Bone tissue engineering: different gene expression levels between tibial, maxillary and mandibular-derived periosteal cells

Lisanne Groeneveldt
Bone tissue engineering is een veelbelovend alternatief voor chirurgische ingrepen waarvoor nu nog bot wordt getransplanteerd. Naast het type cel, bepaalt ook de origine van de donorcellen hoe goed ze in staat zijn om bot te vormen. Dit kan worden verklaard doordat de activiteit van relevante genen voor botvorming sterk afhangt van zowel het celtype als de celorigine.

Bone tissue engineering: niet enkel het type cel, ook de plek van afkomst bepaalt wat de cellen doen

Stel dat u een ingreep aan het bot van uw gezicht moet ondergaan vanwege een aangeboren afwijking, een weggehaalde tumor of een trauma. De chirurg bespreekt de ingreep met u: de postoperatieve pijn aan uw gezicht zal vervelend zijn, maar de meeste last zult u ondervinden ter hoogte van uw heup, omdat het nodig is bot uit de heupkam te gebruiken. U kwam enkel met een probleem ter hoogte van uw aangezicht bij de chirurg, maar u vertrekt met een extra probleem in een heel ander deel van uw lichaam. Zou het niet fantastisch zijn als we bot niet van een andere plek van het lichaam hoeven te halen, maar ter plekke kunnen laten groeien? Naar deze methode, bone tissue engineering, wordt veel onderzoek gedaan.

De noodzaak om donorbot te gebruiken bij reconstructieve operaties brengt twee problemen met zich mee. Ten eerste leidt het verkrijgen van donorbot tot forse last in een bijkomend operatiegebied. Hierbij kunnen ook complicaties zoals een bloeding, infectie of zelfs een fractuur optreden. Ten tweede is de hoeveelheid beschikbaar bot via een dergelijke ingreep ook nog eens gelimiteerd. Daarbij is het de vraag of dit bot goed gaat werken. Voor deze problemen biedt bone tissue engineering, naar het Nederlands vertaald als bot weefselbouwkunde, een veelbelovende alternatieve behandelingsoptie. 

Bij bone tissue engineering gebruiken we een combinatie van donorcellen met biomaterialen en chemische stimuli om nieuw weefsel te vormen in het laboratorium. Als we deze techniek voldoende kunnen optimaliseren, kunnen we van een klein stukje donorweefsel heel veel cellen laten groeien. Vervolgens kunnen we deze voorbereiden als botvormende cellen en ze aansluitend transplanteren naar de plaats waar ze nodig zijn. Het verkrijgen van de donorcellen heeft nauwelijks impact op de patiënt, zeker in vergelijking met het transplanteren van een stuk bot. Daarbij is het geproduceerde weefsel ook nog eens beter in de gewenste vorm en grootte te maken met de gewenste eigenschappen qua sterkte en structuur.

cellen1

Voor het optimaliseren van bone tissue engineering is het belangrijk om goed te begrijpen welke donorcellen de beste resultaten geven. De thesis ‘’Bone tissue engineering: Different gene expression levels between tibial, maxillary and mandibular-derived periosteal cells’’ richt zich op precies dit aspect. De belangrijkste veronderstelling hierbij is dat de cellen die verantwoordelijk zijn voor het vormen van botweefsel op een specifieke plaats in het menselijk lichaam, ook het meest geschikt zijn om gebruikt te worden als donorcellen op diezelfde plaats.

Niet elke botvormende cel is hetzelfde.

Er zijn twee natuurlijke situaties waarin het menselijk lichaam botweefsel produceert, namelijk tijdens de embryonale ontwikkeling en bij het herstellen van een breuk. Bij het herstellen van een breuk zijn de cellen in het membraan rondom het bot (het periost) van groot belang. Daarom zijn periostcellen goede donorcellen voor bone tissue engineering. Echter, niet al het botweefsel is hetzelfde. Zo is het bot van de onderkaak bijvoorbeeld heel compact en dat van de bovenkaak heel goed doorbloed. In eerder werk van de kandidate en in deze thesis laten we zien dat ook niet alle periostcellen hetzelfde zijn; hun gedrag is afhankelijk van de plek in het lichaam waar deze cellen worden weggenomen. We hebben hiervoor het gedrag van de periostcellen uit de bovenkaak (maxilla), de onderkaak (mandibula) en het onderbeen (tibia) met elkaar vergeleken. Uit eerder onderzoek van de kandidate is reeds gebleken dat de cellen een verschillende neiging tonen tot botvorming in het laboratorium zelf, maar ook na implantatie in muizen.

cellen2

Om te begrijpen waarom de periostcellen van verschillende locaties andere resultaten geven, kunnen we kijken naar de activiteit van de genen in deze cellen. We hebben aangetoond dat veel genen een verschil in activiteit vertonen tussen deze soorten periostcellen. Vervolgens hebben we gekeken naar welke genen dit betrof. De belangrijkste verschillen werden opgemerkt in de groep genen waarvan bekend is dat ze belangrijk zijn bij de embryonale ontwikkeling. Dit zijn de zogenoemde patroonvormende genen, die ervoor zorgen dat bijvoorbeeld armen en benen op de juiste plekken ontstaan. Deze genen zijn oorspronkelijk ontdekt in het fruitvliegje, de zogenaamde homeobox (HOX) en distal-less homeobox (DLX) genen. 

