De echte metalheads vind je niet op Graspop, maar wel onder water.

Stijn
Van de Vondel

“Kijk mama, een schildpad!”, verkondigde een kleine toeschouwer vanop de rivieroever. Het stromend water tot aan de borst, uitgerust met waadpak en vangnet, leek het mij eerder een levenloze kip. Een debat over de waarheid ben ik niet aangegaan, maar hoe dan ook was er meer gaande onder het wateroppervlak...

Het jongetje in bovenstaande anekdote stond op de oever van de Dommel. Deze rivier, gelegen tussen Peer en ’s Hertogenbosch, wordt sinds 1888 getekend door metaalindustrie in de regio. Het meetpunt van het schildpad-of-kip-verhaal bevond zich nét stroomafwaarts van een zijriviertje, de Eindergatloop, waarin al ruim een eeuw metalen worden geloosd. Dit zijn chemische elementen gekend voor hun hardnekkig karakter in de natuur. Ze zijn namelijk moeilijk biologisch afbreekbaar waardoor ze zich kunnen opstapelen in de omgeving. Net omwille van het belang van zuiver water voor mens en natuur, ging ik op zoek naar het effect van metaalverontreiniging op de waterkwaliteit en ecologie van de Dommel. 

Waar rook is, is vuur

Ieder organisme heeft een zekere voorkeur voor een waaier aan omgevingscondities. Zo blijkt uit onderzoek dat niet alle planten en dieren even gevoelig zijn voor verstoring en verontreiniging. Kennis over leven onder en aan het wateroppervlak kan dus veel zeggen over de ecologische kwaliteit en zuiverheid van het water. Uiteraard kunnen metingen ook uitgevoerd worden op het rivierwater zélf, al biedt dit slechts een momentopname. Met planten en dieren krijgen biologen informatie over een grotere tijdspanne, omdat deze langer blootgesteld zijn aan hun omgeving. Het proces waarbij wetenschappers organismen inzetten (als zogenaamde bio-indicatoren) om waterkwaliteit te bepalen wordt ook wel biomonitoring genoemd.

Kriebelende kruipertjes en schitterende schaaltjes

In dit onderzoek werd gekozen voor twee groepen bio-indicatoren. De eerste omvat alle ongewervelden (dieren zonder ruggengraat) die in het water rondzwemmen, zich verbergen tussen planten en kiezels of zich ingraven in de rivierbodem. Deze dieren worden ook macro-invertebraten genoemd. Het zijn vaak onvolwassen exemplaren en zichtbaar met het blote oog (zie figuur 1), waardoor ze gemakkelijk te verzamelen en te benoemen zijn. Met een simpel vangnet kan je al snel heel wat muggenlarven en slakjes vinden, maar ook waterpissebedden, kokerjuffers en bloedzuigers.

Uitvergroting van een aantal macro-invertebraten uit de Dommel.

Figuur 1: Uitvergroting van een aantal macro-invertebraten uit de Dommel.

De tweede groep betreft de diatomeeën, ook kiezelwieren genoemd. Diatomeeën zijn microscopisch kleine algen die uit één enkele cel bestaan. Net zoals planten bevatten ze bladgroenkorrels. Hiermee kunnen ze, door middel van fotosynthese, licht gebruiken voor de eigen energievoorziening en productie van zuurstof. Daarnaast bezit iedere diatomee twee zelfgemaakte glazen (silica) schaaltjes. Deze vormen als het ware een beschermend kaasdoosje omheen de alg. Bovendien kenmerkt iedere soort zich door een specifieke tekening op deze schaaltjes, een eigenschap die gebruikt wordt om diatomeeën te benoemen (zie figuur 2). 

Foto van een diatomee genomen met elektronenmicroscoop.

Figuur 2: Foto van een diatomee genomen met elektronenmicroscoop.

Over muzieksmaak valt niet te twisten

Met beide groepen onderzocht ik verschillen in soortensamenstelling stroomopwaarts en -afwaarts van de Eindergatloop. Ook werden hiermee biologische indexen berekend op basis van de aan- of afwezigheid van bepaalde soorten. Net zoals de uv-index in het weerbericht de ernst van schadelijke uv-straling verduidelijkt, zijn er indices ontwikkeld om waterkwaliteit weer te geven. 

Verder verzamelde ik gegevens over stoffen opgelost in het water, waaronder metalen. Daarnaast werden stalen genomen van de rivierbodem om historische vervuiling in kaart te brengen. Omwille van strengere milieunormen bevatten hedendaagse lozingen lagere metaalconcentraties dan vroeger, maar kunnen deze na lange tijd wel opgestapeld worden in het sediment van de rivier. 

Ten slotte, om te achterhalen wie de echte metalfanaten zijn (of net niet), zocht ik naar aanwijzingen van metaalverontreiniging in de dieren en diatomeeën zelf. In een selectie macro-invertebraten werden metaalconcentraties gemeten, terwijl de kiezelwieren onderzocht werden voor misvormingen aan de schaaltjes.

Natuurtalenten

Wat blijkt uit al deze informatie? Metingen stroomafwaarts van de Eindergatloop vertoonden hogere concentraties aan metalen als cadmium en lood, waarvoor gelijkaardige resultaten werden gevonden in de rivierbodem. Met andere woorden, naast hedendaagse vervuiling van de rivier is er ook sprake van een historische invloed, aangezien concentraties in sediment veel hoger waren dan die van het water. Nu is de vraag: Hebben deze concentraties een effect op het leven in de rivier?

In geval van de macro-invertebraten werden sterk verhoogde metaalconcentraties gevonden in de diertjes zelf. Dit wijst erop dat macro-invertebraten in de vervuilde wateren van de Dommel ook hogere metaalconcentraties bevatten. Desondanks werden dezelfde soorten gevonden voor en na de Eindergatloop, afgezien van een lichte stijging in soorten die bestand zijn tegen metaalverontreiniging. Ook toont de biologische index op basis van deze waterdiertjes geen verschil en geeft deze een gematigde verontreiniging aan in alle meetpunten. Omdat er wél hogere metaalconcentraties werden gevonden stroomafwaarts van de Eindergatloop, is het mogelijk dat deze organismen zich doorheen de tijd hebben aangepast aan hun omgeving.

De diatomeeën vertoonden weinig misvormingen aan hun schaaltjes. Dit wijst erop dat deze algen niet veel invloed ondervonden van de metaalconcentraties in het water. Ook hier was er weinig verschil tussen soorten van stroomopwaarts en -afwaartse meetpunten, al was dit wel meer uitgesproken dan bij de macro-invertebraten. De biotische indices ontwikkeld voor deze algen gaven een sterkere verontreiniging aan in meetpunten onder invloed van de Eindergatloop. Uit dit laatste blijken diatomeeën mogelijks meer geschikt als bio-indicator voor metaalverontreiniging.

Besluit

De Dommel wordt duidelijk nog steeds blootgesteld aan verontreiniging uit de omgeving, maar het leven in de rivier weet zich relatief goed te handhaven. De waterdiertjes lijken niet uit het (figuurlijk) lood geslagen te zijn, terwijl de kiezelwieren een meer verfijnde voorkeur vertonen. In functie van beheerplannen en regelgeving kan er dus geopteerd worden om diatomeeën in te zetten als bio-indicator voor metaalverontreiniging.

