R package version 0.55. Retrieved from http://github.com/vqv/ggbiplot

Wan , L., Luo, G., Lu, H., Xuan, D., Cao, H., & Zhang, J. (2015). Changes in the hemolytic activity of Candida species by common electrolytes. BMC Microbiology, 15, 171.

Wang, S. A., Jia, J. H., & Bai, F. Y. (2008). Candida alocasiicola sp. nov., Candida hainanensis sp. nov., Candida heveicola sp. nov. and Candida musiphila sp. nov., novel anamorphic, ascomycetous yeast species isolated from plants. Antonie van Leeuwenhoek, 94(2), 257-265.

Weir, J. T., & Schluter, D. (2007). The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science, 315(5818), 1574-1576.

White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. Sninsky, & J. W. White (eds.), PCR protocols: A Guide to Methods And application (pp. 315-322). New York, NY, USA: Academic Press.

Wickerham, L. J. (1951). Taxonomy of Yeasts. Technical Bulletin of the U. S. Department of Agriculture, 1029, 1-55.

Wickham, H. (2006). Elegant Graphics for Data Analysis. New York, NY: Springer-Verlag. Retrieved from https://ggplot2.tidyverse.org

Wiens, F., Zitzmann, A., Lachance, M.-A., Yegles, M., Pragst, F., Wurst, F. M., et al. (2009). Chronic intake of fermented floral nectar by wild treeshrews. Proceedings of the National Academy of Sciences USA, 105(30),10426-10431. doi:10.1073/pnas.0801628105

Wiens, J. J., & Donogue, M. J. (2004). Historical biogeography, ecology and species richness. Trends in Ecology & Evolution, 19, 639-644.

Willig, M. R., Kaufman, D. M., & Stevens, R. D. (2003). Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annual Review of Ecology, Evolution, and Systematics, 34, 273-309.

Wilson, M., & Lindow, S. E. (1993). Interactions between the biological control agent Pseudomonas fluorescens A506 and Erwinia amylovora in pear blossoms. Phytopathology, 83(1), 117-123. doi:10.1094/Phyto-83-117

Yuen, L. (2016). ‘Ōhi‘a-Lehua Legend. Retrieved on May 18, from https://keolamagazine.com/culture/ohia-lehua-legend/

Zemenick, A. T., Rosenheim, J. A., & Vannette, R. L. (2018). Legitimate visitors and nectar robbers of Aquilegia formosa have different effects on nectar bacterial communities. Ecosphere, 9(10), e02459. doi:10.1002/ecs2.2459

Zhu, Z., Zhang, S., Liu, H., et al. (2012). A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nature Communications, 3, 1112.

Zimmerman, N. B., & Vitousek, P. M. (2012). Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape. Proceedings of the National Academy of Sciences USA, 109(32), 13022-13027.

 

Download scriptie (2.48 MB)
Universiteit of Hogeschool
KU Leuven
Thesis jaar
2019
Promotor(en)
Bart Lievens
Kernwoorden