Het feit dat deze genen nog steeds actief zijn in het periost van 16-30 jarige mensen is een markante ontdekking. Genen die alleen van belang zijn in de embryonale ontwikkeling worden op stil gezet door andere regulerende genen. Dat is bij deze patroonvormende genen blijkbaar niet het geval. Daaruit kunnen we concluderen dat deze genen nog een andere functie moeten hebben. Hierbij kan gedacht worden aan het herstel van botbreuken, omdat dit het andere natuurlijke proces is in het menselijk lichaam waarbij bot wordt gevormd. Deze hypothese wordt ondersteund door het feit dat cellen die HOXA11 activiteit vertonen, leiden tot botvormende cellen na optreden van een breuk. Het is echter nog niet bekend wat de precieze functie is van deze genen bij adolescenten en volwassenen. Verder onderzoek, onder andere via een doctoraat van de kandidate, zal dit moeten uitwijzen.

cellen 3

Er waren ook andere genen waarvan de mate van activiteit in de periostale cellen van de bovenkaak, onderkaak en het onderbeen verschilden. Dit betrof onder meer veel genen die verantwoordelijk zijn voor het vormen van botweefsels. Daaruit kan worden afgeleid dat het al dan niet actief zijn van deze genen bepalend is voor de kwaliteit van het botvormingsproces. Aangezien veel van de gevonden genen die in verschillende mate actief zijn tussen de drie soorten periostcellen een effect hebben op de botvorming, is deze kennis zeer waardevol voor het optimaliseren van bone tissue engineering.

Het onderzoek van de thesis ‘’Bone tissue engineering: Different gene expression levels between tibial, maxillary and mandibular-derived periosteal cells’’ beantwoordt aldus belangrijke vragen. De uitkomsten hebben gevolgen voor zowel klinische toepassing als fundamentele wetenschappelijke kennis die deze vooruitgang mogelijk maakt. Tegelijkertijd roepen de resultaten van deze thesis vragen op die het onderwerp zijn van verder onderzoek. Met deze thesis hebben we een belangrijke stap gezet richting het moment waarop de chirurg bone tissue engineering in de praktijk kan toepassen.