Ook is het water maar van matige kwaliteit, al zijn er wel verbeteringen vergeleken met 15 jaar geleden. Wat de toekomst ook brengen zal hebben we slechts het raden naar. Wat wel in steen gebeiteld staat, is dat handelingen uit het verleden nog steeds invloed hebben op het heden. En ook dat de échte metalheads zich in de wateren van de Dommel bevinden!

Bibliografie

Adams, W., Blust, R., Dwyer, R., Mount, D., Nordheim, E., Rodriguez, P. H., & Spry, D. (2020). Bioavailability Assessment of Metals in Freshwater Environments: A Historical Review. Environmental Toxicology and Chemistry, 39(1), 48–59. https://doi.org/10.1002/etc.4558

AFNOR. (2000). Norme française NF T90-354 Juin 2000, Qualité de l’eau. Détermination de l’Indice Biologique Diatomées (IBD). (p. 63).

André, F., Jonard, M., & Ponette, Q. (2007). Influence of meteorological factors and polluting environment on rain chemistry and wet deposition in a rural area near Chimay, Belgium. Atmospheric Environment, 41(7), 1426–1439. https://doi.org/10.1016/j.atmosenv.2006.10.013

Bahls, L. L. (2009). A Checklist of Diatoms from Inland Waters of the Northwestern United States. Proceedings of the Academy of Natural Sciences of Philadelphia, 158(1), 1–35. https://doi.org/10.1635/053.158.0101

Battarbee, R. W., Jones, V. J., Flower, R. J., Cameron, N. G., Bennion, H., Carvalho, L., & Juggins, S. (2001). Diatoms. In John P. Smol, H. J. B. Birks, W. M. Last, R. S. Bradley, & K. Alverson (Eds.), Tracking Environmental Change Using Lake Sediments: Terrestrial, Algal, and Siliceous Indicators (pp. 155–202). Springer Netherlands. https://doi.org/10.1007/0-306-47668-1_8

Beasley, G., & Kneale, P. E. (2003). Investigating the influence of heavy metals on macro-invertebrate assemblages using Partial Cononical Correspondence Analysis (pCCA). Hydrology and Earth System Sciences Discussions, 7(2), 221–233.

Begon, M., Townsend, C. R., & Harper, J. L. (2006). Ecology: From Individuals to Ecosystems (4th edition). Blackwell Publishing Ltd.

Beltman, D. J., Clements, W. H., Lipton, J., & Cacela, D. (1999). Benthic invertebrate metals exposure, accumulation, and community-level effects downstream from a hard-rock mine site. Environmental Toxicology and Chemistry, 18(2), 299–307. https://doi.org/10.1002/etc.5620180229

Bentaalla-Kaced, S., Aïfa, T., & Deramchi, K. (2017). Organic-rich Albian deposits as the origin of hydrocarbon-contaminated phosphates, southeastern Constantine Basin, Algeria. Journal of Petroleum Science and Engineering, 157, 680–695. https://doi.org/10.1016/j.petrol.2017.07.064

Bervoets, L., & Blust, R. (2003). Metal concentrations in water, sediment and gudgeon (Gobio gobio) from a pollution gradient: Relationship with fish condition factor. Environmental Pollution, 126(1), 9–19. https://doi.org/10.1016/S0269-7491(03)00173-8

Bervoets, L., Blust, R., de Wit, M., & Verheyen, R. (1997). Relationships between river sediment characteristics and trace metal concentrations in tubificid worms and chironomid larvae. Environmental Pollution, 95(3), 345–356. https://doi.org/10.1016/S0269-7491(96)00134-0

Bervoets, L., De Jonge, M., & Blust, R. (2016). Identification of threshold body burdens of metals for the protection of the aquatic ecological status using two benthic invertebrates. Environmental Pollution, 210, 76–84. https://doi.org/10.1016/j.envpol.2015.12.005

Besse-Lototskaya, A., Verdonschot, P. F. M., Coste, M., & Van de Vijver, B. (2011). Evaluation of European diatom trophic indices. Ecological Indicators, 11(2), 456–467. https://doi.org/10.1016/j.ecolind.2010.06.017

Birk, S., Bonne, W., Borja, A., Brucet, S., Courrat, A., Poikane, S., Solimini, A., van de Bund, W., Zampoukas, N., & Hering, D. (2012). Three hundred ways to assess Europe’s surface waters: An almost complete overview of biological methods to implement the Water Framework Directive. Ecological Indicators, 18, 31–41. https://doi.org/10.1016/j.ecolind.2011.10.009

Bleeker, E. A. J., & van Gestel, C. A. M. (2007). Effects of spatial and temporal variation in metal availability on earthworms in floodplain soils of the river Dommel, The Netherlands. Environmental Pollution, 148(3), 824–832. https://doi.org/10.1016/j.envpol.2007.01.034

Blust, R., Linden, A. van der, Verheyen, E., & Decleir, W. (1988). Evaluation of microwave heating digestion and graphite furnace atomic absorption spectrometry with continuum source background correction for the determination of iron, copper and cadmium in brine shrimp. Journal of Analytical Atomic Spectrometry, 3(2), 387–393. https://doi.org/10.1039/JA9880300387

Bolgovics, Á., Várbíró, G., Ács, É., Trábert, Z., Kiss, K. T., Pozderka, V., Görgényi, J., Boda, P., Lukács, B.-A., Nagy-László, Z., Abonyi, A., & Borics, G. (2017). Phytoplankton of rhithral rivers: Its origin, diversity and possible use for quality-assessment. Ecological Indicators, 81, 587–596. https://doi.org/10.1016/j.ecolind.2017.04.052

Bottjer, D. J. (2016). Paleoecology: Past, present, and future. Wiley-Blackwell.

Briggs, J. C., & Ficke, J. F. (1977). Quality of rivers of the United States, 1975 water year—Based on the National Stream Quality Accounting Network (NASQAN). (pp. 78–200). U.S. Geological Survey.

Brooks, S., & Cham, S. (2014). Field Guide to the Dragonflies & Damselflies of Great Britain and Ireland | NHBS Field Guides & Natural History (5th ed.). British Wildlife Publishing. https://www.nhbs.com/field-guide-to-the-dragonflies-damselflies-of-grea…

Casas, A. M., & Crecelius, E. A. (1994). Relationship between acid volatile sulfide and the toxicity of zinc, lead and copper in marine sediments. Environmental Toxicology and Chemistry, 13(3), 529–536. https://doi.org/10.1002/etc.5620130325

Cemagref. (1982). Etude des méthodes biologiques d’appréciation quantitative de la qualité des eaux. Rapport Division Quality des Eux Lyon-A.F. in Bassin Rhône-Mediterrannée-Corse [A study on the biological methods of qualitative assessment of water quality. A report of the Water Division Lyon-Outflow Rhône River section Catchment] (p. 218). CEMAGREF.

