27 mei 2019
Uit onderzoek blijkt dat nog veel te weinig studenten in het hoger onderwijs voor een STEM-richting kiezen. Nochtans groeit de vraag van de arbeidsmarkt voor technisch geschoolden steeds meer. De belangstelling van jongeren ten opzichte van wiskunde en wetenschappen is eerder zwak: de attitude ervoor moet dus verbeterd worden.
Vanuit deze vaststelling schreef Laura Doens, masterstudente Opleidings- en Onderwijswetenschappen aan de Universiteit Antwerpen, haar thesis. “Het stimuleren van attitudes van leerlingen moet al op jonge leeftijd beginnen. Daarom koos ik ervoor te onderzoeken welke invloed de leerkracht in het lager onderwijs heeft op een aantal attitudes in verband met wiskunde.”
Doens analyseerde de gegevens van ruim 5000 Vlaamse leerlingen uit het vierde leerjaar lager onderwijs. Ze bestudeerde twee attitudes van leerlingen in verband met wiskunde: zelfbeeld en plezier. “Uit de resultaten blijkt dat de leerkracht het zelfbeeld van leerlingen het best kan stimuleren door hen uit te dagen om op een hoger niveau te denken.” Om plezier in wiskunde te bevorderen is vooral een ondersteunend klasklimaat noodzakelijk: “De relatie tussen leerkracht en leerling is dan optimaal. De leerkracht geeft constructieve feedback, ondersteunt de leerlingen individueel en toont belangstelling voor hun behoeften,” legt Doens uit.
Uit het onderzoek blijkt verder dat de sociaaleconomische status en de thuistaal van leerlingen geen invloed hebben op het zelfbeeld en het plezier in wiskunde. “Het geslacht van de leerlingen is wel van belang,” vult Doens aan. “Jongens scoren hoger op beide attitudes. Leerkrachten en beleidsmakers zullen in de toekomst dus nog meer aandacht moeten besteden aan het verbeteren van het zelfbeeld bij meisjes en aan het verhogen van hun plezier.”
Meer weten?
Laura Doens: laura.doens@gmail.com
Promotor Sven De Maeyer: sven.demaeyer@uantwerpen.be of 03 265 49 32
Adelson, J. L., & McCoach, D. B. (2011). Development and psychometric properties of the Math and Me Survey: measuring third through sixth graders’ attitudes toward mathematics. Measurement and Evaluation in Counseling and Development, 44(4), 225–247. https://doi.org/10.1177/0748175611418522
Alvarez, R. (2008). The relationship of teacher quality and student achievement in elementary schools from the New York City. Online Submission.
Bagozzi, R. P., & Yi, Y. (2012). Specification, evaluation, and interpretation of structural equation models. Journal of the Academy of Marketing Science, 40(1), 8–34. https://doi.org/10.1007/s11747-011-0278-x
Barrett, P. (2006). Structural equation modelling: Adjudging model fit. Personality and Individual Differences 42. 814-825.
Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using “lme4”. Journal of Statistical Software, 67(1), 1–48.
Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., Tsai, Y.-M. (2010). Teachers’ mathematical knowledge, cognitive activation in the classroom, and student progress. American Educational Research Journal, 47(1), 133–180. https://doi.org/10.3102/0002831209345157
Bellens, K., Van Damme, J., Van Den Noortgate, W., Wendt, H., & Nilsen, T. (2019). Instructional quality: catalyst or pitfall in educational systems’ aim for high achievement and equity? An answer based on multilevel SEM analyses of TIMSS 2015 data in Flanders (Belgium), Germany, and Norway. Large-Scale Assessments in Education, 7(1). https://doi.org/10.1186/s40536-019-0069-2
Bettini, E., Park, Y., Benedict, A., Kimerling, J., & Leite, W. (2016). Situating Special educators’ instructional quality and their students’ outcomes within the conditions shaping their work. Exceptionality, 24(3), 176–193. https://doi.org/10.1080/09362835.2015.1107831
Bøe, M. V., Henriksen, E. K., Lyons, T., & Schreiner, C. (2011). Participation in science and technology: young people’s achievement‐related choices in late‐modern societies. Studies in Science Education, 47(1), 37–72. https://doi.org/10.1080/03057267.2011.549621
Bong, M., & Skaalvik, E. (2003). Academic self-concept and self-efficacy: how different are they really? Educational Psychology Review, 15, 1–40. https://doi.org/10.1023/A:1021302408382
Brophy, J. E. (2000). Teaching: Educational practices Series-1. Geneva: International Academy of Education/International Bureau of Education (IAE).