Bibliografie

1. Neovius, E., and Engstrand, T. (2010). Craniofacial reconstruction with bone and biomaterials: review over the last 11 years. J Plast Reconstr Aesthet Surg 63, 1615-1623.
2. Kukreja, S., Raza, H., and Agrawal, A. (2017). Iliac Crest Bone Graft Harvesting: Prospective Study Of Various Techniques And Donor Site Morbidity.
3. Graham, S.M., Leonidou, A., Aslam-Pervez, N., Hamza, A., Panteliadis, P., Heliotis, M., Mantalaris, A., and Tsiridis, E. (2010). Biological therapy of bone defects: the immunology of bone allo-transplantation. Expert Opin Biol Ther 10, 885-901.
4. An, H.S., Lynch, K., and Toth, J. (1995). Prospective comparison of autograft vs. allograft for adult posterolateral lumbar spine fusion: differences among freeze-dried, frozen, and mixed grafts. J Spinal Disord 8, 131-135.
5. Thalgott, J.S., Fogarty, M.E., Giuffre, J.M., Christenson, S.D., Epstein, A.K., and Aprill, C. (2009). A prospective, randomized, blinded, single-site study to evaluate the clinical and radiographic differences between frozen and freeze-dried allograft when used as part of a circumferential anterior lumbar interbody fusion procedure. Spine (Phila Pa 1976) 34, 1251-1256.
6. Shibuya, N., and Jupiter, D.C. (2015). Bone graft substitute: allograft and xenograft. Clin Podiatr Med Surg 32, 21-34.
7. Sorger, J.I., Hornicek, F.J., Zavatta, M., Menzner, J.P., Gebhardt, M.C., Tomford, W.W., and Mankin, H.J. (2001). Allograft fractures revisited. Clin Orthop Relat Res, 66-74.
8. Finkemeier, C.G. (2002). Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am 84-A, 454-464.
9. Bannister, S.R., and Powell, C.A. (2008). Foreign body reaction to anorganic bovine bone and autogenous bone with platelet-rich plasma in guided bone regeneration. J Periodontol 79, 1116-1120.
10. Rohner, D., Hailemariam, S., and Hammer, B. (2013). Le Fort I osteotomies using Bio-Oss® collagen to promote bony union: a prospective clinical split-mouth study. Int J Oral Maxillofac Surg 42, 585-591.
11. Huggins, R.J., and Mendelson, B.C. (2017). Biologic Behavior of Hydroxyapatite Used in Facial Augmentation. Aesthetic Plast Surg 41, 179-184.
12. Wiggins, A., Austerberry, R., Morrison, D., Ho, K.M., and Honeybul, S. (2013). Cranioplasty with custom-made titanium plates--14 years experience. Neurosurgery 72, 248-256; discussion 256.
13. Leijten, J., and Khademhosseini, A. (2016). From Nano to Macro: Multiscale Materials for Improved Stem Cell Culturing and Analysis. Cell Stem Cell 18, 20-24.
14. Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., and Marshak, D.R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284, 143-147.
15. Janeczek Portalska, K., Leferink, A., Groen, N., Fernandes, H., Moroni, L., van Blitterswijk, C., and de Boer, J. (2012). Endothelial differentiation of mesenchymal stromal cells. PLoS One 7, e46842.
16. Williams, L.A., Davis-Dusenbery, B.N., and Eggan, K.C. (2012). SnapShot: directed differentiation of pluripotent stem cells. Cell 149, 1174-1174.e1171.
17. Groeneveldt, L.C., Knuth, C., Witte-Bouma, J., O'Brien, F.J., Wolvius, E.B., and Farrell, E. (2014). Enamel Matrix Derivative has No Effect on the Chondrogenic Differentiation of Mesenchymal Stem Cells. Front Bioeng Biotechnol 2, 29.
18. Chim, H., Schantz, J.T., and Gosain, A.K. (2008). Beyond the vernacular: new sources of cells for bone tissue engineering. Plast Reconstr Surg 122, 755-764.
23
19. Trautvetter, W., Kaps, C., Schmelzeisen, R., Sauerbier, S., and Sittinger, M. (2011). Tissue-engineered polymer-based periosteal bone grafts for maxillary sinus augmentation: five-year clinical results. J Oral Maxillofac Surg 69, 2753-2762.
20. Schimming, R., and Schmelzeisen, R. (2004). Tissue-engineered bone for maxillary sinus augmentation. J Oral Maxillofac Surg 62, 724-729.
21. Voss, P., Sauerbier, S., Wiedmann-Al-Ahmad, M., Zizelmann, C., Stricker, A., Schmelzeisen, R., and Gutwald, R. (2010). Bone regeneration in sinus lifts: comparing tissue-engineered bone and iliac bone. Br J Oral Maxillofac Surg 48, 121-126.
22. Bolander, J., Chai, Y.C., Geris, L., Schrooten, J., Lambrechts, D., Roberts, S.J., and Luyten, F.P. (2016). Early BMP, Wnt and Ca(2+)/PKC pathway activation predicts the bone forming capacity of periosteal cells in combination with calcium phosphates. Biomaterials 86, 106-118.
23. Bolander, J., Ji, W., Leijten, J., Teixeira, L.M., Bloemen, V., Lambrechts, D., Chaklader, M., and Luyten, F.P. (2017). Healing of a Large Long-Bone Defect through Serum-Free In Vitro Priming of Human Periosteum-Derived Cells. Stem Cell Reports 8, 758-772.
24. Venkatesan, J., Bhatnagar, I., Manivasagan, P., Kang, K.H., and Kim, S.K. (2015). Alginate composites for bone tissue engineering: a review. Int J Biol Macromol 72, 269-281.
25. Diomede, F., Gugliandolo, A., Scionti, D., Merciaro, I., Cavalcanti, M.F., Mazzon, E., and Trubiani, O. (2018). Biotherapeutic Effect of Gingival Stem Cells Conditioned Medium in Bone Tissue Restoration. Int J Mol Sci 19.
26. Wang, F., Yu, M., Yan, X., Wen, Y., Zeng, Q., Yue, W., Yang, P., and Pei, X. (2011). Gingiva-derived mesenchymal stem cell-mediated therapeutic approach for bone tissue regeneration. Stem Cells Dev 20, 2093-2102.
27. Shadjou, N., and Hasanzadeh, M. (2015). Bone tissue engineering using silica-based mesoporous nanobiomaterials:Recent progress. Mater Sci Eng C Mater Biol Appl 55, 401-409.