Cid, N., Ibáñez, C., Palanques, A., & Prat, N. (2010). Patterns of metal bioaccumulation in two filter-feeding macroinvertebrates: Exposure distribution, inter-species differences and variability across developmental stages. Science of The Total Environment, 408(14), 2795–2806. https://doi.org/10.1016/j.scitotenv.2010.03.030

CIW. (2016). Summary of the Management Plan for the Flemish part of the International Scheldt/Meuse River Basin Districts (p. 21). Coordination Committee on Integrated Water Policy. https://www.integraalwaterbeleid.be/nl/stroomgebiedbeheerplannen/stroom…

Clements, W. H. (1994). Benthic Invertebrate Community Responses to Heavy Metals in the Upper Arkansas River Basin, Colorado. Journal of the North American Benthological Society, 13(1), 30–44. JSTOR. https://doi.org/10.2307/1467263

Clements, W. H. (2004). Small-Scale Experiments Support Causal Relationships Between Metal Contamination and Macroinvertebrate Community Responses. Ecological Applications, 14(3), 954–967. https://doi.org/10.1890/03-5009

Collier, K. J. (1995). Environmental factors affecting the taxonomic composition of aquatic macroinvertebrate communities in lowland waterways of Northland, New Zealand. New Zealand Journal of Marine and Freshwater Research, 29(4), 453–465. https://doi.org/10.1080/00288330.1995.9516679

Conrad, K. F., & Herman, T. B. (1990). Seasonal dynamics, movements and the effects of experimentally increased female densities on a population of imaginal Calopteryx aequabilis (Odonata: Calopterygidae). Ecological Entomology, 15(2), 119–129. https://doi.org/10.1111/j.1365-2311.1990.tb00792.x

Corcoll, N., Bonet, B., Morin, S., Tlili, A., Leira, M., & Guasch, H. (2012). The effect of metals on photosynthesis processes and diatom metrics of biofilm from a metal-contaminated river: A translocation experiment. Ecological Indicators, 18, 620–631. https://doi.org/10.1016/j.ecolind.2012.01.026

Coste, M., Boutry, S., Tison-Rosebery, J., & Delmas, F. (2009). Improvements of the Biological Diatom Index (BDI): Description and efficiency of the new version (BDI-2006). Ecological Indicators, 9(4), 621–650. https://doi.org/10.1016/j.ecolind.2008.06.003

Coste, Michel, & Ector, L. (2000). Diatomées invasives exotiques ou rares en France: Principales Observations effectuées au cours des dernières décennies. Systematics and Geography of Plants, 70(2), 373–400. JSTOR. https://doi.org/10.2307/3668651

Croteau, M.-N., & Luoma, S. N. (2008). A Biodynamic Understanding of Dietborne Metal Uptake by a Freshwater Invertebrate. Environmental Science & Technology, 42(5), 1801–1806. https://doi.org/10.1021/es7022913

Cui, B., Zhang, Q., Zhang, K., Liu, X., & Zhang, H. (2011). Analyzing trophic transfer of heavy metals for food webs in the newly-formed wetlands of the Yellow River Delta, China. Environmental Pollution, 159(5), 1297–1306. https://doi.org/10.1016/j.envpol.2011.01.024

Dalu, T., Wasserman, R. J., Magoro, M. L., Mwedzi, T., Froneman, P. W., & Weyl, O. L. F. (2017). Variation partitioning of benthic diatom community matrices: Effects of multiple variables on benthic diatom communities in an Austral temperate river system. Science of The Total Environment, 601–602, 73–82. https://doi.org/10.1016/j.scitotenv.2017.05.162

De Cooman, W., Seuntjens, P., Bervoets, L., Panis, L. I., De Wit, M., & Verheyen, R. F. (1995). Research on the Spatial Variability of Three Sediment Types in Flanders. In W. J. Van Den Brink, R. Bosman, & F. Arendt (Eds.), Contaminated Soil ’95 (pp. 191–192). Springer Netherlands. https://doi.org/10.1007/978-94-011-0415-9_31

De Jonge, M., Belpaire, C., Geeraerts, C., De Cooman, W., Blust, R., & Bervoets, L. (2012). Ecological impact assessment of sediment remediation in a metal-contaminated lowland river using translocated zebra mussels and resident macroinvertebrates. Environmental Pollution, 171, 99–108. https://doi.org/10.1016/j.envpol.2012.07.038

De Jonge, Maarten, Van de Vijver, B., Blust, R., & Bervoets, L. (2008). Responses of aquatic organisms to metal pollution in a lowland river in Flanders: A comparison of diatoms and macroinvertebrates. Science of The Total Environment, 407(1), 615–629. https://doi.org/10.1016/j.scitotenv.2008.07.020

de Paiva Magalhães, D., da Costa Marques, M. R., Baptista, D. F., & Buss, D. F. (2015). Metal bioavailability and toxicity in freshwaters. Environmental Chemistry Letters, 13(1), 69–87. https://doi.org/10.1007/s10311-015-0491-9

De Pauw, N., Gabriels, W., & Goethals, P. L. M. (2006). River Monitoring and Assessment Methods Based on Macroinvertebrates. In Biological Monitoring of Rivers (pp. 111–134). John Wiley & Sons, Ltd. https://doi.org/10.1002/0470863781.ch7

De Pauw, N., & Heylen, S. (2001). Biotic index for sediment quality assessment of watercourses in Flanders, Belgium. Aquatic Ecology, 35(2), 121–133. https://doi.org/10.1023/A:1011478427152

De Pauw, N., & Vanhooren, G. (1983). Method for biological quality assessment of watercourses in Belgium. Hydrobiologia, 100(1), 153–168. https://doi.org/10.1007/BF00027428

De Pauw, N., & Vannevel, R. (1991). Macroinvertebraten en waterkwaliteit. Determineersleutels van macroin-vertebraten en beoordelingsmethoden van de waterkwaliteit. Stichting Leefmileu. http://hdl.handle.net/1854/LU-228333

De Wolf, H. (1982). Method of coding of ecological data from diatoms for computer utilization. 63(2), 95–98.

DeForest, D. K., Brix, K. V., & Adams, W. J. (2007). Assessing metal bioaccumulation in aquatic environments: The inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration. Aquatic Toxicology, 84(2), 236–246. https://doi.org/10.1016/j.aquatox.2007.02.022

Denys, L., & Lodeijckx, E. (1984). An improved method of coding diatom data for computer utilisation. 93(3), 297–299.

Descy, J.-P., & Micha, J.-C. (1988). Use of biological indices of water quality. Statistical Journal of the United Nations Economic Commission for Europe, 5(3), 249–261. https://doi.org/10.3233/SJU-1988-5305

Desrosiers, C., Leflaive, J., Eulin, A., & Ten-Hage, L. (2013). Bioindicators in marine waters: Benthic diatoms as a tool to assess water quality from eutrophic to oligotrophic coastal ecosystems. Ecological Indicators, 32, 25–34. https://doi.org/10.1016/j.ecolind.2013.02.021

Di Veroli, A., Santoro, F., Pallottini, M., Selvaggi, R., Scardazza, F., Cappelletti, D., & Goretti, E. (2014). Deformities of chironomid larvae and heavy metal pollution: From laboratory to field studies. Chemosphere, 112, 9–17. https://doi.org/10.1016/j.chemosphere.2014.03.053

Dobson, M., Pawley, S., Fletcher, M., & Powell, A. (2012). Guide to freshwater invertebrates (A. Crowden, Ed.). Freshwater Biological Association.