Brown, A. L. (1994). The advancement of learning. Educational Researcher, 23(8), 4. https://doi.org/10.2307/1176856
Cansiz Aktas, M., & Tabak, S. (2018). Turkish adaptation of 'Math and Me Survey': A validity and reliability study. European Journal of Educational Research, 7(3). https://doi.org/10.12973/eu-jer.7.3.707
Chen, F., Curran, P. J., Bollen, K. A., Kirby, J., & Paxton, P. (2008). An empirical evaluation of the use of fixed cutoff points in rmsea test statistic in structural equation models. Sociological methods & research, 36(4), 462–494. https://doi.org/10.1177/0049124108314720
De Maeyer, S. (2018). Structurele vergelijkingsmodellen [cursus]. Antwerpen: Universiteit Antwerpen.
Dodeen, H., Abdelfattah, F., Shumrani, S., & Hilal, M. A. (2012). The effects of teachers’ qualifications, practices, and perceptions on student achievement in TIMSS mathematics: A comparison of two countries. International Journal of Testing, 12(1), 61–77.
Hattie, J. (2009). Visible Learning. New York: Routledge.
Hiebert, J., & Grouws, D. A. (2007). The effects of classroom mathematics teaching on students’ learning. In F. K. Lester (Red.), Second handbook of research on mathematics teaching and learning (pp. 371-404). Greenwich, CT: Information Age
Houtveen, T., & van de Grift, W. (2007). Reading instruction for struggling learners. Journal of Education for Students Placed at Risk (JESPAR), 12(4), 405–424. https://doi.org/10.1080/10824660701762001
Huang, C. (2011). Self-concept and academic achievement: A meta-analysis of longitudinal relations. Journal of School Psychology, 49(5), 505–528. https://doi.org/10.1016/j.jsp.2011.07.001
Huyer, S. (2015). Is the gender gap narrowing in science and engineering? UNESCO Science Report: Towards 2030. 85–103.
IEA. (2014). TIMSS 2015 Student Questionnaire. Grade 4. Geraadpleegd van https://timssandpirls.bc.edu/timss2015/questionnaires/downloads/T15_Stu…
IEA. (2019). TIMSS and PIRLS. Geraadpleegd van https://timssandpirls.bc.edu/
Kadijevic, D. (2008). TIMSS 2003: Relating dimensions of mathematics attitude to mathematics achievement. Zbornik Instituta Za Pedagoska Istrazivanja, 40(2), 327–346. https://doi.org/10.2298/ZIPI0802327K
Kalin, J., Peklaj, C., Pecjak, S., Levpušcek, M. P., & Zuljan, M. V. (2017). Elementary and secondary school students’ perceptions of teachers’ classroom management competencies. Center for Educational Policy Studies Journal, 7(4), 37–62.
Keith, K. (2018). Case study: Exploring the implementation of an integrated stem curriculum program in elementary first grade classes (Doctoral dissertation). Concordia University, Portland.
Klieme, E., Pauli, C., & Reusser, K. (2009). The Pythagoras study: Investigating effects of teaching and learning in Swiss and German mathematics classrooms. In T. Janik & T. Seidel (Red.), The power of video studies in investigating teaching and learning in the classroom (pp. 137–160). Münster, Germany: Waxmann.
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). “lmerTest” package: tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1–26.
Lankshear, C., & Knobel, M. (2004). Chapter 8: An introduction to teacher research as quantitative investigation. In A handbook for teacher research: from design to implementation (pp. 144–167). NY: Open University Press.
Lindberg, S., Linkersdörfer, J., Ehm, J.-H., Hasselhorn, M., & Lonnemann, J. (2013). Gender differences in children’s math self-concept in the first years of elementary school. Journal of Education and Learning, 2(3), 1–8.
Marsh, H. W., & Craven, R. G. (2006). Reciprocal effects of self-concept and performance from a multidimensional perspective: Beyond seductive pleasure and unidimensional perspectives. Perspectives on Psychological Science, 1(2), 133–163. https://doi.org/10.1111/j.1745-6916.2006.00010.x Marsh H. W., Kong C. K., Hau K. T. (2000). Longitudinal multilevel models of the big-fish-little-pond effect on academic self-concept: counterbalancing contrast and reflected-glory effects in Hong Kong schools. Journal of Personality and Social Psychology 78, 337–349.
Martin, M. O., Mullis, I. V. S., Hooper, M., Yin, L., Foy, P., & Palazzo, L. (2006). Creating and interpreting the TIMSS 2015 context questionnaire scales. In M. O. Martin, I. V. S. Mullis, & M. Hooper, Methods and procedures in TIMSS 2015 (p. 312). Geraadpleegd van http://timss.bc.edu/publications/timss/2015-methods/chapter-15.html
McLeod, D. B. (1992). Research on affect in mathematics education: A reconceptualization. In D. G. Grouws (Red.), Handbook of research on mathematics teaching and learning (pp. 575–596). New York: McMillan.