28. Shadjou, N., and Hasanzadeh, M. (2015). Silica-based mesoporous nanobiomaterials as promoter of bone regeneration process. J Biomed Mater Res A 103, 3703-3716.
29. Mata, A., Azevedo, H.S., Botto, L., Gavara, N., and Su, L. (2017). New Bioengineering Breakthroughs and Enabling Tools in Regenerative Medicine. Curr Stem Cell Rep 3, 83-97.
30. Park, J., Gebhardt, M., Golovchenko, S., Perez-Branguli, F., Hattori, T., Hartmann, C., Zhou, X., deCrombrugghe, B., Stock, M., Schneider, H., et al. (2015). Dual pathways to endochondral osteoblasts: a novel chondrocyte-derived osteoprogenitor cell identified in hypertrophic cartilage. Biol Open 4, 608-621.
31. Knothe Tate, M.L., Falls, T.D., McBride, S.H., Atit, R., and Knothe, U.R. (2008). Mechanical modulation of osteochondroprogenitor cell fate. Int J Biochem Cell Biol 40, 2720-2738.
32. Farrell, E., van der Jagt, O.P., Koevoet, W., Kops, N., van Manen, C.J., Hellingman, C.A., Jahr, H., O'Brien, F.J., Verhaar, J.A., Weinans, H., et al. (2009). Chondrogenic priming of human bone marrow stromal cells: a better route to bone repair? Tissue Eng Part C Methods 15, 285-295.
33. Farrell, E., Both, S.K., Odörfer, K.I., Koevoet, W., Kops, N., O'Brien, F.J., Baatenburg de Jong, R.J., Verhaar, J.A., Cuijpers, V., Jansen, J., et al. (2011). In-vivo generation of bone via endochondral ossification by in-vitro chondrogenic priming of adult human and rat mesenchymal stem cells. BMC Musculoskelet Disord 12, 31.
34. Lenas, P., Moos, M., and Luyten, F.P. (2009). Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part I: from three-dimensional cell growth to biomimetics of in vivo development. Tissue Eng Part B Rev 15, 381-394.
35. Lenas, P., Moos, M., and Luyten, F.P. (2009). Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part II: from genes to networks: tissue engineering from the viewpoint of systems biology and network science. Tissue Eng Part B Rev 15, 395-422.
24
36. Ingber, D.E., and Levin, M. (2007). What lies at the interface of regenerative medicine and developmental biology? Development 134, 2541-2547.
37. Lambrechts, T., Sonnaert, M., Schrooten, J., Luyten, F.P., Aerts, J.M., and Papantoniou, I. (2016). Large-Scale Mesenchymal Stem/Stromal Cell Expansion: A Visualization Tool for Bioprocess Comparison. Tissue Eng Part B Rev 22, 485-498.
38. Ravichandran, A., Wen, F., Lim, J., Chong, M.S.K., Chan, J.K.Y., and Teoh, S.H. (2018). Biomimetic fetal rotation bioreactor for engineering bone tissues-Effect of cyclic strains on upregulation of osteogenic gene expression. J Tissue Eng Regen Med.
39. Colnot, C., Zhang, X., and Knothe Tate, M.L. (2012). Current insights on the regenerative potential of the periosteum: molecular, cellular, and endogenous engineering approaches. J Orthop Res 30, 1869-1878.
40. Brighton, C.T., and Hunt, R.M. (1986). Histochemical localization of calcium in the fracture callus with potassium pyroantimonate. Possible role of chondrocyte mitochondrial calcium in callus calcification. J Bone Joint Surg Am 68, 703-715.
41. Zhang, X., Xie, C., Lin, A.S., Ito, H., Awad, H., Lieberman, J.R., Rubery, P.T., Schwarz, E.M., O'Keefe, R.J., and Guldberg, R.E. (2005). Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering. J Bone Miner Res 20, 2124-2137.
42. De Bari, C., Dell'Accio, F., Vanlauwe, J., Eyckmans, J., Khan, I.M., Archer, C.W., Jones, E.A., McGonagle, D., Mitsiadis, T.A., Pitzalis, C., et al. (2006). Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis. Arthritis Rheum 54, 1209-1221.
43. Nakahara, H., Goldberg, V.M., and Caplan, A.I. (1991). Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo. J Orthop Res 9, 465-476.
44. van Gastel, N., Torrekens, S., Roberts, S.J., Moermans, K., Schrooten, J., Carmeliet, P., Luttun, A., Luyten, F.P., and Carmeliet, G. (2012). Engineering vascularized bone: osteogenic and proangiogenic potential of murine periosteal cells. Stem Cells 30, 2460-2471.
45. Ferguson, C., Alpern, E., Miclau, T., and Helms, J.A. (1999). Does adult fracture repair recapitulate embryonic skeletal formation? Mech Dev 87, 57-66.
46. Gerstenfeld, L.C., Cullinane, D.M., Barnes, G.L., Graves, D.T., and Einhorn, T.A. (2003). Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 88, 873-884.
47. Hadjiargyrou, M., Lombardo, F., Zhao, S., Ahrens, W., Joo, J., Ahn, H., Jurman, M., White, D.W., and Rubin, C.T. (2002). Transcriptional profiling of bone regeneration. Insight into the molecular complexity of wound repair. J Biol Chem 277, 30177-30182.
48. Chai, Y.C., Roberts, S.J., Desmet, E., Kerckhofs, G., van Gastel, N., Geris, L., Carmeliet, G., Schrooten, J., and Luyten, F.P. (2012). Mechanisms of ectopic bone formation by human osteoprogenitor cells on CaP biomaterial carriers. Biomaterials 33, 3127-3142.
49. Kerckhofs, G., Chai, Y.C., Luyten, F.P., and Geris, L. (2016). Combining microCT-based characterization with empirical modelling as a robust screening approach for the design of optimized CaP-containing scaffolds for progenitor cell-mediated bone formation. Acta Biomater 35, 330-340.
50. Leijten, J., Chai, Y.C., Papantoniou, I., Geris, L., Schrooten, J., and Luyten, F.P. (2015). Cell based advanced therapeutic medicinal products for bone repair: Keep it simple? Adv Drug Deliv Rev 84, 30-44.