Dugdale, R. C., & Wilkerson, F. P. (1998). Silicate regulation of new production in the equatorial Pacific upwelling. Nature, 391(6664), 270–273. https://doi.org/10.1038/34630

EauFrance. (1994). Diatoms: Specific Polluosensitivity Index (IPS) | MDM of Pike perch. http://mdm.sandre.eaufrance.fr/node/192739

European Commission. (2000). Directive 2000/60/EC of the European parliament and of the council of 23 October 2000: Establishing a framework for Community action in the field of water policy (Water Framework Directive). https://eur-lex.europa.eu/eli/dir/2000/60/2014-11-20

Falasco, E., Bona, F., Badino, G., Hoffmann, L., & Ector, L. (2009). Diatom teratological forms and environmental alterations: A review. Hydrobiologia, 623(1), 1–35. https://doi.org/10.1007/s10750-008-9687-3

Falkowski, P. G., Katz, M. E., Knoll, A. H., Quigg, A., Raven, J. A., Schofield, O., & Taylor, F. J. R. (2004). The Evolution of Modern Eukaryotic Phytoplankton. Science, 305(5682), 354–360. https://doi.org/10.1126/science.1095964

Farag, A. M., Woodward, D. F., Goldstein, J. N., Brumbaugh, W., & Meyer, J. S. (1998). Concentrations of metals associated with mining waste in sediments, biofilm, benthic macroinvertebrates, and fish from the Coeur d’Alene River basin, Idaho. Archives of Environmental Contamination and Toxicology, 34(2), 119–127. https://doi.org/10.1007/s002449900295

Ferreira da Silva, E., Almeida, S. F. P., Nunes, M. L., Luís, A. T., Borg, F., Hedlund, M., de Sá, C. M., Patinha, C., & Teixeira, P. (2009). Heavy metal pollution downstream the abandoned Coval da Mó mine (Portugal) and associated effects on epilithic diatom communities. Science of The Total Environment, 407(21), 5620–5636. https://doi.org/10.1016/j.scitotenv.2009.06.047

Fore, L. S., & Grafe, C. (2002). Using diatoms to assess the biological condition of large rivers in Idaho (U.S.A.). Freshwater Biology, 47(10), 2015–2037. https://doi.org/10.1046/j.1365-2427.2002.00948.x

Friberg, N., Bonada, N., Bradley, D. C., Dunbar, M. J., Edwards, F. K., Grey, J., Hayes, R. B., Hildrew, A. G., Lamouroux, N., Trimmer, M., & Woodward, G. (2011). Biomonitoring of Human Impacts in Freshwater Ecosystems: The Good, the Bad and the Ugly. In G. Woodward (Ed.), Advances in Ecological Research (Vol. 44, pp. 1–68). Academic Press. https://doi.org/10.1016/B978-0-12-374794-5.00001-8

Gabriels, W., Lock, K., De Pauw, N., & Goethals, P. L. M. (2010). Multimetric Macroinvertebrate Index Flanders (MMIF) for biological assessment of rivers and lakes in Flanders (Belgium). Limnologica - Ecology and Management of Inland Waters, 40(3), 199–207. https://doi.org/10.1016/j.limno.2009.10.001

Gamier, J., Billen, G., & Coste, M. (1995). Seasonal succession of diatoms and Chlorophyceae in the drainage network of the Seine River: Observation and modeling. Limnology and Oceanography, 40(4), 750–765. https://doi.org/10.4319/lo.1995.40.4.0750

Groenendijk, D., Kraak, M. H. S., & Admiraal, W. (1999a). Efficient shedding of accumulated metals during metamorphosis in metal-adapted populations of the midge Chironomus riparius. Environmental Toxicology and Chemistry, 18(6), 1225–1231. https://doi.org/10.1002/etc.5620180622

Groenendijk, D., van Opzeeland, B., Dionisio Pires, L. M., & Postma, J. F. (1999b). Fluctuating Life-History Parameters Indicating Temporal Variability in Metal Adaptation in Riverine Chironomids. Archives of Environmental Contamination and Toxicology, 37(2), 175–181. https://doi.org/10.1007/s002449900503

Groenendijk, D., Zeinstra, L. W. M., & Postma, J. F. (1998). Fluctuating asymmetry and mentum gaps in populations of the midge Chironomus riparius (diptera: Chironomidae) from a metal-contaminated river. Environmental Toxicology and Chemistry, 17(10), 1999–2005. https://doi.org/10.1002/etc.5620171016

Håkansson, H., & Bailey-Watts, A. E. (1993). A Contribution to the Taxonomy of Stephanodiscus Hantzschii Grunow, a Common Freshwater Planktonic Diatom. Diatom Research, 8(2), 317–332. https://doi.org/10.1080/0269249X.1993.9705265

Hare, L. (1992). Aquatic Insects and Trace Metals: Bioavailability, Bioaccumulation, and Toxicity. Critical Reviews in Toxicology, 22(5–6), 327–369. https://doi.org/10.3109/10408449209146312

Hawkes, H. A. (1979). Invertebrates as Indicators of River Water Quality. In James & Evison (Eds.), Biological Indicators of Water Quality.

He, S., Chen, K., Soininen, J., Heino, J., Ding, N., & Wang, B. (2020). Elements of metacommunity structure of diatoms and macroinvertebrates within stream networks differing in environmental heterogeneity. Journal of Biogeography, 47(8), 1755–1764. https://doi.org/10.1111/jbi.13859

Herr, C., De Becker, P., Leyssen, A., & Van Thuyne, G. (2014). Advies betreffende de impact van lozingen in het brongebied van de Bolisserbeek (INBO.A.2013.135; p. 23). INBO. https://purews.inbo.be/ws/files/2237006/INBO.A.2013.135.pdf

Ivorra, N., Barranguet, C., Jonker, M., Kraak, M. H. S., & Admiraal, W. (2002). Metal-induced tolerance in the freshwater microbenthic diatom Gomphonema parvulum. Environmental Pollution, 116(1), 147–157. https://doi.org/10.1016/S0269-7491(01)00152-X

Jochems, H., Schneiders, A., Denys, L. & Van den Bergh, E. (2002). Typologie van de oppervlaktewateren in Vlaanderen.

Johnson, D. M. (1991). Behavioral ecology of larval dragonflies and damselflies. Trends in Ecology & Evolution, 6(1), 8–13. https://doi.org/10.1016/0169-5347(91)90140-S

Jongman, R. H. G., Ter Braak, C. J. F., & Van Tongeren, O. F. R. (Eds.). (1995). Data analysis in community and landscape ecology. Cambridge University Press.

Kasuya, E. (2001). Mann–Whitney U test when variances are unequal. Animal Behaviour, 61(6), 1247–1249. https://doi.org/10.1006/anbe.2001.1691

Kelly, M. G. (1998). Use of the trophic diatom index to monitor eutrophication in rivers. Water Research, 32(1), 236–242. https://doi.org/10.1016/S0043-1354(97)00157-7

Kelly, M. G., Adams, C., Graves, A. C., Jamieson, J., Krokowski, J., Lycett, E. B., Murray-Bligh, J., Pritchard, S., & Wilkins, C. (2001). The Trophic Diatom Index: A User’s Manual—R&D Technical Report E2/TR2 (p. 146). Environment Agency.