Muijs, D., Kyriakides, L., van der Werf, G., Creemers, B., Timperley, H., & Earl, L. (2014). State of the art – teacher effectiveness and professional learning. School Effectiveness and School Improvement, 25(2), 231–256. https://doi.org/10.1080/09243453.2014.885451
Mullis, I. V. S., Martin, M. O., Foy, P., & Hooper, M. (2016). TIMSS 2015 International results in mathematics. Geraadpleegd van http://timssandpirls.bc.edu/timss2015/international-results/wp-content/…
Mullis, I. V. S., & Martin, M. O. (Red.). (2013). Timss 2015 assessment frameworks. Chestnut Hill, MA : TIMSS & PIRLS International Study Center ; International Association for the Evaluation of Educational Achievement.
Murnane, R. J., & Raizen, S. A. (1988). Improving indicators of the quality of science and mathematics education in grades K-12. Washington: National Academy Press.
OECD. (2018). Empowering women in the digital age. Where do we stand? New York City: Organisation for Economic Co-operation and Development.
OECD. (2019). PISA. Programme for International Student Assessment. Geraadpleegd van http://www.oecd.org/pisa/
Onderwijs Vlaanderen. (2012). Actieplan voor het stimuleren van loopbanen in wiskunde, exacte wetenschappen en techniek. Geraadpleegd van https://onderwijs.vlaanderen.be/sites/default/files/atoms/files/STEM-ac…
Ottmar, E. R., Rimm-Kaufman, S. E., Larsen, R., & Merritt, E. G. (2011). Relations between mathematical knowledge for teaching, mathematics instructional quality, and student achievement in the context of the “Responsive Classroom (RC)” approach. Evanston, IL: Society for Research on Educational Effectiveness.
Pajares, F., & Miller, M. D. (1994). The role of self-efficacy and self-concept beliefs in mathematical problem-solving: A path analysis. Journal of Educational Psychology, 86(2), 193-203.
Papanastasiou, C. (2008). A residual analysis of effective schools and effective teaching in mathematics. Studies in Educational Evaluation, 34(1), 24–30. https://doi.org/10.1016/j.stueduc.2008.01.005
Praetorius, A.-K., Klieme, E., Herbert, B., & Pinger, P. (2018). Generic dimensions of teaching quality: the German framework of three basic dimensions. ZDM, 50(3), 407–426. https://doi.org/10.1007/s11858-018-0918-4
Revelle, W. (2018). psych: Procedures for psychological, psychometric, and personality research. Geraadpleegd van https://CRAN.R-project.org/package=psych
Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1–36.
Rožman, M., Klieme, E., & International Association for the Evaluation of Educational Achievement (IEA). (2017). Exploring cross-national changes in instructional practices: evidence from four cycles of TIMSS. Policy brief No. 13. Amsterdam: International Association for the Evaluation of Educational Achievement.
RStudio Team. (2016). RStudio: Integrated development for R. Geraadpleegd van http://www.rstudio.com/
Ryan, R. M., & Deci, E. L. (2002). An overview of self-determination theory: An organismic-dialectical perspective. In R. M. Ryan & E. L. Deci (Red.), Handbook of self-determination research (pp. 3–33). Rochester: University Press.
Scheerens, J. (2004). Review of school and instructional effectiveness research. Paris, France: UNESCO.
Schumacker, R. E., & Lomax, R. G. (2004). A beginner’s guide to structural equation modeling, 2nd ed. Mahwah, NJ, US: Lawrence Erlbaum Associates Publishers.
Shavelson, R., & Bolus, R. (1982). Self concept: The interplay of theory and methods. Journal of Educational Psychology, 74, 3–17. https://doi.org/10.1037/0022-0663.74.1.3
van de Grift, W. J. C. M. (2014). Measuring teaching quality in several European countries. School Effectiveness and School Improvement, 25(3), 295–311. https://doi.org/10.1080/09243453.2013.794845
van de Grift, W. J. C. M., Chun, S., Maulana, R., Lee, O., & Helms-Lorenz, M. (2017). Measuring teaching quality and student engagement in South Korea and The Netherlands. School Effectiveness and School Improvement, 28(3), 337–349. https://doi.org/10.1080/09243453.2016.1263215
Vandecandelaere, M., Speybroeck, S., Vanlaar, G., De Fraine, B., & Van Damme, J. (2012). Learning environment and students’ mathematics attitude. Studies in Educational Evaluation, 38(3), 107–120. https://doi.org/10.1016/j.stueduc.2012.09.001
Wickham, H., François, R., Henry, L., & Müller, K. (2018). dplyr: A grammar of data manipulation. Geraadpleegd van https://CRAN.R-project.org/package=dplyr
Yalcin, S., Demirtasli, R. N., Dibek, M. I., & Yavuz, H. C. (2017). The effect of teacher and student characteristics on TIMSS 2011 mathematics achievement of fourth- and eighth-grade students in Turkey. International Journal of Progressive Education, 13(3), 79–94.