51. Roberts, S.J., Geris, L., Kerckhofs, G., Desmet, E., Schrooten, J., and Luyten, F.P. (2011). The combined bone forming capacity of human periosteal derived cells and calcium phosphates. Biomaterials 32, 4393-4405.
52. Roberts, S.J., van Gastel, N., Carmeliet, G., and Luyten, F.P. (2015). Uncovering the periosteum for skeletal regeneration: the stem cell that lies beneath. Bone 70, 10-18.
25
53. van Gastel, N., Stegen, S., Stockmans, I., Moermans, K., Schrooten, J., Graf, D., Luyten, F.P., and Carmeliet, G. (2014). Expansion of murine periosteal progenitor cells with fibroblast growth factor 2 reveals an intrinsic endochondral ossification program mediated by bone morphogenetic protein 2. Stem Cells 32, 2407-2418.
54. Meulemans, D., and Bronner-Fraser, M. (2004). Gene-regulatory interactions in neural crest evolution and development. Dev Cell 7, 291-299.
55. Villanueva, S., Glavic, A., Ruiz, P., and Mayor, R. (2002). Posteriorization by FGF, Wnt, and retinoic acid is required for neural crest induction. Dev Biol 241, 289-301.
56. Tribulo, C., Aybar, M.J., Nguyen, V.H., Mullins, M.C., and Mayor, R. (2003). Regulation of Msx genes by a Bmp gradient is essential for neural crest specification. Development 130, 6441-6452.
57. Green, S.A., Simoes-Costa, M., and Bronner, M.E. (2015). Evolution of vertebrates as viewed from the crest. Nature 520, 474-482.
58. Aghaloo, T.L., Chaichanasakul, T., Bezouglaia, O., Kang, B., Franco, R., Dry, S.M., Atti, E., and Tetradis, S. (2010). Osteogenic potential of mandibular vs. long-bone marrow stromal cells. J Dent Res 89, 1293-1298.
59. Park, H.S., Lee, Y.J., Jeong, S.H., and Kwon, T.G. (2008). Density of the alveolar and basal bones of the maxilla and the mandible. Am J Orthod Dentofacial Orthop 133, 30-37.
60. Lindhe, J., Bressan, E., Cecchinato, D., Corrá, E., Toia, M., and Liljenberg, B. (2013). Bone tissue in different parts of the edentulous maxilla and mandible. Clin Oral Implants Res 24, 372-377.
61. Devlin, H., Horner, K., and Ledgerton, D. (1998). A comparison of maxillary and mandibular bone mineral densities. J Prosthet Dent 79, 323-327.
62. Chugh, T., Ganeshkar, S.V., Revankar, A.V., and Jain, A.K. (2013). Quantitative assessment of interradicular bone density in the maxilla and mandible: implications in clinical orthodontics. Prog Orthod 14, 38.
63. Groeneveldt, L.C., Maréchal, M., Luyten, F.P., and Huylebroeck, D. (2017). Bone tissue engineering: mapping and testing differences between periosteal cells from craniofacial and long bones. In Molecular Medicine. (Rotterdam: Erasmus University).
64. Alge, D.L., Zhou, D., Adams, L.L., Wyss, B.K., Shadday, M.D., Woods, E.J., Gabriel Chu, T.M., and Goebel, W.S. (2010). Donor-matched comparison of dental pulp stem cells and bone marrow-derived mesenchymal stem cells in a rat model. J Tissue Eng Regen Med 4, 73-81.
65. Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408.
66. Raines, A.M., Magella, B., Adam, M., and Potter, S.S. (2015). Key pathways regulated by HoxA9,10,11/HoxD9,10,11 during limb development. BMC Dev Biol 15, 28.
67. Liatsikos, S.A., Grimbizis, G.F., Georgiou, I., Papadopoulos, N., Lazaros, L., Bontis, J.N., and Tarlatzis, B.C. (2010). HOX A10 and HOX A11 mutation scan in congenital malformations of the female genital tract. Reprod Biomed Online 21, 126-132.
68. Acampora, D., D'Esposito, M., Faiella, A., Pannese, M., Migliaccio, E., Morelli, F., Stornaiuolo, A., Nigro, V., Simeone, A., and Boncinelli, E. (1989). The human HOX gene family. Nucleic Acids Res 17, 10385-10402.
69. Infante, C.R., Park, S., Mihala, A.G., Kingsley, D.M., and Menke, D.B. (2013). Pitx1 broadly associates with limb enhancers and is enriched on hindlimb cis-regulatory elements. Dev Biol 374, 234-244.
70. Andersson, O., Reissmann, E., and Ibáñez, C.F. (2006). Growth differentiation factor 11 signals through the transforming growth factor-beta receptor ALK5 to regionalize the anterior-posterior axis. EMBO Rep 7, 831-837.
71. Hassan, M.Q., Saini, S., Gordon, J.A., van Wijnen, A.J., Montecino, M., Stein, J.L., Stein, G.S., and Lian, J.B. (2009). Molecular switches involving homeodomain proteins, HOXA10 and RUNX2 regulate osteoblastogenesis. Cells Tissues Organs 189, 122-125.
26
72. Lacombe, J., Hanley, O., Jung, H., Philippidou, P., Surmeli, G., Grinstein, J., and Dasen, J.S. (2013). Genetic and functional modularity of Hox activities in the specification of limb-innervating motor neurons. PLoS Genet 9, e1003184.
73. Min, H., Lee, J.Y., and Kim, M.H. (2012). Structural dynamics and epigenetic modifications of Hoxc loci along the anteroposterior body axis in developing mouse embryos. Int J Biol Sci 8, 802-810.
74. Min, W., Woo, H.J., Lee, C.S., Lee, K.K., Yoon, W.K., Park, H.W., and Kim, M.H. (1998). 307-bp fragment in HOXA7 upstream sequence is sufficient for anterior boundary formation. DNA Cell Biol 17, 293-299.
75. Woo, C.J., and Kingston, R.E. (2007). HOTAIR lifts noncoding RNAs to new levels. Cell 129, 1257-1259.
76. Mimura, S., Suga, M., Okada, K., Kinehara, M., Nikawa, H., and Furue, M.K. (2016). Bone morphogenetic protein 4 promotes craniofacial neural crest induction from human pluripotent stem cells. Int J Dev Biol 60, 21-28.
77. Sabóia, T.M., Reis, M.F., Martins, Â., Romanos, H.F., Tannure, P.N., Granjeiro, J.M., Vieira, A.R., Antunes, L.S., Küchler, E.C., and Costa, M.C. (2015). DLX1 and MMP3 contribute to oral clefts with and without positive family history of cancer. Arch Oral Biol 60, 223-228.