Kelly, M. G., Cazaubon, A., Coring, E., Dell’Uomo, A., Ector, L., Goldsmith, B., Guasch, H., Hürlimann, J., Jarlman, A., Kawecka, B., Kwandrans, J., Laugaste, R., Lindstrøm, E.-A., Leitao, M., Marvan, P., Padisák, J., Pipp, E., Prygiel, J., Rott, E., … Vizinet, J. (1998). Recommendations for the routine sampling of diatoms for water quality assessments in Europe. Journal of Applied Phycology, 10(2), 215. https://doi.org/10.1023/A:1008033201227

Kelly, M. G., & Whitton, B. A. (1995). The Trophic Diatom Index: A new index for monitoring eutrophication in rivers. Journal of Applied Phycology, 7(4), 433–444. https://doi.org/10.1007/BF00003802

Kelly, M., Juggins, S., Guthrie, R., Pritchard, S., Jamieson, J., Rippey, B., Hirst, H., & Yallop, M. (2008). Assessment of ecological status in U.K. rivers using diatoms. Freshwater Biology, 53(2), 403–422. https://doi.org/10.1111/j.1365-2427.2007.01903.x

Kelly, M. K., & Yallop, M. (2012). A streamlined taxonomy for the Trophic Diatom Index. Environment Agency.

Klemm, D. J., Blocksom, K. A., Fulk, F. A., Herlihy, A. T., Hughes, R. M., Kaufmann, P. R., Peck, D. V., Stoddard, J. L., Thoeny, W. T., Griffith, M. B., & Davis, W. S. (2003). Development and Evaluation of a Macroinvertebrate Biotic Integrity Index (MBII) for Regionally Assessing Mid-Atlantic Highlands Streams. Environmental Management, 31(5), 0656–0669. https://doi.org/10.1007/s00267-002-2945-7

Kociolek, J. P. (2005). A checklist and preliminary bibliography of the recent freshwater diatoms of inland environments of the continental United States. 56(27), 395–525.

Kociolek, J. P. (2006). Some thoughts on the development of a diatom flora for freshwater ecosystems in the continental United States and a listing of recent taxa described from U.S. freshwaters. 57(21), 561–586.

Kolkwitz, R., & Marsson, M. (1908). Ökologie der pflanzlichen Saprobien. Berichte Der Deutschen Botanischen Gesellschaft, 26(7), 505–519. https://doi.org/10.1111/j.1438-8677.1908.tb06722.x

Krammer, K., & Lange-Bertalot, H. (1991). Süßwasserflora von Mitteleuropa 2: Bacillariophyceae 4. Teil: Achnanthaceae Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema (Vol. 2). Gustav Fischer.

Kröger, N., & Poulsen, N. (2008). Diatoms—From Cell Wall Biogenesis to Nanotechnology. Annual Review of Genetics, 42(1), 83–107. https://doi.org/10.1146/annurev.genet.41.110306.130109

Kutschera, U. (2003). The Feeding Strategies of the Leech Erpobdella octoculata (L.): A Laboratory Study. International Review of Hydrobiology, 88(1), 94–101. https://doi.org/10.1002/iroh.200390008

Lange-Bertalot, H., Hofmann, G., Werum, M., & Cantonati, M. (2017). Freshwater benthic diatoms of Central Europe: Over 800 common species used in ecological assessment. (English edition with updated taxonomy and added species). Koeltz Botanical Books, Schmitten-Oberreifenberg.

Lavoie, I., Hamilton, P. B., Morin, S., Kim Tiam, S., Kahlert, M., Gonçalves, S., Falasco, E., Fortin, C., Gontero, B., Heudre, D., Kojadinovic-Sirinelli, M., Manoylov, K., Pandey, L. K., & Taylor, J. C. (2017). Diatom teratologies as biomarkers of contamination: Are all deformities ecologically meaningful? Ecological Indicators, 82, 539–550. https://doi.org/10.1016/j.ecolind.2017.06.048

Lecointe, C., Coste, M., & Prygiel, J. (1993). “Omnidia”: Software for taxonomy, calculation of diatom indices and inventories management. Hydrobiologia, 269(1), 509–513. https://doi.org/10.1007/BF00028048

Lecointe, C., Coste, M., Prygiel, J., & Ector, L. (2008). OMNIDIA version 5.2 software for diatom-based water quality assessment.

Lenoir, A., & Coste, M. (1996). Development of a practical diatom index of overall water quality applicable to the French National Water Board Network. (Use of Algae in Monitoring Rivers II, pp. 29–43). Institut für Botanik.

Lewin, I. (2006). The gastropod communities in the lowland rivers of agricultural areas - their biodiversity and bioindicative value in the ciechanowska upland, Central Poland. Malacologia, 49(1), 7–23. https://doi.org/10.4002/1543-8120-49.1.7

Li, R., Carter, J. A., Xie, S., Zou, S., Gu, Y., Zhu, J., & Xiong, B. (2010). Phytoliths and microcharcoal at Jinluojia archeological site in middle reaches of Yangtze River indicative of paleoclimate and human activity during the last 3000 years. Journal of Archaeological Science, 37(1), 124–132. https://doi.org/10.1016/j.jas.2009.09.022

Loria, A., Cristescu, M. E., & Gonzalez, A. (2019). Mixed evidence for adaptation to environmental pollution. Evolutionary Applications, 12(7), 1259–1273. https://doi.org/10.1111/eva.12782

Luís, A. T., Teixeira, P., Almeida, S. F. P., Ector, L., Matos, J. X., & Ferreira da Silva, E. A. (2009). Impact of Acid Mine Drainage (AMD) on Water Quality, Stream Sediments and Periphytic Diatom Communities in the Surrounding Streams of Aljustrel Mining Area (Portugal). Water, Air, and Soil Pollution, 200(1), 147–167. https://doi.org/10.1007/s11270-008-9900-z

Luoma, S. N., & Rainbow, P. S. (2005). Why Is Metal Bioaccumulation So Variable? Biodynamics as a Unifying Concept. Environmental Science & Technology, 39(7), 1921–1931. https://doi.org/10.1021/es048947e

Majewska, R., D’Alelio, D., & De Stefano, M. (2014). Cocconeis Ehrenberg (Bacillariophyta), a genus dominating diatom communities associated with Posidonia oceanica Delile (monocotyledons) in the Mediterranean Sea. Aquatic Botany, 112, 48–56. https://doi.org/10.1016/j.aquabot.2013.07.008

Mann, D. G., & Droop, S. J. M. (1996). 3. Biodiversity, biogeography and conservation of diatoms. Hydrobiologia, 336(1), 19–32. https://doi.org/10.1007/BF00010816

Mann, K. H. (1955). The ecology of the British freshwater leeches. Journal of Animal Ecology, 24(1), 98–119.

McCune, B., & Grace, J. B. (2002). Chapter 9: Data Transformations. In Analysis of Ecological Communities (pp. 67–79). MjM Software Design.

Medley, C. N., & Clements, W. H. (1998). Responses of Diatom Communities to Heavy Metals in Streams: The Influence of Longitudinal Variation. Ecological Applications, 8(3), 631–644. JSTOR. https://doi.org/10.2307/2641255

Medlin, L. K. (2016). Evolution of the diatoms: Major steps in their evolution and a review of the supporting molecular and morphological evidence. Phycologia, 55(1), 79–103. https://doi.org/10.2216/15-105.1

Metcalfe, J. L. (1989). Biological water quality assessment of running waters based on macroinvertebrate communities: History and present status in Europe. Environmental Pollution, 60(1), 101–139. https://doi.org/10.1016/0269-7491(89)90223-6

meteoblue. (2020). Weerarchief Neerpelt: 2019-08-01—2019-08-31. https://www.meteoblue.com/nl/weer/historyclimate/weatherarchive/neerpel…

Moldovan, M., Rauch, S., Gómez, M., Antonia Palacios, M., & Morrison, G. M. (2001). Bioaccumulation of palladium, platinum and rhodium from urban particulates and sediments by the freshwater isopod Asellus aquaticus. Water Research, 35(17), 4175–4183. https://doi.org/10.1016/S0043-1354(01)00136-1

Montoya-Moreno, Y., & Aguirre-Ramirez, N. (2013). Knowledge to Ecological Preferences in a Tropical Epiphytic Algae to Use with Eutrophication Indicators. Journal of Environmental Protection, 2013. https://doi.org/10.4236/jep.2013.411A004

Morin, S., Duong, T. T., Dabrin, A., Coynel, A., Herlory, O., Baudrimont, M., Delmas, F., Durrieu, G., Schäfer, J., Winterton, P., Blanc, G., & Coste, M. (2008). Long-term survey of heavy-metal pollution, biofilm contamination and diatom community structure in the Riou Mort watershed, South-West France. Environmental Pollution, 151(3), 532–542. https://doi.org/10.1016/j.envpol.2007.04.023

Morin, Soizic, Cordonier, A., Lavoie, I., Arini, A., Blanco, S., Duong, T. T., Tornés, E., Bonet, B., Corcoll, N., Faggiano, L., Laviale, M., Pérès, F., Becares, E., Coste, M., Feurtet-Mazel, A., Fortin, C., Guasch, H., & Sabater, S. (2012). Consistency in Diatom Response to Metal-Contaminated Environments. In H. Guasch, A. Ginebreda, & A. Geiszinger (Eds.), Emerging and Priority Pollutants in Rivers: Bringing Science into River Management Plans (pp. 117–146). Springer. https://doi.org/10.1007/978-3-642-25722-3_5

Morin, Soizic, Duong, T. T., Herlory, O., Feurtet-Mazel, A., & Coste, M. (2008). Cadmium Toxicity and Bioaccumulation in Freshwater Biofilms. Archives of Environmental Contamination and Toxicology, 54(2), 173–186. https://doi.org/10.1007/s00244-007-9022-4

Mosleh, Y. Y., Paris-Palacios, S., & Biagianti-Risbourg, S. (2006). Metallothioneins induction and antioxidative response in aquatic worms Tubifex tubifex (Oligochaeta, Tubificidae) exposed to copper. Chemosphere, 64(1), 121–128. https://doi.org/10.1016/j.chemosphere.2005.10.045

Moss, B. (2008). The Water Framework Directive: Total environment or political compromise? Science of The Total Environment, 400(1), 32–41. https://doi.org/10.1016/j.scitotenv.2008.04.029

Nahmani, J., & Rossi, J.-P. (2003). Soil macroinvertebrates as indicators of pollution by heavy metals. Comptes Rendus Biologies, 326(3), 295–303. https://doi.org/10.1016/S1631-0691(03)00070-2

Nordberg, G., Fowler, B., & Nordberg, M. (Eds.). (2015). Handbook on the Toxicology of Metals—4th Edition (4th Edition). Academic Press/Elsevier. https://www.elsevier.com/books/handbook-on-the-toxicology-of-metals/nor…

Nyrstar. (2019). Balen/Pelt fact sheet. Nyrstar. https://www.nyrstar.com/~/media/Files/N/Nyrstar/operations/melting/2019…

O’Callaghan, I., Harrison, S., Fitzpatrick, D., & Sullivan, T. (2019). The freshwater isopod Asellus aquaticus as a model biomonitor of environmental pollution: A review. Chemosphere, 235, 498–509. https://doi.org/10.1016/j.chemosphere.2019.06.217

Orefice, I., Musella, M., Smerilli, A., Sansone, C., Chandrasekaran, R., Corato, F., & Brunet, C. (2019). Role of nutrient concentrations and water movement on diatom’s productivity in culture. Scientific Reports, 9(1), 1479. https://doi.org/10.1038/s41598-018-37611-6

Palma, P., Ledo, L., & Alvarenga, P. (2015). Assessment of trace element pollution and its environmental risk to freshwater sediments influenced by anthropogenic contributions: The case study of Alqueva reservoir (Guadiana Basin). CATENA, 128, 174–184. https://doi.org/10.1016/j.catena.2015.02.002

Pan, Y., Stevenson, R. J., Hill, B. H., & Herlihy, A. T. (2000). Ecoregions and benthic diatom assemblages in Mid-Atlantic Highlands streams, USA. Journal of the North American Benthological Society, 19(3), 518–540. https://doi.org/10.2307/1468112

Passy, S. I. (2007). Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters. Aquatic Botany, 86(2), 171–178. https://doi.org/10.1016/j.aquabot.2006.09.018

Pawlowski, J., Kelly-Quinn, M., Altermatt, F., Apothéloz-Perret-Gentil, L., Beja, P., Boggero, A., Borja, A., Bouchez, A., Cordier, T., Domaizon, I., Feio, M. J., Filipe, A. F., Fornaroli, R., Graf, W., Herder, J., van der Hoorn, B., Iwan Jones, J., Sagova-Mareckova, M., Moritz, C., … Kahlert, M. (2018). The future of biotic indices in the ecogenomic era: Integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems. Science of The Total Environment, 637–638, 1295–1310. https://doi.org/10.1016/j.scitotenv.2018.05.002

Petelet-Giraud, E., Klaver, G., & Negrel, P. (2009). Natural versus anthropogenic sources in the surface- and groundwater dissolved load of the Dommel river (Meuse basin): Constraints by boron and strontium isotopes and gadolinium anomaly. Journal of Hydrology, 369(3), 336–349. https://doi.org/10.1016/j.jhydrol.2009.02.029

Pienkos, P. T., & Darzins, A. (2009). The promise and challenges of microalgal-derived biofuels. Biofuels, Bioproducts and Biorefining, 3(4), 431–440. https://doi.org/10.1002/bbb.159

Piette, M. H. A., & De Letter, E. A. (2006). Drowning: Still a difficult autopsy diagnosis. Forensic Science International, 163(1), 1–9. https://doi.org/10.1016/j.forsciint.2004.10.027

Postma, J. F., & Groenendijk, D. (1999). Adaptation to metals in the midge Chironomus riparius: A case study in the River Dommel. In V. E. Forbes, Genetics and Ecotoxicology (pp. 79–101). Taylor and Francis. https://books.google.be/books?id=vU4rEqu8_7UC&pg=PA81&dq=Dommel+charact…

Potapova, M. G., & Charles, D. F. (2002). Benthic diatoms in USA rivers: Distributions along spatial and environmental gradients. Journal of Biogeography, 29(2), 167–187. https://doi.org/10.1046/j.1365-2699.2002.00668.x

Potapova, M. G., Charles, D. F., Ponader, K. C., & Winter, D. M. (2004). Quantifying species indicator values for trophic diatom indices: A comparison of approaches. Hydrobiologia, 517(1), 25–41. https://doi.org/10.1023/B:HYDR.0000027335.73651.ea

Prygiel, J., & Coste, M. (1993). Utilisation des indices diatomiques pour la mesure de la qualité des eaux du bassin Artois-Picardie: Bilan et perspectives. Annales de Limnologie - International Journal of Limnology, 29(3), 255–267. https://doi.org/10.1051/limn/1993021

Prygiel, J., & Coste, M. (1995). Les diatomées et le diagnostic de la qualité des eaux courantes continentales: Les principales méthodes indicielles. Vie Milieu, 45, 179–186.

Prygiel, Jean, Carpentier, P., Almeida, S., Coste, M., Druart, J.-C., Ector, L., Guillard, D., Honoré, M.-A., Iserentant, R., Ledeganck, P., Lalanne-Cassou, C., Lesniak, C., Mercier, I., Moncaut, P., Nazart, M., Nouchet, N., Peres, F., Peeters, V., Rimet, F., … Zydek, N. (2002). Determination of the biological diatom index (IBD NF T 90–354): Results of an intercomparison exercise. Journal of Applied Phycology, 14(1), 27–39. https://doi.org/10.1023/A:1015277207328

Prygiel, L., Leveque, L., & Iserentant, R. (1996). Un nouvel Indice Diatomique Pratique pour l’évaluation de la qualité des eaux en réseau de surveillance.

Quintaneiro, C., Ranville, J., & Nogueira, A. J. A. (2015). Effects of the essential metals copper and zinc in two freshwater detritivores species: Biochemical approach. Ecotoxicology and Environmental Safety, 118, 37–46. https://doi.org/10.1016/j.ecoenv.2015.04.006

Rainbow, P. S., & Luoma, S. N. (2011). Metal toxicity, uptake and bioaccumulation in aquatic invertebrates—Modelling zinc in crustaceans. Aquatic Toxicology (Amsterdam, Netherlands), 105(3–4), 455–465. https://doi.org/10.1016/j.aquatox.2011.08.001

Rainbow, P. S., Poirier, L., Smith, B. D., Brix, K. V., & Luoma, S. N. (2006). Trophic transfer of trace metals from the polychaete worm Nereis diversicolor to the polychaete N. virens and the decapod crustacean Palaemonetes varians. Marine Ecology Progress Series, 321, 167–181. https://doi.org/10.3354/meps321167

Rainbow, Philip S. (2002). Trace metal concentrations in aquatic invertebrates: Why and so what? Environmental Pollution, 120(3), 497–507. https://doi.org/10.1016/S0269-7491(02)00238-5

Reátegui-Zirena, E. G., French, A. D., Klein, D. M., & Salice, C. J. (2017). Cadmium Compartmentalization in the Pulmonate Snail Lymnaea stagnalis: Improving Our Understanding of Exposure. Archives of Environmental Contamination and Toxicology, 72(4), 575–585. https://doi.org/10.1007/s00244-017-0407-8

Rosabal, M., Hare, L., & Campbell, P. G. C. (2012). Subcellular metal partitioning in larvae of the insect Chaoborus collected along an environmental metal exposure gradient (Cd, Cu, Ni and Zn). Aquatic Toxicology, 120–121, 67–78. https://doi.org/10.1016/j.aquatox.2012.05.001

Rott, E., Duthie, H. C., & Pipp, E. (1998). Monitoring organic pollution and eutrophication in the Grand River, Ontario, by means of diatoms. Canadian Journal of Fisheries and Aquatic Sciences, 55(6), 1443–1453. https://doi.org/10.1139/f98-038

Round, F. E., Crawford, R. M., & Mann, D. G. (1990). The Diatoms. Biology and Morphology of the Genera. (1 edition). Cambridge University Press.

Sabater, S. (2000). Diatom communities as indicators of environmental stress in the Guadiamar River, S-W. Spain, following a major mine tailings spill. Journal of Applied Phycology, 12(2), 113–124. https://doi.org/10.1023/A:1008197411815

Sarkar, B. (2002). Heavy metals in the environment. CRC Press.

Sbihi, K., Cherifi, O., Bertrand, M., & Gharmali, A. E. (2014). Biosorption of metals (Cd, Cu and Zn) by the freshwater diatom Planothidium lanceolatum: A laboratory study. Diatom Research, 29(1), 55–63. https://doi.org/10.1080/0269249X.2013.872193

Schmidt, T. S., Clements, W. H., Mitchell, K. A., Church, S. E., Wanty, R. B., Fey, D. L., Verplanck, P. L., & Juan, C. A. S. (2010). Development of a new toxic-unit model for the bioassessment of metals in streams. Environmental Toxicology and Chemistry, 29(11), 2432–2442. https://doi.org/10.1002/etc.302

Sekiranda, S. B. K., Okot-Okumu, J., Bugenyi, F. W. B., Ndawula, L. M., & Gandhi, P. (2004). Variation in composition of macro-benthic invertebrates as an indication of water quality status in three bays in Lake Victoria. Uganda Journal of Agricultural Sciences, 9(1), 396–411. https://doi.org/10.4314/ujas.v9i1.

Sgro, G. V., Poole, J. B., & Johansen, J. R. (2007). Diatom species composition and ecology of the Animas river watershed, Colorado, USA. Western North American Naturalist, 67(4), 510–519. https://doi.org/10.3398/1527-0904(2007)67[510:DSCAEO]2.0.CO;2

Shannon, C. E. (1948). A Mathematical Theory of Communication. 27, 379–423, 623–656.

Shikhova, L. N. (2017). Heavy Metals in Soils And Parent Rocks Of Natural Lands in North-East Of European Russia. In Heavy Metals and Other Pollutants in the Environment (pp. 3–30). Apple Academic Press. https://doi.org/10.1201/9781315366029-1

Slàdeček, V. (1973). System of water quality from the biological point of view. 7, 1–218.

Sládeček, V. (1986). Diatoms as Indicators of Organic Pollution. Acta Hydrochimica et Hydrobiologica, 14(5), 555–566. https://doi.org/10.1002/aheh.19860140519

Smol, J. P., & Stoermer, E. F. (2010). The Diatoms: Applications for the Environmental and Earth Sciences (2nd edition). Cambridge University Press.

Šporka, F., Vlek, H. E., Bulánková, E., & Krno, I. (2006). Influence of seasonal variation on bioassessment of streams using macroinvertebrates. In M. T. Furse, D. Hering, K. Brabec, A. Buffagni, L. Sandin, & P. F. M. Verdonschot (Eds.), The Ecological Status of European Rivers: Evaluation and Intercalibration of Assessment Methods (pp. 543–555). Springer Netherlands. https://doi.org/10.1007/978-1-4020-5493-8_36

Stocchino, G. A., & Manconi, R. (2013). Overview of life cycles in model species of the genus Dugesia (Platyhelminthes: Tricladida). Italian Journal of Zoology, 80(3), 319–328. https://doi.org/10.1080/11250003.2013.822025

Stockdale, A., Tipping, E., Lofts, S., Ormerod, S. J., Clements, W. H., & Blust, R. (2010). Toxicity of proton–metal mixtures in the field: Linking stream macroinvertebrate species diversity to chemical speciation and bioavailability. Aquatic Toxicology, 100(1), 112–119. https://doi.org/10.1016/j.aquatox.2010.07.018

Stone, J. R., Westover, K. S., & Cohen, A. S. (2011). Late Pleistocene paleohydrography and diatom paleoecology of the central basin of Lake Malawi, Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 303(1), 51–70. https://doi.org/10.1016/j.palaeo.2010.01.012

Toro, D. M. D., Allen, H. E., Bergman, H. L., Meyer, J. S., Paquin, P. R., & Santore, R. C. (2001). Biotic ligand model of the acute toxicity of metals. 1. Technical Basis. Environmental Toxicology and Chemistry, 20(10), 2383–2396. https://doi.org/10.1002/etc.5620201034

Uchida, N., Kubota, K., Aita, S., & Kazama, S. (2020). Aquatic insect community structure revealed by eDNA metabarcoding derives indices for environmental assessment. PeerJ, 8. https://doi.org/10.7717/peerj.9176

van Dam, H., Mertens, A., & Sinkeldam, J. (1994). A coded checklist and ecological indicator values of freshwater diatoms from The Netherlands. Netherland Journal of Aquatic Ecology, 28(1), 117–133. https://doi.org/10.1007/BF02334251

Van de Vijver, B., & Beyens, L. (1998). Diatoms and water quality in the Kleine Nete, a Belgian lowland stream. Limnologica, 28(2), 145–152.

Van de Vijver, Bart, Beyens, L., Vincke, S., & Gremmen, N. J. M. (2004). Moss-inhabiting diatom communities from Heard Island, sub-Antarctic. Polar Biology, 27(9), 532–543. https://doi.org/10.1007/s00300-004-0629-x

van der Werff, A. (1953). A new method of concentrating and cleaning diatoms and other organisms. SIL Proceedings, 12(1), 276–277. https://doi.org/10.1080/03680770.1950.11895297

Van Ginneken, M., De Jonge, M., Bervoets, L., & Blust, R. (2015). Uptake and toxicity of Cd, Cu and Pb mixtures in the isopod Asellus aquaticus from waterborne exposure. Science of The Total Environment, 537, 170–179. https://doi.org/10.1016/j.scitotenv.2015.07.153

van Hattum, B., de Voogt, P., van den Bosch, L., van Straalen, N. M., Joosse, E. N. G., & Govers, H. (1989). Bioaccumulation of cadmium by the freshwater isopod Asellus aquaticus (L.) from aqueous and dietary sources. Environmental Pollution, 62(2), 129–151. https://doi.org/10.1016/0269-7491(89)90183-8

van Hattum, B., Timmermans, K. R., & Govers, H. A. (1991). Abiotic and biotic factors influencing in situ trace metal levels in macroinvertebrates in freshwater ecosystems. Environmental Toxicology and Chemistry, 10(2), 275–292. https://doi.org/10.1002/etc.5620100217

Van Thuyne, G., Breine, J., & Belpaire, C. (2009). Visbestanden op de Dommel in het kader van de sanering van de bodem … (p. 59). INBO. https://issuu.com/vlaanderen-be/docs/c2eabbfc-34af-44d8-b42c-ba5d350824…

Vasselon, V., Rimet, F., Tapolczai, K., & Bouchez, A. (2017). Assessing ecological status with diatoms DNA metabarcoding: Scaling-up on a WFD monitoring network (Mayotte island, France). Ecological Indicators, 82, 1–12. https://doi.org/10.1016/j.ecolind.2017.06.024

VMM. (2014). Druk en impact analyse in afstroomzone (VL05_136). Vlaamse Milieumaatschappij.

VMM. (2020). Geoloket. Geoloket Water. http://geoloket.vmm.be/

Waite, I. R., Herlihy, A. T., Larsen, D. P., Urquhart, N. S., & Klemm, D. J. (2004). The effects of macroinvertebrate taxonomic resolution in large landscape bioassessments: An example from the Mid-Atlantic Highlands, U.S.A. Freshwater Biology, 49(4), 474–489. https://doi.org/10.1111/j.1365-2427.2004.01197.x

Wallace, J. B., & Webster, J. R. (1996). The Role of Macroinvertebrates in Stream Ecosystem Function. Annual Review of Entomology, 41(1), 115–139. https://doi.org/10.1146/annurev.en.41.010196.000555

Waterschap De Dommel. (2019). Factsheet waterlichaam Boven Dommel (NL27_BO_1_2). Waterschap De Dommel.

Waterschap De Dommel. (2020). Werkgebied [Pagina]. Waterschap De Dommel; Waterschap De Dommel. /werkgebied

Weckström, K., & Juggins, S. (2006). Coastal Diatom–Environment Relationships from the Gulf of Finland, Baltic Sea1. Journal of Phycology, 42(1), 21–35. https://doi.org/10.1111/j.1529-8817.2006.00166.x

Weigand, H., Weiss, M., Cai, H., Li, Y., Yu, L., Zhang, C., & Leese, F. (2018). Fishing in troubled waters: Revealing genomic signatures of local adaptation in response to freshwater pollutants in two macroinvertebrates. Science of The Total Environment, 633, 875–891. https://doi.org/10.1016/j.scitotenv.2018.03.109

Wetzel, C. E., Lange-Bertalot, H., & Ector, L. (2017). Type analysis of Achnanthes oblongella Østrup and resurrection of Achnanthes saxonica Krasske (Bacillariophyta). Nova Hedwigia, Beihefte, 146, 209–227. https://doi.org/10.1127/1438-9134/2017/209

Wetzel, Carlos E., Martínez-Carreras, N., Hlúbiková, D., Hoffmann, L., Pfister &, L., & Ector, L. (2013). New Combinations and Type Analysis of Chamaepinnularia Species (Bacillariophyceae) from Aerial Habitats. Cryptogamie, Algologie, 34(2), 149–168. https://doi.org/10.7872/crya.v34.iss2.2013.149

Winder, M., & Schindler, D. E. (2004). Climate Change Uncouples Trophic Interactions in an Aquatic Ecosystem. Ecology, 85(8), 2100–2106. https://doi.org/10.1890/04-0151

Witkowski, A., Cedro, B., Kierzek, A., & Baranowski, D. (2009). Diatoms as a proxy in reconstructing the Holocene environmental changes in the south-western Baltic Sea: The lower Rega River Valley sedimentary record. In K. Buczkó, J. Korponai, J. Padisák, & S. W. Starratt (Eds.), Palaeolimnological Proxies as Tools of Environmental Reconstruction in Fresh Water (pp. 155–172). Springer Netherlands. https://doi.org/10.1007/978-90-481-3387-1_9

Wu, X., Cobbina, S. J., Mao, G., Xu, H., Zhang, Z., & Yang, L. (2016). A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environmental Science and Pollution Research, 23(9), 8244–8259. https://doi.org/10.1007/s11356-016-6333-x

Zaikov, G. E., Weisfeld, L. I., Lisitsyn, E. M., & Bekuzarova, S. A. (Eds.). (2017). Heavy metals and other pollutants in the environment. Apple Academic Press.

Zelinka, M., & Marvan, P. (1961). Zur Präzisierung der biologischen Klassifikation des Rheinhet fliessender Gewässer. 57, 389–407.

Zhang, Y., Peng, C., Wang, J., Huang, S., Hu, Y., Zhang, J., & Li, D. (2019). Temperature and silicate are significant driving factors for the seasonal shift of dominant diatoms in a drinking water reservoir. Journal of Oceanology and Limnology, 37(2), 568–579. https://doi.org/10.1007/s00343-019-8040-1

Zurzolo, C., & Bowler, C. (2001). Exploring Bioinorganic Pattern Formation in Diatoms. A Story of Polarized Trafficking. Plant Physiology, 127(4), 1339–1345. https://doi.org/10.1104/pp.010709

Download scriptie (12.5 MB)
Universiteit of Hogeschool
Universiteit Antwerpen
Thesis jaar
2020
Promotor(en)
Prof. Dr. Lieven Bervoets, Prof. Dr. Bart Van de Vijver