78. Heo, J.S., Lee, S.G., and Kim, H.O. (2017). Distal-less homeobox 5 is a master regulator of the osteogenesis of human mesenchymal stem cells. Int J Mol Med 40, 1486-1494.
79. Li, H., Marijanovic, I., Kronenberg, M.S., Erceg, I., Stover, M.L., Velonis, D., Mina, M., Heinrich, J.G., Harris, S.E., Upholt, W.B., et al. (2008). Expression and function of Dlx genes in the osteoblast lineage. Dev Biol 316, 458-470.
80. Robledo, R.F., Rajan, L., Li, X., and Lufkin, T. (2002). The Dlx5 and Dlx6 homeobox genes are essential for craniofacial, axial, and appendicular skeletal development. Genes Dev 16, 1089-1101.
81. Feng, J., Bi, C., Clark, B.S., Mady, R., Shah, P., and Kohtz, J.D. (2006). The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev 20, 1470-1484.
82. Woo, J., Miletich, I., Kim, B.M., Sharpe, P.T., and Shivdasani, R.A. (2011). Barx1-mediated inhibition of Wnt signaling in the mouse thoracic foregut controls tracheo-esophageal septation and epithelial differentiation. PLoS One 6, e22493.
83. Cesario, J.M., Landin Malt, A., Deacon, L.J., Sandberg, M., Vogt, D., Tang, Z., Zhao, Y., Brown, S., Rubenstein, J.L., and Jeong, J. (2015). Lhx6 and Lhx8 promote palate development through negative regulation of a cell cycle inhibitor gene, p57Kip2. Hum Mol Genet 24, 5024-5039.
84. Feng, J., Jing, J., Li, J., Zhao, H., Punj, V., Zhang, T., Xu, J., and Chai, Y. (2017). BMP signaling orchestrates a transcriptional network to control the fate of mesenchymal stem cells in mice. Development 144, 2560-2569.
85. Zhang, J., Hagopian-Donaldson, S., Serbedzija, G., Elsemore, J., Plehn-Dujowich, D., McMahon, A.P., Flavell, R.A., and Williams, T. (1996). Neural tube, skeletal and body wall defects in mice lacking transcription factor AP-2. Nature 381, 238-241.
86. Schorle, H., Meier, P., Buchert, M., Jaenisch, R., and Mitchell, P.J. (1996). Transcription factor AP-2 essential for cranial closure and craniofacial development. Nature 381, 235-238.
87. Pohl, E., Aykut, A., Beleggia, F., Karaca, E., Durmaz, B., Keupp, K., Arslan, E., Palamar, M., Onay, M.P., Yigit, G., et al. (2013). A hypofunctional PAX1 mutation causes autosomal recessively inherited otofaciocervical syndrome. Hum Genet 132, 1311-1320.
88. Paganini, I., Sestini, R., Capone, G.L., Putignano, A.L., Contini, E., Giotti, I., Gensini, F., Marozza, A., Barilaro, A., Porfirio, B., et al. (2017). A novel PAX1 null homozygous mutation in autosomal recessive otofaciocervical syndrome associated with severe combined immunodeficiency. Clin Genet 92, 664-668.
27
89. Takimoto, A., Mohri, H., Kokubu, C., Hiraki, Y., and Shukunami, C. (2013). Pax1 acts as a negative regulator of chondrocyte maturation. Exp Cell Res 319, 3128-3139.
90. Ylönen, R., Kyrönlahti, T., Sund, M., Ilves, M., Lehenkari, P., Tuukkanen, J., and Pihlajaniemi, T. (2005). Type XIII collagen strongly affects bone formation in transgenic mice. J Bone Miner Res 20, 1381-1393.
91. Wang, Y., Liu, Y., Zhang, M., Lv, L., Zhang, X., Zhang, P., and Zhou, Y. (2018). LRRC15 promotes osteogenic differentiation of mesenchymal stem cells by modulating p65 cytoplasmic/nuclear translocation. Stem Cell Res Ther 9, 65.
92. Shigeri, Y., Shimamoto, K., Yasuda-Kamatani, Y., Seal, R.P., Yumoto, N., Nakajima, T., and Amara, S.G. (2001). Effects of threo-beta-hydroxyaspartate derivatives on excitatory amino acid transporters (EAAT4 and EAAT5). J Neurochem 79, 297-302.
93. Lee, C.H., and MacKinnon, R. (2017). Structures of the Human HCN1 Hyperpolarization-Activated Channel. Cell 168, 111-120.e111.
94. Palmer, M.J., Taschenberger, H., Hull, C., Tremere, L., and von Gersdorff, H. (2003). Synaptic activation of presynaptic glutamate transporter currents in nerve terminals. J Neurosci 23, 4831-4841.
95. Hong, G.S., Lee, B., Wee, J., Chun, H., Kim, H., Jung, J., Cha, J.Y., Riew, T.R., Kim, G.H., Kim, I.B., et al. (2016). Tentonin 3/TMEM150c Confers Distinct Mechanosensitive Currents in Dorsal-Root Ganglion Neurons with Proprioceptive Function. Neuron 91, 107-118.
96. Hong, G.S., Lee, B., and Oh, U. (2017). Evidence for Mechanosensitive Channel Activity of Tentonin 3/TMEM150C. Neuron 94, 271-273.e272.
97. Augustyns, K., Bal, G., Thonus, G., Belyaev, A., Zhang, X.M., Bollaert, W., Lambeir, A.M., Durinx, C., Goossens, F., and Haemers, A. (1999). The unique properties of dipeptidyl-peptidase IV (DPP IV / CD26) and the therapeutic potential of DPP IV inhibitors. Curr Med Chem 6, 311-327.
98. Kumagai, Y., Konishi, K., Gomi, T., Yagishita, H., Yajima, A., and Yoshikawa, M. (2000). Enzymatic properties of dipeptidyl aminopeptidase IV produced by the periodontal pathogen Porphyromonas gingivalis and its participation in virulence. Infect Immun 68, 716-724.
99. Enssle, K.H., and Fleischer, B. (1990). Absence of Epstein-Barr virus-specific, HLA class II-restricted CD4+ cytotoxic T lymphocytes in infectious mononucleosis. Clin Exp Immunol 79, 409-415.
100. Davoodi, J., Kelly, J., Gendron, N.H., and MacKenzie, A.E. (2007). The Simpson-Golabi-Behmel syndrome causative glypican-3, binds to and inhibits the dipeptidyl peptidase activity of CD26. Proteomics 7, 2300-2310.
101. Paine-Saunders, S., Viviano, B.L., Zupicich, J., Skarnes, W.C., and Saunders, S. (2000). glypican-3 controls cellular responses to Bmp4 in limb patterning and skeletal development. Dev Biol 225, 179-187.
102. Shimojima, K., Ondo, Y., Nishi, E., Mizuno, S., Ito, M., Ioi, A., Shimizu, M., Sato, M., Inoue, M., Okamoto, N., et al. (2016). Loss-of-function mutations and global rearrangements in. Hum Genome Var 3, 16033.
103. Yoshimoto, T., Furuhata, M., Kamiya, S., Hisada, M., Miyaji, H., Magami, Y., Yamamoto, K., Fujiwara, H., and Mizuguchi, J. (2003). Positive modulation of IL-12 signaling by sphingosine kinase 2 associating with the IL-12 receptor beta 1 cytoplasmic region. J Immunol 171, 1352-1359.
104. Dogra, C., Srivastava, D.S., and Kumar, A. (2008). Protein-DNA array-based identification of transcription factor activities differentially regulated in skeletal muscle of normal and dystrophin-deficient mdx mice. Mol Cell Biochem 312, 17-24.
105. Hagberg, C.E., Falkevall, A., Wang, X., Larsson, E., Huusko, J., Nilsson, I., van Meeteren, L.A., Samen, E., Lu, L., Vanwildemeersch, M., et al. (2010). Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 464, 917-921.
28
106. Bachvarov, D.R., Hess, J.F., Menke, J.G., Larrivée, J.F., and Marceau, F. (1996). Structure and genomic organization of the human B1 receptor gene for kinins (BDKRB1). Genomics 33, 374-381.
107. Gu, Y., Shen, Y., Gibbs, R.A., and Nelson, D.L. (1996). Identification of FMR2, a novel gene associated with the FRAXE CCG repeat and CpG island. Nat Genet 13, 109-113.
108. Tarbé, N.G., Rio, M.C., and Weidle, U.H. (2004). SMAGP, a new small trans-membrane glycoprotein altered in cancer. Oncogene 23, 3395-3403.
109. Thériault, S., Gaudreault, N., Lamontagne, M., Rosa, M., Boulanger, M.C., Messika-Zeitoun, D., Clavel, M.A., Capoulade, R., Dagenais, F., Pibarot, P., et al. (2018). A transcriptome-wide association study identifies PALMD as a susceptibility gene for calcific aortic valve stenosis. Nat Commun 9, 988.
110. Dashzeveg, N., Taira, N., Lu, Z.G., Kimura, J., and Yoshida, K. (2014). Palmdelphin, a novel target of p53 with Ser46 phosphorylation, controls cell death in response to DNA damage. Cell Death Dis 5, e1221.
111. Robbins, M.J., Michalovich, D., Hill, J., Calver, A.R., Medhurst, A.D., Gloger, I., Sims, M., Middlemiss, D.N., and Pangalos, M.N. (2000). Molecular cloning and characterization of two novel retinoic acid-inducible orphan G-protein-coupled receptors (GPRC5B and GPRC5C). Genomics 67, 8-18.
112. Sacchetti, B., Funari, A., Remoli, C., Giannicola, G., Kogler, G., Liedtke, S., Cossu, G., Serafini, M., Sampaolesi, M., Tagliafico, E., et al. (2016). No Identical "Mesenchymal Stem Cells" at Different Times and Sites: Human Committed Progenitors of Distinct Origin and Differentiation Potential Are Incorporated as Adventitial Cells in Microvessels. Stem Cell Reports 6, 897-913.
113. Gersch, R.P., Lombardo, F., McGovern, S.C., and Hadjiargyrou, M. (2005). Reactivation of Hox gene expression during bone regeneration. J Orthop Res 23, 882-890.
114. Schwartz, Y.B., and Pirrotta, V. (2007). Polycomb silencing mechanisms and the management of genomic programmes. Nat Rev Genet 8, 9-22.
115. Schmähling, S., Meiler, A., Lee, Y., Mohammed, A., Finkl, K., Tauscher, K., Israel, L., Wirth, M., Philippou-Massier, J., Blum, H., et al. (2018). Regulation and function of H3K36 di-methylation by the trithorax-group protein complex AMC. Development 145.
116. Kassis, J.A., Kennison, J.A., and Tamkun, J.W. (2017). Polycomb and Trithorax Group Genes in. Genetics 206, 1699-1725.
117. Erokhin, M., Elizar'ev, P., Parshikov, A., Schedl, P., Georgiev, P., and Chetverina, D. (2015). Transcriptional read-through is not sufficient to induce an epigenetic switch in the silencing activity of Polycomb response elements. Proc Natl Acad Sci U S A 112, 14930-14935.
118. Coleman, R.T., and Struhl, G. (2017). Causal role for inheritance of H3K27me3 in maintaining the OFF state of a. Science 356.
119. Pineault, K.M., Swinehart, I.T., Garthus, K.N., Ho, E., Yao, Q., Schipani, E., Kozloff, K.M., and Wellik, D.M. (2015). Hox11 genes regulate postnatal longitudinal bone growth and growth plate proliferation. Biol Open 4, 1538-1548.
120. Böhmer, C., Rauhut, O.W., and Wörheide, G. (2015). New insights into the vertebral Hox code of archosaurs. Evol Dev 17, 258-269.
121. Li, G., Han, N., Yang, H., Wang, L., Lin, X., Diao, S., Du, J., Dong, R., Wang, S., and Fan, Z. (2018). Homeobox C10 inhibits the osteogenic differentiation potential of mesenchymal stem cells. Connect Tissue Res 59, 201-211.
122. Elsafadi, M., Manikandan, M., Atteya, M., Hashmi, J.A., Iqbal, Z., Aldahmash, A., Alfayez, M., Kassem, M., and Mahmood, A. (2016). Characterization of Cellular and Molecular Heterogeneity of Bone Marrow Stromal Cells. Stem Cells Int 2016, 9378081.
123. Li, L., Liu, B., Wapinski, O.L., Tsai, M.C., Qu, K., Zhang, J., Carlson, J.C., Lin, M., Fang, F., Gupta, R.A., et al. (2013). Targeted disruption of Hotair leads to homeotic transformation and gene derepression. Cell Rep 5, 3-12.
29
124. Wei, B., Wei, W., Zhao, B., Guo, X., and Liu, S. (2017). Long non-coding RNA HOTAIR inhibits miR-17-5p to regulate osteogenic differentiation and proliferation in non-traumatic osteonecrosis of femoral head. PLoS One 12, e0169097.
125. Peng, S., Cao, L., He, S., Zhong, Y., Ma, H., Zhang, Y., and Shuai, C. (2018). An Overview of Long Noncoding RNAs Involved in Bone Regeneration from Mesenchymal Stem Cells. Stem Cells Int 2018, 8273648.
126. Nichols, J.T., Pan, L., Moens, C.B., and Kimmel, C.B. (2013). barx1 represses joints and promotes cartilage in the craniofacial skeleton. Development 140, 2765-2775.
127. Provot, S., Kempf, H., Murtaugh, L.C., Chung, U.I., Kim, D.W., Chyung, J., Kronenberg, H.M., and Lassar, A.B. (2006). Nkx3.2/Bapx1 acts as a negative regulator of chondrocyte maturation. Development 133, 651-662.
128. Jeong, J., Li, X., McEvilly, R.J., Rosenfeld, M.G., Lufkin, T., and Rubenstein, J.L. (2008). Dlx genes pattern mammalian jaw primordium by regulating both lower jaw-specific and upper jaw-specific genetic programs. Development 135, 2905-2916.
129. Qiu, M., Bulfone, A., Ghattas, I., Meneses, J.J., Christensen, L., Sharpe, P.T., Presley, R., Pedersen, R.A., and Rubenstein, J.L. (1997). Role of the Dlx homeobox genes in proximodistal patterning of the branchial arches: mutations of Dlx-1, Dlx-2, and Dlx-1 and -2 alter morphogenesis of proximal skeletal and soft tissue structures derived from the first and second arches. Dev Biol 185, 165-184.
130. Depew, M.J., Simpson, C.A., Morasso, M., and Rubenstein, J.L. (2005). Reassessing the Dlx code: the genetic regulation of branchial arch skeletal pattern and development. J Anat 207, 501-561.
131. Depew, M.J., Lufkin, T., and Rubenstein, J.L. (2002). Specification of jaw subdivisions by Dlx genes. Science 298, 381-385.
132. Bustos-Valenzuela, J.C., Fujita, A., Halcsik, E., Granjeiro, J.M., and Sogayar, M.C. (2011). Unveiling novel genes upregulated by both rhBMP2 and rhBMP7 during early osteoblastic transdifferentiation of C2C12 cells. BMC Res Notes 4, 370.
133. Zhu, H., and Bendall, A.J. (2009). Dlx5 Is a cell autonomous regulator of chondrocyte hypertrophy in mice and functionally substitutes for Dlx6 during endochondral ossification. PLoS One 4, e8097.
134. Glorie, L., D'Haese, P.C., and Verhulst, A. (2016). Boning up on DPP4, DPP4 substrates, and DPP4-adipokine interactions: Logical reasoning and known facts about bone related effects of DPP4 inhibitors. Bone 92, 37-49.
135. Beretta-Piccoli, B.C., Sauvain, M.J., Gal, I., Schibler, A., Saurenmann, T., Kressebuch, H., and Bianchetti, M.G. (2000). Synovitis, acne, pustulosis, hyperostosis, osteitis (SAPHO) syndrome in childhood: a report of ten cases and review of the literature. Eur J Pediatr 159, 594-601.
136. Taddio, A., Ferrara, G., Insalaco, A., Pardeo, M., Gregori, M., Finetti, M., Pastore, S., Tommasini, A., Ventura, A., and Gattorno, M. (2017). Dealing with Chronic Non-Bacterial Osteomyelitis: a practical approach. Pediatr Rheumatol Online J 15, 87.
137. Scianaro, R., Insalaco, A., Bracci Laudiero, L., De Vito, R., Pezzullo, M., Teti, A., De Benedetti, F., and Prencipe, G. (2014). Deregulation of the IL-1β axis in chronic recurrent multifocal osteomyelitis. Pediatr Rheumatol Online J 12, 30.
138. Hofmann, S.R., Morbach, H., Schwarz, T., Rösen-Wolff, A., Girschick, H.J., and Hedrich, C.M. (2012). Attenuated TLR4/MAPK signaling in monocytes from patients with CRMO results in impaired IL-10 expression. Clin Immunol 145, 69-76.
139. Hedrich, C.M., Hahn, G., Girschick, H.J., and Morbach, H. (2013). A clinical and pathomechanistic profile of chronic nonbacterial osteomyelitis/chronic recurrent multifocal osteomyelitis and challenges facing the field. Expert Rev Clin Immunol 9, 845-854.
30
140. Sun, Q., Zhang, Y., Huang, J., Yu, F., Xu, J., Peng, B., Liu, W., Han, S., Yin, J., and He, X. (2017). DPP4 regulates the inflammatory response in a rat model of febrile seizures. Biomed Mater Eng 28, S139-S152.
141. Jang, J.H., Yamada, Y., Janker, F., De Meester, I., Baerts, L., Vliegen, G., Inci, I., Chatterjee, S., Weder, W., and Jungraithmayr, W. (2017). Anti-inflammatory effects on ischemia/reperfusion-injured lung transplants by the cluster of differentiation 26/dipeptidylpeptidase 4 (CD26/DPP4) inhibitor vildagliptin. J Thorac Cardiovasc Surg 153, 713-724.e714.
142. Van Vlasselaer, P., Borremans, B., van Gorp, U., Dasch, J.R., and De Waal-Malefyt, R. (1994). Interleukin 10 inhibits transforming growth factor-beta (TGF-beta) synthesis required for osteogenic commitment of mouse bone marrow cells. J Cell Biol 124, 569-577.
143. Jung, Y.K., Kim, G.W., Park, H.R., Lee, E.J., Choi, J.Y., Beier, F., and Han, S.W. (2013). Role of interleukin-10 in endochondral bone formation in mice: anabolic effect via the bone morphogenetic protein/Smad pathway. Arthritis Rheum 65, 3153-3164.
144. Chen, E., Liu, G., Zhou, X., Zhang, W., Wang, C., Hu, D., Xue, D., and Pan, Z. (2018). Concentration-dependent, dual roles of IL-10 in the osteogenesis of human BMSCs via P38/MAPK and NF-κB signaling pathways. FASEB J, fj201701256RRR.
145. Widagdo, W., Raj, V.S., Schipper, D., Kolijn, K., van Leenders, G.J., Bosch, B.J., Bensaid, A., Segalés, J., Baumgärtner, W., Osterhaus, A.D., et al. (2016). Differential Expression of the Middle East Respiratory Syndrome Coronavirus Receptor in the Upper Respiratory Tracts of Humans and Dromedary Camels. J Virol 90, 4838-4842.
146. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., and Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315-317.

Universiteit of Hogeschool
Master in de tandheelkunde
Publicatiejaar
2019
Promotor(en)
Prof. Dr. C. Politis
Kernwoorden
Share this on: