Membranen en nanotechnologie: op weg naar carbon capture?

Daan
Van Havere
  • Raymond
    Thür

Een probleem van wereldformaat

Wie de laatste maanden een krant las, kwam zonder twijfel enkele eigenaardige artikels tegen. België staat droog, bossen branden van Noord-Amerika tot Australië en de poolkappen blijven smelten. Tegelijkertijd noteert het KMI recordtemperatuur na recordtemperatuur. We kunnen niet langer om klimaatverandering heen en het wordt steeds urgenter om dit probleem aan te pakken. Zoals Barack Obama ooit zei:

“We are the first generation to feel the effect of climate change and the last generation who can do something about it.”

Een onzichtbare, minuscule dader

Een van de voornaamste oorzaken van klimaatverandering is het massaal verbranden van fossiele brandstoffen zoals kool, olie en aardgas. Bij elk van deze verbrandingsprocessen komt koolstofdioxide (CO2) vrij. Wanneer CO2 in de atmosfeer terechtkomt, draagt het bij tot de gestage opwarming van de aarde. Natuurlijk is de voornaamste oplossing het drastisch verminderen van de hoeveelheid CO2 die we produceren. Helaas wordt momenteel 64% van onze elektriciteit (wereldwijd) geproduceerd door het verbranden van fossiele brandstoffen en rijdt het merendeel van onze auto’s op benzine of diesel.

Daarom kijkt men als kortetermijnoplossing naar het opvangen van CO2 aan de bron, rechtstreeks aan de uitlaat van een energiecentrale. Opgevangen CO2 zou dan ondergronds opgeslagen kunnen worden of gebruikt kunnen worden als grondstof voor plastics en brandstoffen. Maar, CO2 opvangen is niet eenvoudig. Eerst en vooral worden er enorme hoeveelheden CO2 geproduceerd, in 2018 alleen al meer dan 33 miljard ton. Daarnaast bestaat de uitstoot van een energiecentrale maar voor 20% uit CO2 en dus voor 80% uit andere gassen. Deze gassen kunnen we wel terug in de atmosfeer loslaten en maar goed ook, want zo een gigantisch volume opslaan is nagenoeg onmogelijk. Bijgevolg moeten we in staat zijn CO2 van andere gassen af te scheiden. Ook dit is geen gemakkelijke opgave, want CO2 is gigantisch klein, wel 1000x kleiner dan een virus.

CO2-zuiverende koffiefilters

Gelukkig zijn gasscheidingsmembranen in staat om CO2-scheidingen uit te voeren en dus CO2 op te vangen. Bovendien zijn gasscheidingsmembranen energie- en milieuvriendelijk; beiden cruciaal als we het klimaat vooruit willen helpen. Centraal bij gasscheidingsmembranen staat uiteraard het membraan, dat werkt als een ultra-fijne koffiefilter. Het laat enkel CO2 door en houdt de andere gassen tegen, net zoals een koffiefilter het koffiegruis tegenhoudt en koffie doorlaat. De overgebleven gassen kunnen we vervolgens loslaten in de atmosfeer, terwijl de zuivere CO2 verder verwerkt wordt.

You can’t have it all

Typische membranen bestaan uit polymeren. Deze zijn vereenvoudigd te beschrijven als een ‘plastic folie’ met specifieke chemische eigenschappen. De voornaamste eigenschappen waar membraantechnologen naar op zoek gaan, zijn een hoge selectiviteit en een hoge permeabiliteit. Een hoge selectiviteit zorgt ervoor dat de membranen enkel CO2 doorlaten (en geen andere gassen). De permeabiliteit verwijst naar hoe snel CO2 doorheen het membraan getransporteerd wordt. Hoge permeabiliteit is cruciaal om de enorme hoeveelheden gas die geproduceerd worden in een energiecentrale te behandelen. Helaas zit er een addertje onder het gras. Proefondervindelijk is namelijk gebleken dat de inherente eigenschappen van polymeren het moeilijk maken om een hoge permeabiliteit met een hoge selectiviteit te combineren.

De oplossing? Mixed matrix membranen

Gelukkig is wetenschap veerkrachtig en staat een andere tak klaar om membranen een handje te helpen: de nanotechnologie. ‘Mixed matrix membranen’ verwijst naar het combineren van polymeren met verschillende ‘vullers’. Deze nanometer grote vullers zijn poreus, waardoor gassen er vlot doorheen getransporteerd worden en dus een hoge permeabiliteit bereikt wordt. Bovendien interageren ze sterk met CO2, waardoor de selectiviteit van het membraan behouden blijft of zelfs een stuk hoger kan liggen dan die van pure polymeren.

image 550

Toch is het wederom niet zo eenvoudig. Er zijn duizenden vullers beschikbaar en evenveel polymeren om ze mee te combineren. Je hoeft geen expert in combinatieleer te zijn om te zien dat elke combinatie testen enorm veel tijd vraagt. Bovendien kan het toevoegen van vullers in sommige gevallen zorgen voor ‘lekke’ membranen, met als resultaat dat ook andere gassen dan CO2 snel door het membraan getransporteerd worden. Het zou dus interessant zijn om op basis van meetbare eigenschappen van het polymeer en de vuller te kunnen voorspellen of een bepaalde combinatie (goed) werkt. Momenteel bestaan dergelijke criteria niet en loopt de zoektocht naar optimale mixed matrix membranen via een trial-and-error-procedure.

Op naar rationeel design!

In mijn thesis heb ik een aanzet gegeven naar dergelijke criteria. Ik onderzocht welke vullereigenschappen een invloed hebben op het gedrag van mixed matrix membranen. De aanpak bestond uit drie stappen. In eerste instantie werd een reeks vulmaterialen ontwikkeld met een gelijkaardige basisstructuur, maar verschillende chemische eigenschappen. In een volgende stap zijn de chemische eigenschappen van deze vullers en het gasscheidingsgedrag van mixed matrix membranen gekwantificeerd. Tot slot onderzocht ik het verband tussen de vullereigenschappen en de (hoge) selectiviteit en permeabiliteit van deze mixed matrix membranen.

Het resultaat: een indicator en een kritische blik

Eerst en vooral, goed nieuws! Eén van de onderzochte vullereigenschappen bleek een duidelijk verband te vertonen met de permeabiliteit van mixed matrix membranen, namelijk de sorptiewarmte van CO2 in de vuller. In mensentaal betekent dit ‘hoe sterk CO2 aan het materiaal plakt’. In het systeem dat ik onderzocht heb, kan deze eigenschap interessant zijn om de permeabiliteit van mixed matrix membranen te voorspellen.

Dit onderzoek leverde ook een kritische kanttekening op. In de mixed matrix membranen-literatuur worden eigenschappen, zoals de hoeveelheid CO2 die in de vuller kan worden opgeslagen of sorptiewarmte gebruikt als verklaring voor de hogere selectiviteit van mixed matrix membranen in vergelijking met hun puur polymeer tegenhangers. Daarentegen toonde mijn onderzoek aan dat er geen verband bestaat tussen deze eigenschappen en de selectiviteit. Een hoge waarde voor deze eigenschappen blijkt dus geen garantie voor een hoge selectiviteit.

De volgende stap

Natuurlijk zijn niet enkel de vullereigenschappen belangrijk in het bepalen van de mixed matrix membraaneigenschappen, ook het polymeer speelt een cruciale rol. Bovendien gaat de manier waarop polymeer en vuller interageren een belangrijke bijdrage leveren tot de uiteindelijke membraaneigenschappen. Het is essentieel om ook deze zaken te onderzoeken en zo tot rationeel mixed matrix membraandesign te komen. Voer voor een volgende thesis!

Bibliografie

[1]       M. Galizia, W.S. Chi, Z.P. Smith, T.C. Merkel, R.W. Baker, B.D. Freeman, 50th Anniversary Perspective: Polymers and Mixed Matrix Membranes for Gas and Vapor Separation: A Review and Prospective Opportunities, Macromolecules. 50 (2017) 7809–7843. doi:10.1021/acs.macromol.7b01718.

[2]       S. Nakao, K. Yogo, K. Goto, T. Kai, H. Yamada, Advanced CO2 Capture Technologies, Springer International Publishing, 2019. doi:10.1007/978-3-030-18858-0.

[3]       Moonshot: Vlaanderen CO2-arm in 2050 | Agentschap Innoveren en Ondernemen, (n.d.). https://www.vlaio.be/nl/nieuws/moonshot-vlaanderen-co2-arm-2050 (accessed March 1, 2020).

[4]       EU Emissions Trading System (EU ETS) | Climate Action, (n.d.). https://ec.europa.eu/clima/policies/ets_en (accessed April 23, 2020).

[5]       Een Europese Green Deal | Europese Commissie, (n.d.). https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-… (accessed March 1, 2020).

[6]       D.F. Sanders, Z.P. Smith, R. Guo, L.M. Robeson, J.E. McGrath, D.R. Paul, B.D. Freeman, Energy-efficient polymeric gas separation membranes for a sustainable future: A review, Polymer (Guildf). 54 (2013) 4729–4761. doi:10.1016/j.polymer.2013.05.075.

[7]       M.A. Mac Kinnon, J. Brouwer, S. Samuelsen, The role of natural gas and its infrastructure in mitigating greenhouse gas emissions, improving regional air quality, and renewable resource integration, Prog. Energy Combust. Sci. 64 (2018) 62–92. doi:10.1016/j.pecs.2017.10.002.

[8]       M. Garside, • Global natural gas consumption 2018 | Statista, (n.d.). https://www.statista.com/statistics/282717/global-natural-gas-consumpti… (accessed September 4, 2019).

[9]       M.A. Mac Kinnon, J. Brouwer, S. Samuelsen, The role of natural gas and its infrastructure in mitigating greenhouse gas emissions, improving regional air quality, and renewable resource integration, Prog. Energy Combust. Sci. (2018). doi:10.1016/j.pecs.2017.10.002.

[10]     S. Roussanaly, R. Anantharaman, K. Lindqvist, Multi-criteria analyses of two solvent and one low-temperature concepts for acid gas removal from natural gas, J. Nat. Gas Sci. Eng. 20 (2014) 38–49. doi:10.1016/j.jngse.2014.05.027.

[11]     S. Faramawy, T. Zaki, A.A.E. Sakr, Natural gas origin, composition, and processing: A review, J. Nat. Gas Sci. Eng. 34 (2016) 34–54. doi:10.1016/j.jngse.2016.06.030.

[12]     X.Y. Chen, H. Vinh-Thang, A.A. Ramirez, D. Rodrigue, S. Kaliaguine, Membrane gas separation technologies for biogas upgrading, RSC Adv. 5 (2015) 24399–24448. doi:10.1039/c5ra00666j.

[13]     R.W. Baker, K. Lokhandwala, Natural gas processing with membranes: An overview, Ind. Eng. Chem. Res. 47 (2008) 2109–2121. doi:10.1021/ie071083w.

[14]     European environmental agency, CO2 emission intensity, (2016). https://www.eea.europa.eu/data-and-maps/daviz/co2-emission-intensity-5#… Union (current composition)%22%5D%7D%7D (accessed October 11, 2019).

[15]     CO2 Emissions from Fuel Combustion 2019: Overview – Analysis - IEA, (n.d.). https://www.iea.org/reports/co2-emissions-from-fuel-combustion-2019-2 (accessed December 19, 2019).

[16]     R. Khalilpour, K. Mumford, H. Zhai, A. Abbas, G. Stevens, E.S. Rubin, Membrane-based carbon capture from flue gas: A review, J. Clean. Prod. 103 (2015) 286–300. doi:10.1016/j.jclepro.2014.10.050.

[17]     O. de Q.F. Araújo, J.L. de Medeiros, Carbon capture and storage technologies: present scenario and drivers of innovation, Curr. Opin. Chem. Eng. 17 (2017) 22–34. doi:10.1016/j.coche.2017.05.004.

[18]     The Future of Hydrogen – Analysis - IEA, (n.d.). https://www.iea.org/reports/the-future-of-hydrogen (accessed December 19, 2019).

[19]     T.L. Levalley, A.R. Richard, M. Fan, The progress in water gas shift and steam reforming hydrogen production technologies - A review, Int. J. Hydrogen Energy. 39 (2014) 16983–17000. doi:10.1016/j.ijhydene.2014.08.041.

[20]     H. Lin, Z. He, Z. Sun, J. Vu, A. Ng, M. Mohammed, J. Kniep, T.C. Merkel, T. Wu, R.C. Lambrecht, CO2-selective membranes for hydrogen production and CO2 capture - Part I: Membrane development, J. Memb. Sci. 457 (2014) 149–161. doi:10.1016/j.memsci.2014.01.020.

[21]     R.W. Baker, Membrane Technology and Applications, John Wiley & Sons, Ltd, Chichester, UK, 2004. doi:10.1002/0470020393.

[22]     V. Stannett, The transport of gases in synthetic polymeric membranes - an historic perspective, J. Memb. Sci. 3 (1978) 97–115. doi:10.1016/S0376-7388(00)83016-1.

[23]     R.W. Baker, Future directions of membrane gas separation technology, Ind. Eng. Chem. Res. 41 (2002) 1393–1411. doi:10.1021/ie0108088.

[24]     M. Mulder, Basic principles of membrane technology, 2nd ed., Kluwer Academic, 1996. doi:10.1007/978-94-009-1766-8.

[25]     E. V. Perez, C. Karunaweera, I.H. Musselman, K.J. Balkus, J.P. Ferraris, Origins and evolution of inorganic-based and MOF-based mixed-matrix membranes for gas separations, Processes. 4 (2016). doi:10.3390/pr4030032.

[26]     S. Matteucci, Y. Yampolskii, B.D. Freeman, I. Pinnau, Transport of Gases and Vapors in Glassy and Rubbery Polymers, in: Mater. Sci. Membr. Gas Vap. Sep., John Wiley & Sons, Ltd, 2006: pp. 1–47. doi:10.1002/047002903X.ch1.

[27]     R.W. Baker, B.T. Low, Gas separation membrane materials: A perspective, Macromolecules. 47 (2014) 6999–7013. doi:10.1021/ma501488s.

[28]     C.A. Scholes, G.W. Stevens, S.E. Kentish, Membrane gas separation applications in natural gas processing, Fuel. 96 (2012) 15–28. doi:10.1016/j.fuel.2011.12.074.

[29]     P. Bernardo, E. Drioli, G. Golemme, Membrane gas separation: A review/state of the art, Ind. Eng. Chem. Res. 48 (2009) 4638–4663. doi:10.1021/ie8019032.

[30]     S.E. Kentish, C.A. Scholes, G.W. Stevens, Carbon Dioxide Separation through Polymeric Membrane Systems for Flue Gas Applications, Recent Patents Chem. Eng. 1 (2010) 52–66. doi:10.2174/1874478810801010052.

[31]     Cellulose Acetate, (n.d.). http://ww.polymerdatabase.com/polymers/Cellulose Acetate.html (accessed October 1, 2019).

[32]     Y.W. Jeon, D.H. Lee, Gas membranes for CO2/CH4 (biogas) separation: A review, Environ. Eng. Sci. 32 (2015) 71–85. doi:10.1089/ees.2014.0413.

[33]     A. Bos, I.G.M. Pünt, M. Wessling, H. Strathmann, CO2-induced plasticization phenomena in glassy polymers, J. Memb. Sci. 155 (1999) 67–78. doi:10.1016/S0376-7388(98)00299-3.

[34]     E.P. Favvas, F.K. Katsaros, S.K. Papageorgiou, A.A. Sapalidis, A.C. Mitropoulos, A review of the latest development of polyimide based membranes for CO2 separations, React. Funct. Polym. 120 (2017) 104–130. doi:10.1016/j.reactfunctpolym.2017.09.002.

[35]     S. Sridhar, R.S. Veerapur, M.B. Patil, K.B. Gudasi, T.M. Aminabhavi, Matrimid polyimide membranes for the separation of carbon dioxide from methane, J. Appl. Polym. Sci. 106 (2007) 1585–1594. doi:10.1002/app.26306.

[36]     I. Ugo Moretti, CHAPTER 9. Polymeric Membrane-based Plants for Biogas Upgrading, in: 2017: pp. 242–255. doi:10.1039/9781788010436-00242.

[37]     S.A. Stern, Y. Mi, H. Yamamoto, A.K. St. Clair, Structure/permeability relationships of polyimide membranes. Applications to the separation of gas mixtures, J. Polym. Sci. Part B Polym. Phys. 27 (1989) 1887–1909. doi:10.1002/polb.1989.090270908.

[38]     C. Staudt-Bickel, W. J. Koros, Improvement of CO2/CH4 separation characteristics of polyimides by chemical crosslinking, J. Memb. Sci. 155 (1999) 145–154. doi:10.1016/S0376-7388(98)00306-8.

[39]     W. Qiu, L. Xu, C.C. Chen, D.R. Paul, W.J. Koros, Gas separation performance of 6FDA-based polyimides with different chemical structures, Polymer (Guildf). 54 (2013) 6226–6235. doi:10.1016/j.polymer.2013.09.007.

[40]     A.M. Kratochvil, W.J. Koros, Decarboxylation-induced cross-linking of a polyimide for enhanced CO 2 plasticization resistance, Macromolecules. 41 (2008) 7920–7927. doi:10.1021/ma801586f.

[41]     C.A. Scholes, W.X. Tao, G.W. Stevens, S.E. Kentish, Sorption of methane, nitrogen, carbon dioxide, and water in Matrimid 5218, J. Appl. Polym. Sci. 117 (2010) 2284–2289. doi:10.1002/app.32148.

[42]     H. Julian, I.G. Wenten, Polysulfone membranes for CO 2 /CH 4 separation: State of the art, IOSR J. Eng. 2 (2012) 484–495. doi:10.9790/3021-0203484495.

[43]     J.S. McHattie, W.J. Koros, D.R. Paul, Gas transport properties of polysulphones: 1. Role of symmetry of methyl group placement on bisphenol rings, Polymer (Guildf). 32 (1991) 840–850. doi:10.1016/0032-3861(91)90508-G.

[44]     H. Vogel, C.S. Marvel, Polybenzimidazoles, new thermally stable polymeres, J. Polym. Sci. Part A Polym. Chem. 34 (1996) 1125–1153. doi:10.1002/pola.1996.826.

[45]     X. Li, R.P. Singh, K.W. Dudeck, K.A. Berchtold, B.C. Benicewicz, Influence of polybenzimidazole main chain structure on H2/CO2 separation at elevated temperatures, J. Memb. Sci. 461 (2014) 59–68. doi:10.1016/j.memsci.2014.03.008.

[46]     K.A. Stevens, J.D. Moon, H. Borjigin, R. Liu, R.M. Joseph, J.S. Riffle, B.D. Freeman, Influence of temperature on gas transport properties of tetraaminodiphenylsulfone (TADPS) based polybenzimidazoles, J. Memb. Sci. 593 (2020) 117427. doi:10.1016/j.memsci.2019.117427.

[47]     R.P. Singh, G.J. Dahe, K.W. Dudeck, C.F. Welch, K.A. Berchtold, High temperature polybenzimidazole hollow fiber membranes for hydrogen separation and carbon dioxide capture from synthesis gas, in: Energy Procedia, Elsevier Ltd, 2014: pp. 153–159. doi:10.1016/j.egypro.2014.11.015.

[48]     P.M. Budd, K.J. Msayib, C.E. Tattershall, B.S. Ghanem, K.J. Reynolds, N.B. McKeown, D. Fritsch, Gas separation membranes from polymers of intrinsic microporosity, J. Memb. Sci. 251 (2005) 263–269. doi:10.1016/j.memsci.2005.01.009.

[49]     C. Ma, J.J. Urban, Polymers of Intrinsic Microporosity (PIMs) Gas Separation Membranes: A mini Review, Proc. Nat. Res. Soc. 2 (2018). doi:10.11605/j.pnrs.201802002.

[50]     R. Swaidan, B. Ghanem, E. Litwiller, I. Pinnau, Physical Aging, Plasticization and Their Effects on Gas Permeation in “rigid” Polymers of Intrinsic Microporosity, Macromolecules. 48 (2015) 6553–6561. doi:10.1021/acs.macromol.5b01581.

[51]     N.B. McKeown, P.M. Budd, Polymers of intrinsic microporosity (PIMs): Organic materials for membrane separations, heterogeneous catalysis and hydrogen storage, Chem. Soc. Rev. 35 (2006) 675–683. doi:10.1039/b600349d.

[52]     H.B. Park, C.H. Jung, Y.M. Lee, A.J. Hill, S.J. Pas, S.T. Mudie, E. Van Wagner, B.D. Freeman, D.J. Cookson, Polymers with cavities tuned for fast selective transport of small molecules and ions, Science (80-. ). 318 (2007) 254–258. doi:10.1126/science.1146744.

[53]     Z.P. Smith, D.F. Sanders, C.P. Ribeiro, R. Guo, B.D. Freeman, D.R. Paul, J.E. McGrath, S. Swinnea, Gas sorption and characterization of thermally rearranged polyimides based on 3,3’-dihydroxy-4,4’-diamino-biphenyl (HAB) and 2,2’-bis-(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA), J. Memb. Sci. 415–416 (2012) 558–567. doi:10.1016/j.memsci.2012.05.050.

[54]     M.G. Buonomenna, W. Yave, G. Golemme, Some approaches for high performance polymer based membranes for gas separation: block copolymers, carbon molecular sieves and mixed matrix membranes, RSC Adv. 2 (2012) 10745. doi:10.1039/c2ra20748f.

[55]     M. Malankowska, L. Martínez-Izquierdo, J. Sánchez-Laínez, C. Téllez, J. Coronas, Poly(ether-block-amide) copolymer membrane for CO 2 /N 2 separation: the influence of the casting solution concentration on its morphology, thermal properties and gas separation performance, (2019). doi:10.1098/rsos.190866.

[56]     V.I. Bondar, B.D. Freeman, I. Pinnau, Gas transport properties of poly(ether-b-amide) segmented block copolymers, J. Polym. Sci. Part B Polym. Phys. 38 (2000) 2051–2062. doi:10.1002/1099-0488(20000801)38:15<2051::AID-POLB100>3.0.CO;2-D.

[57]     P. Klingberg, K. Wilkner, M. Schlüter, J. Grünauer, S. Shishatskiy, Separation of Carbon Dioxide from Real Power Plant Flue Gases by Gas Permeation Using a Supported Ionic Liquid Membrane: An Investigation of Membrane Stability, Membranes (Basel). 9 (2019) 35. doi:10.3390/membranes9030035.

[58]     X. He, The Latest Development on Membrane Materials and Processes for Post-combustion CO 2 Capture: A Review, Sci. Publ. LLC., |. SF J Mater. Chem Eng. 1 (2018) 1009. https://scienceforecastoa.com/ (accessed November 22, 2019).

[59]     K. Xie, Q. Fu, J. Kim, H. Lu, Y. He, Q. Zhao, J. Scofield, P.A. Webley, G.G. Qiao, Increasing both selectivity and permeability of mixed-matrix membranes: Sealing the external surface of porous MOF nanoparticles, J. Memb. Sci. 535 (2017) 350–356. doi:10.1016/j.memsci.2017.04.022.

[60]     T. Khosravi, M. Omidkhah, Preparation of CO2 selective composite membranes using Pebax/CuBTC/PEG-ran-PPG ternary system, J. Energy Chem. 26 (2017) 530–539. doi:10.1016/j.jechem.2016.10.013.

[61]     X.Y. Chen, H. Vinh-Thang, A. Avalos Ramirez, D. Rodrigue, S. Kaliaguine, Membrane gas separation technologies for biogas upgrading, (2015). doi:10.1039/c5ra00666j.

[62]     S. Meshkat, S. Kaliaguine, D. Rodrigue, Enhancing CO 2 separation performance of Pebax® MH-1657 with aromatic carboxylic acids, (2018). doi:10.1016/j.seppur.2018.12.008.

[63]     K. Tanaka, H. Kita, M. Okano, K. ichi Okamoto, Permeability and permselectivity of gases in fluorinated and non-fluorinated polyimides, Polymer (Guildf). 33 (1992) 585–592. doi:10.1016/0032-3861(92)90736-G.

[64]     L.M. Robeson, Q. Liu, B.D. Freeman, D.R. Paul, Comparison of transport properties of rubbery and glassy polymers and the relevance to the upper bound relationship, J. Memb. Sci. 476 (2015) 421–431. doi:10.1016/j.memsci.2014.11.058.

[65]     C.A. Scholes, W.X. Tao, G.W. Stevens, S.E. Kentish, Sorption of methane, nitrogen, carbon dioxide, and water in Matrimid 5218, J. Appl. Polym. Sci. 117 (2010) 2284–2289. doi:10.1002/app.32148.

[66]     E. Smit, M.H.V. Mulder, C.A. Smolders, H. Karrenbeld, J. van Eerden, D. Feil, Modelling of the diffusion of carbon dioxide in polyimide matrices by computer simulation, J. Memb. Sci. 73 (1992) 247–257. doi:10.1016/0376-7388(92)80133-5.

[67]     M.I. Artsis, A.E. Chalykh, N.A. Khalturinskii, Y. V. Moiseev, G.E. Zaikov, Diffusion of organic diluents into ethyl cellulose, Eur. Polym. J. 8 (1972) 613–626. doi:10.1016/0014-3057(72)90137-1.

[68]     L.M. Robeson, Polymer membranes for gas separation, Curr. Opin. Solid State Mater. Sci. 4 (1999) 549–552. doi:10.1016/S1359-0286(00)00014-0.

[69]     L.M. Robeson, The upper bound revisited, J. Memb. Sci. 320 (2008) 390–400. doi:10.1016/j.memsci.2008.04.030.

[70]     H.B. Park, J. Kamcev, L.M. Robeson, M. Elimelech, B.D. Freeman, Maximizing the right stuff: The trade-off between membrane permeability and selectivity, Science (80-. ). 356 (2017) 1138–1148. doi:10.1126/science.aab0530.

[71]     M.S. Suleman, K.K. Lau, Y.F. Yeong, Plasticization and Swelling in Polymeric Membranes in CO2 Removal from Natural Gas, Chem. Eng. Technol. 39 (2016) 1604–1616. doi:10.1002/ceat.201500495.

[72]     J. Adewole, A. Ahmad, S. Ismail, C. Leo, N. Tebal, S. Prai Selatan, P. Pinang, Current challenges in membrane separation of CO 2 from natural gas: A review, Int. J. Greenh. Gas Control. 17 (2013) 46–65. doi:10.1016/j.ijggc.2013.04.012.

[73]     A.F. Ismail, W. Lorna, Penetrant-induced plasticization phenomenon in glassy polymers for gas separation membrane, Sep. Purif. Technol. 27 (2002) 173–194. doi:10.1016/S1383-5866(01)00211-8.

[74]     M. Wessling, M. Lidon Lopez, H. Strathmann, Accelerated plasticization of thin-film composite membranes used in gas separation, Sep. Purif. Technol. 24 (2001) 223–233. doi:10.1016/S1383-5866(01)00127-7.

[75]     J. Xia, T.S. Chung, P. Li, N.R. Horn, D.R. Paul, Aging and carbon dioxide plasticization of thin polyetherimide films, Polymer (Guildf). 53 (2012) 2099–2108. doi:10.1016/j.polymer.2012.03.009.

[76]     N. Schmeling, R. Konietzny, D. Sieffert, P. Rölling, C. Staudt, Functionalized copolyimide membranes for the separation of gaseous and liquid mixtures, Beilstein J. Org. Chem. 6 (2010) 789–800. doi:10.3762/bjoc.6.86.

[77]     B.W. Rowe, B.D. Freeman, D.R. Paul, Influence of previous history on physical aging in thin glassy polymer films as gas separation membranes, Polymer (Guildf). 51 (2010) 3784–3792. doi:10.1016/j.polymer.2010.06.004.

[78]     Y. Xiao, B.T. Low, S.S. Hosseini, T.S. Chung, D.R. Paul, The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas-A review, Prog. Polym. Sci. 34 (2009) 561–580. doi:10.1016/j.progpolymsci.2008.12.004.

[79]     Y. Huang, D.R. Paul, Effect of Temperature on Physical Aging of Thin Glassy Polymer Films, (2005). doi:10.1021/ma051284g.

[80]     Z.-X. Low, P.M. Budd, N.B. McKeown, D.A. Patterson, Gas Permeation Properties, Physical Aging, and Its Mitigation in High Free Volume Glassy Polymers, Chem. Rev. 118 (2018) 5871–5911. doi:10.1021/acs.chemrev.7b00629.

[81]     A. Singh, W.J. Koros, Significance of Entropic Selectivity for Advanced Gas Separation Membranes, Ind. Eng. Chem. Res. 35 (1996) 1231–1234. doi:10.1021/ie950559l.

[82]     C.M. Zimmerman, A. Singh, W.J. Koros, Tailoring mixed matrix composite membranes for gas separations, J. Memb. Sci. 137 (1997) 145–154. doi:10.1016/S0376-7388(97)00194-4.

[83]     P.S. Goh, A.F. Ismail, S.M. Sanip, B.C. Ng, M. Aziz, Recent advances of inorganic fillers in mixed matrix membrane for gas separation, (2011). doi:10.1016/j.seppur.2011.07.042.

[84]     F.F. Krull, C. Fritzmann, T. Melin, Liquid membranes for gas/vapor separations, J. Memb. Sci. 325 (2008) 509–519. doi:10.1016/j.memsci.2008.09.018.

[85]     M. Pera-Titus, Porous inorganic membranes for CO2 capture: Present and prospects, Chem. Rev. 114 (2014) 1413–1492. doi:10.1021/cr400237k.

[86]     T.S. Chung, L.Y. Jiang, Y. Li, S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation, Prog. Polym. Sci. 32 (2007) 483–507. doi:10.1016/j.progpolymsci.2007.01.008.

[87]     A.F. Ismail, K.C. Khulbe, T. Matsuura, Gas separation membranes: Polymeric and inorganic, Springer International Publishing, 2015. doi:10.1007/978-3-319-01095-3.

[88]     W. Liang, H. Chevreau, F. Ragon, P.D. Southon, V.K. Peterson, D.M. D’Alessandro, Tuning pore size in a zirconium-tricarboxylate metal-organic framework, CrystEngComm. 16 (2014) 6530–6533. doi:10.1039/c4ce01031k.

[89]     R. Thür, N. Van Velthoven, S. Slootmaekers, J. Didden, R. Verbeke, S. Smolders, M. Dickmann, W. Egger, D. De Vos, I.F.J. Vankelecom, Bipyridine-based UiO-67 as novel filler in mixed-matrix membranes for CO2-selective gas separation, J. Memb. Sci. (2019) 78–87. doi:10.1016/j.memsci.2019.01.016.

[90]     G. Liu, V. Chernikova, Y. Liu, K. Zhang, Y. Belmabkhout, O. Shekhah, C. Zhang, S. Yi, M. Eddaoudi, W.J. Koros, Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations, Nat. Mater. 17 (2018) 283–289. doi:10.1038/s41563-017-0013-1.

[91]     D.R. Paul, D.R. Kemp, DIFFUSION TIME LAG IN POLYMER MEMBRANES CONTAINING ADSORPTIVE FILLERS., J Polym Sci, Part C, Polym Symp. (1973) 79–93. doi:10.1002/polc.5070410109.

[92]     M. Vinoba, M. Bhagiyalakshmi, Y. Alqaheem, A.A. Alomair, A. Pérez, M.S. Rana, Recent progress of fillers in mixed matrix membranes for CO2 separation: A review, Sep. Purif. Technol. 188 (2017) 431–450. doi:10.1016/j.seppur.2017.07.051.

[93]     H. Vinh-Thang, S. Kaliaguine, Predictive models for mixed-matrix membrane performance: A review, Chem. Rev. 113 (2013) 4980–5028. doi:10.1021/cr3003888.

[94]     A.A. Gray-Weale, R.H. Henchman, R.G. Gilbert, M.L. Greenfield, D.N. Theodorou, Transition-state theory model for the diffusion coefficients of small penetrants in glassy polymers, Macromolecules. 30 (1997) 7296–7306. doi:10.1021/ma970349f.

[95]     W.J. Koros, C. Zhang, Materials for next-generation molecularly selective synthetic membranes, Nat. Mater. 16 (2017) 289–297. doi:10.1038/nmat4805.

[96]     R.H.B. Bouma, A. Checchetti, G. Chidichimo, E. Drioli, Permeation through a heterogeneous membrane: The effect of the dispersed phase, J. Memb. Sci. 128 (1997) 141–149. doi:10.1016/S0376-7388(96)00303-1.

[97]     M.A. Aroon, A.F. Ismail, T. Matsuura, M.M. Montazer-Rahmati, Performance studies of mixed matrix membranes for gas separation: A review, Sep. Purif. Technol. 75 (2010) 229–242. doi:10.1016/j.seppur.2010.08.023.

[98]     T.T. Moore, W.J. Koros, Non-ideal effects in organic-inorganic materials for gas separation membranes, J. Mol. Struct. 739 (2005) 87–98. doi:10.1016/j.molstruc.2004.05.043.

[99]     R. Mahajan, R. Burns, M. Schaeffer, W.J. Koros, Challenges in forming successful mixed matrix membranes with rigid polymeric materials, J. Appl. Polym. Sci. 86 (2002) 881–890. doi:10.1002/app.10998.

[100]   J.A. Manson, E.H. Chiu, PERMEATION OF LIQUID WATER IN A FILLED EPOXY RESIN., J Polym Sci, Part C, Polym Symp. (1973) 95–108. doi:10.1002/polc.5070410110.

[101]   T.T. Moore, R. Mahajan, D.Q. Vu, W.J. Koros, Hybrid Membrane Materials Comprising Organic Polymers with Rigid Dispersed Phases, AIChE J. 50 (2004) 311–321. doi:10.1002/aic.10029.

[102]   Y. Li, T.S. Chung, C. Cao, S. Kulprathipanja, The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrix membranes, J. Memb. Sci. 260 (2005) 45–55. doi:10.1016/j.memsci.2005.03.019.

[103]   R. Lin, B. Villacorta Hernandez, L. Ge, Z. Zhu, Metal organic framework based mixed matrix membranes: An overview on filler/polymer interfaces, J. Mater. Chem. A. 6 (2018) 293–312. doi:10.1039/c7ta07294e.

[104]   B. Seoane, J. Coronas, I. Gascon, M.E. Benavides, O. Karvan, J. Caro, F. Kapteijn, J. Gascon, Metal-organic framework based mixed matrix membranes: A solution for highly efficient CO2 capture?, Chem. Soc. Rev. 44 (2015) 2421–2454. doi:10.1039/c4cs00437j.

[105]   Y. Zhang, X. Feng, S. Yuan, J. Zhou, B. Wang, Challenges and recent advances in MOF-polymer composite membranes for gas separation, Inorg. Chem. Front. 3 (2016) 896–909. doi:10.1039/c6qi00042h.

[106]   J. Sánchez-Laínez, B. Zornoza, S. Friebe, J. Caro, S. Cao, A. Sabetghadam, B. Seoane, J. Gascon, F. Kapteijn, C. Le Guillouzer, G. Clet, M. Daturi, C. Téllez, J. Coronas, Influence of ZIF-8 particle size in the performance of polybenzimidazole mixed matrix membranes for pre-combustion CO2 capture and its validation through interlaboratory test, J. Memb. Sci. 515 (2016) 45–53. doi:10.1016/j.memsci.2016.05.039.

[107]   R. Thür, N. Van Velthoven, V. Lemmens, M. Bastin, S. Smolders, D. De Vos, I.F.J. Vankelecom, Modulator-Mediated Functionalization of MOF-808 as a Platform Tool to Create High-Performance Mixed-Matrix Membranes, (2019). doi:10.1021/acsami.9b19774.

[108]   R. Mahajan, W.J. Koros, Factors controlling successful formation of mixed-matrix gas separation materials, Ind. Eng. Chem. Res. 39 (2000) 2692–2696. doi:10.1021/ie990799r.

[109]   Q. Song, S.K. Nataraj, M. V. Roussenova, J.C. Tan, D.J. Hughes, W. Li, P. Bourgoin, M.A. Alam, A.K. Cheetham, S.A. Al-Muhtaseb, E. Sivaniah, Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation, Energy Environ. Sci. 5 (2012) 8359–8369. doi:10.1039/c2ee21996d.

[110]   E.M. Mahdi, J.-C. Tan, Mixed-matrix membranes of zeolitic imidazolate framework (ZIF-8)/Matrimid nanocomposite: Thermo-mechanical stability and viscoelasticity underpinning membrane separation performance, J. Memb. Sci. 498 (2016) 276–290. doi:10.1016/j.memsci.2015.09.066.

[111]   I.S. Flyagina, E.M. Mahdi, K. Titov, J.-C. Tan, Thermo-mechanical properties of mixed-matrix membranes encompassing zeolitic imidazolate framework-90 and polyvinylidine difluoride: ZIF-90/PVDF nanocomposites, APL Mater. 5 (2017) 086104. doi:10.1063/1.4986565.

[112]   T. Rodenas, M. Van Dalen, P. Serra-Crespo, F. Kapteijn, J. Gascon, Mixed matrix membranes based on NH2-functionalized MIL-type MOFs: Influence of structural and operational parameters on the CO 2/CH4 separation performance, Microporous Mesoporous Mater. 192 (2014) 35–42. doi:10.1016/j.micromeso.2013.08.049.

[113]   G. Dong, H. Li, V. Chen, Challenges and opportunities for mixed-matrix membranes for gas separation, J. Mater. Chem. A. 1 (2013) 4610–4630. doi:10.1039/c3ta00927k.

[114]   S. Basu, A. Cano-Odena, I.F.J. Vankelecom, MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separations, Sep. Purif. Technol. 81 (2011) 31–40. doi:10.1016/j.seppur.2011.06.037.

[115]   C.A. Trickett, A. Helal, B.A. Al-Maythalony, Z.H. Yamani, K.E. Cordova, O.M. Yaghi, The chemistry of metal-organic frameworks for CO 2 capture, regeneration and conversion, Nat. Rev. Mater. 2 (2017). doi:10.1038/natrevmats.2017.45.

[116]   M. Safaei, M.M. Foroughi, N. Ebrahimpoor, S. Jahani, A. Omidi, M. Khatami, A review on metal-organic frameworks: Synthesis and applications, TrAC - Trends Anal. Chem. 118 (2019) 401–425. doi:10.1016/j.trac.2019.06.007.

[117]   S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar, Y. Sun, J. Qin, X. Yang, P. Zhang, Q. Wang, L. Zou, Y. Zhang, L. Zhang, Y. Fang, J. Li, H.C. Zhou, Stable Metal–Organic Frameworks: Design, Synthesis, and Applications, Adv. Mater. 30 (2018). doi:10.1002/adma.201704303.

[118]   V.R. Remya, M. Kurian, Synthesis and catalytic applications of metal–organic frameworks: a review on recent literature, Int. Nano Lett. 9 (2019) 17–29. doi:10.1007/s40089-018-0255-1.

[119]   S. Li, F. Huo, Metal-organic framework composites: From fundamentals to applications, Nanoscale. 7 (2015) 7482–7501. doi:10.1039/c5nr00518c.

[120]   M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O.M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage, Science (80-. ). 295 (2002) 469–472. doi:10.1126/science.1067208.

[121]   C. Wang, D. Liu, W. Lin, Metal-organic frameworks as a tunable platform for designing functional molecular materials, J. Am. Chem. Soc. 135 (2013) 13222–13234. doi:10.1021/ja308229p.

[122]   S. Saha, S. Chandra, B. Garai, R. Banerjee, Carbon dioxide capture by metal organic frameworks, Indian J. Chem. - Sect. A Inorganic, Phys. Theor. Anal. Chem. 51 (2012) 1223–1230. doi:10.1021/cr2003272.

[123]   D. Xue, P.M. Bhatt, A. Shkurenko, L. Wojtas, C. Zhijie, Y. Belmabkhout, K. Adil, fine tuning : ftw-MOF platform for energy-efficient, (2018) 6404–6407. doi:10.1039/c8cc03841d.

[124]   C. Zhang, Y. Dai, J.R. Johnson, O. Karvan, W.J. Koros, High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations, J. Memb. Sci. 389 (2012) 34–42. doi:10.1016/j.memsci.2011.10.003.

[125]   K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T.H. Bae, J.R. Long, Carbon dioxide capture in metal-organic frameworks, Chem. Rev. 112 (2012) 724–781. doi:10.1021/cr2003272.

[126]   S. Kazemi, V. Safarifard, Carbon dioxide capture in MOFs: The effect of ligand functionalization, Polyhedron. 154 (2018) 236–251. doi:10.1016/j.poly.2018.07.042.

[127]   G.E. Cmarik, M. Kim, S.M. Cohen, K.S. Walton, Tuning the Adsorption Properties of UiO-66 via Ligand Functionalization, (2012). doi:10.1021/la3035352.

[128]   S. Chaemchuen, N.A. Kabir, K. Zhou, F. Verpoort, Metal-organic frameworks for upgrading biogas via CO2 adsorption to biogas green energy, Chem. Soc. Rev. 42 (2013) 9304–9332. doi:10.1039/c3cs60244c.

[129]   Y.S. Bae, O.K. Farha, A.M. Spokoyny, C.A. Mirkin, J.T. Hupp, R.Q. Snurr, Carborane-based metal-organic frameworks as highly selective sorbents for CO2 over methane, Chem. Commun. (2008) 4135–4137. doi:10.1039/b805785k.

[130]   W.L. Queen, M.R. Hudson, E.D. Bloch, J.A. Mason, M.I. Gonzalez, J.S. Lee, D. Gygi, J.D. Howe, K. Lee, T.A. Darwish, M. James, V.K. Peterson, S.J. Teat, B. Smit, J.B. Neaton, J.R. Long, C.M. Brown, Comprehensive study of carbon dioxide adsorption in the metal-organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn), Chem. Sci. 5 (2014) 4569–4581. doi:10.1039/c4sc02064b.

[131]   W. Morris, S. Wang, D. Cho, E. Auyeung, P. Li, O.K. Farha, C.A. Mirkin, Role of modulators in controlling the colloidal stability and polydispersity of the UiO-66 metal-organic framework, ACS Appl. Mater. Interfaces. 9 (2017) 33413–33418. doi:10.1021/acsami.7b01040.

[132]   O. V. Gutov, S. Molina, E.C. Escudero-Adán, A. Shafir, Modulation by Amino Acids: Toward Superior Control in the Synthesis of Zirconium Metal–Organic Frameworks, Chem. - A Eur. J. 22 (2016) 13582–13587. doi:10.1002/chem.201600898.

[133]   A. Koutsianos, E. Kazimierska, A.R. Barron, M. Taddei, E. Andreoli, A new approach to enhancing the CO2 capture performance of defective UiO-66: Via post-synthetic defect exchange, Dalt. Trans. 48 (2019) 3349–3359. doi:10.1039/c9dt00154a.

[134]   P. Deria, J.E. Mondloch, E. Tylianakis, P. Ghosh, W. Bury, R.Q. Snurr, J.T. Hupp, O.K. Farha, Perfluoroalkane functionalization of NU-1000 via solvent-assisted ligand incorporation: Synthesis and CO2 adsorption studies, J. Am. Chem. Soc. 135 (2013) 16801–16804. doi:10.1021/ja408959g.

[135]   Y. Belmabkhout, V. Guillerm, M. Eddaoudi, Low concentration CO2 capture using physical adsorbents: Are metal-organic frameworks becoming the new benchmark materials?, Chem. Eng. J. 296 (2016) 386–397. doi:10.1016/j.cej.2016.03.124.

[136]   O.G. Nik, X.Y. Chen, S. Kaliaguine, Functionalized metal organic framework-polyimide mixed matrix membranes for CO 2/CH 4 separation, J. Memb. Sci. 413–414 (2012) 48–61. doi:10.1016/j.memsci.2012.04.003.

[137]   B. Ghalei, K. Sakurai, Y. Kinoshita, K. Wakimoto, A.P. Isfahani, Q. Song, K. Doitomi, S. Furukawa, H. Hirao, H. Kusuda, S. Kitagawa, E. Sivaniah, Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles, Nat. Energy. 2 (2017) 1–9. doi:10.1038/nenergy.2017.86.

[138]   Q. Qian, A.X. Wu, W.S. Chi, P.A. Asinger, S. Lin, A. Hypsher, Z.P. Smith, Mixed-Matrix Membranes Formed from Imide-Functionalized UiO-66-NH2 for Improved Interfacial Compatibility, ACS Appl. Mater. Interfaces. 11 (2019) 31257–31269. doi:10.1021/acsami.9b07500.

[139]   H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks, Science (80-. ). 341 (2013). doi:10.1126/science.1230444.

[140]   A.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang, J.T. Hupp, O.K. Farha, Chemical, thermal and mechanical stabilities of metal-organic frameworks, (2016) 15018. doi:10.1038/natrevmats.2015.18.

[141]   J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K.P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability, J. Am. Chem. Soc. 130 (2008) 13850–13851. doi:10.1021/ja8057953.

[142]   B. Bueken, N. Van Velthoven, A. Krajnc, S. Smolders, F. Taulelle, C. Mellot-Draznieks, G. Mali, T.D. Bennett, D. De Vos, Tackling the Defect Conundrum in UiO-66: A Mixed-Linker Approach to Engineering Missing Linker Defects, (2017). doi:10.1021/acs.chemmater.7b04128.

[143]   Y. Jiao, Y. Liu, G. Zhu, J.T. Hungerford, S. Bhattacharyya, R.P. Lively, D.S. Sholl, K.S. Walton, Heat-Treatment of Defective UiO-66 from Modulated Synthesis: Adsorption and Stability Studies, J. Phys. Chem. C. 121 (2017) 23471–23479. doi:10.1021/acs.jpcc.7b07772.

[144]   H. Wu, Y.S. Chua, V. Krungleviciute, M. Tyagi, P. Chen, T. Yildirim, W. Zhou, Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption, J. Am. Chem. Soc. 135 (2013) 10525–10532. doi:10.1021/ja404514r.

[145]   W. Liang, C.J. Coghlan, F. Ragon, M. Rubio-Martinez, D.M. D’Alessandro, R. Babarao, Defect engineering of UiO-66 for CO2and H2O uptake - A combined experimental and simulation study, Dalt. Trans. 45 (2016) 4496–4500. doi:10.1039/c6dt00189k.

[146]   M.J. Katz, Z.J. Brown, Y.J. Colón, P.W. Siu, K.A. Scheidt, R.Q. Snurr, J.T. Hupp, O.K. Farha, A facile synthesis of UiO-66, UiO-67 and their derivatives, Chem. Commun. 49 (2013) 9449–9451. doi:10.1039/c3cc46105j.

[147]   M.W. Anjum, F. Vermoortele, A.L. Khan, B. Bueken, D.E. De Vos, I.F.J. Vankelecom, Modulated UiO-66-Based Mixed-Matrix Membranes for CO 2 Separation, (2015). doi:10.1021/acsami.5b08964.

[148]   Y. Jiang, C. Liu, J. Caro, A. Huang, A new UiO-66-NH2 based mixed-matrix membranes with high CO2/CH4 separation performance, Microporous Mesoporous Mater. 274 (2019) 203–211. doi:10.1016/j.micromeso.2018.08.003.

[149]   H. Reinsch, B. Bueken, F. Vermoortele, I. Stassen, A. Lieb, K.P. Lillerud, D. De Vos, Green synthesis of zirconium-MOFs, CrystEngComm. 17 (2015) 4070–4074. doi:10.1039/c5ce00618j.

[150]   N.S. Bobbitt, M.L. Mendonca, A.J. Howarth, T. Islamoglu, J.T. Hupp, O.K. Farha, R.Q. Snurr, Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents, Chem. Soc. Rev. 46 (2017) 3357–3385. doi:10.1039/c7cs00108h.

[151]   T. Islamoglu, D. Ray, P. Li, M.B. Majewski, I. Akpinar, X. Zhang, C.J. Cramer, L. Gagliardi, O.K. Farha, From Transition Metals to Lanthanides to Actinides: Metal-Mediated Tuning of Electronic Properties of Isostructural Metal−Organic Frameworks, 17 (2018) 27. doi:10.1021/acs.inorgchem.8b01748.

[152]   H. Furukawa, F. Gándara, Y.B. Zhang, J. Jiang, W.L. Queen, M.R. Hudson, O.M. Yaghi, Water adsorption in porous metal-organic frameworks and related materials, J. Am. Chem. Soc. 136 (2014) 4369–4381. doi:10.1021/ja500330a.

[153]   C. Jia, F.G. Cirujano, B. Bueken, B. Claes, D. Jonckheere, K.M. Van Geem, D. De Vos, Geminal Coordinatively Unsaturated Sites on MOF‐808 for the Selective Uptake of Phenolics from a Real Bio‐Oil Mixture, ChemSusChem. 12 (2019) 1256–1266. doi:10.1002/cssc.201802692.

[154]   J. Baek, B. Rungtaweevoranit, X. Pei, M. Park, S.C. Fakra, Y.S. Liu, R. Matheu, S.A. Alshmimri, S. Alshehri, C.A. Trickett, G.A. Somorjai, O.M. Yaghi, Bioinspired Metal-Organic Framework Catalysts for Selective Methane Oxidation to Methanol, J. Am. Chem. Soc. 140 (2018) 18208–18216. doi:10.1021/jacs.8b11525.

[155]   J. Jiang, F.G. Gándara, Y.-B. Zhang, K. Na, O.M. Yaghi, W.G. Klemperer, Superacidity in Sulfated Metal−Organic Framework-808, J. Am. Chem. Soc. 136 (2014) 3. doi:10.1021/ja507119n.

[156]   Y. Peng, H. Huang, Y. Zhang, C. Kang, S. Chen, L. Song, D. Liu, C. Zhong, A versatile MOF-based trap for heavy metal ion capture and dispersion, Nat. Commun. 9 (2018). doi:10.1038/s41467-017-02600-2.

[157]   H.M. Wen, C. Liao, L. Li, A. Alsalme, Z. Alothman, R. Krishna, H. Wu, W. Zhou, J. Hu, B. Chen, A metal-organic framework with suitable pore size and dual functionalities for highly efficient post-combustion CO 2 capture, J. Mater. Chem. A. 7 (2019) 3128–3134. doi:10.1039/c8ta11596f.

[158]   K.A. Forrest, T. Pham, B. Space, Comparing the mechanism and energetics of CO2 sorption in the SIFSIX series, CrystEngComm. 19 (2017) 3338–3347. doi:10.1039/c7ce00594f.

[159]   O. Shekhah, Y. Belmabkhout, Z. Chen, V. Guillerm, A. Cairns, K. Adil, M. Eddaoudi, Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture, Nat. Commun. 5 (2014) 1–7. doi:10.1038/ncomms5228.

[160]   S.R. Venna, A. Spore, Z. Tian, A.M. Marti, E.J. Albenze, H.B. Nulwala, N.L. Rosi, D.R. Luebke, D.P. Hopkinson, H.R. Allcock, Polyphosphazene polymer development for mixed matrix membranes using SIFSIX-Cu-2i as performance enhancement filler particles, J. Memb. Sci. 535 (2017) 103–112. doi:10.1016/j.memsci.2017.04.033.

[161]   H. Gong, C.Y. Chuah, Y. Yang, T.H. Bae, High performance composite membranes comprising Zn(pyrz)2(SiF6) nanocrystals for CO2/CH4 separation, J. Ind. Eng. Chem. 60 (2018) 279–285. doi:10.1016/j.jiec.2017.11.014.

[162]   G. Liu, A. Cadiau, Y. Liu, K. Adil, V. Chernikova, I.-D. Carja, Y. Belmabkhout, M. Karunakaran, O. Shekhah, C. Zhang, A.K. Itta, S. Yi, M. Eddaoudi, W.J. Koros, Enabling Fluorinated MOF-Based Membranes for Simultaneous Removal of H 2 S and CO 2 from Natural Gas, Angew. Chemie. 130 (2018) 15027–15032. doi:10.1002/ange.201808991.

[163]   M. Oschatz, M. Antonietti, A search for selectivity to enable CO2 capture with porous adsorbents, Energy Environ. Sci. 11 (2018) 57–70. doi:10.1039/c7ee02110k.

[164]   I. Stassen, D. De Vos, R. Ameloot, Vapor-Phase Deposition and Modification of Metal-Organic Frameworks: State-of-the-Art and Future Directions, Chem. - A Eur. J. 22 (2016) 14452–14460. doi:10.1002/chem.201601921.

[165]   R.J. Marshall, C.L. Hobday, C.F. Murphie, S.L. Griffin, C.A. Morrison, S.A. Moggach, R.S. Forgan, Amino acids as highly efficient modulators for single crystals of zirconium and hafnium metal-organic frameworks, J. Mater. Chem. A. 4 (2016) 6955–6963. doi:10.1039/c5ta10401g.

[166]   R. Luebke, J.F. Eubank, A.J. Cairns, Y. Belmabkhout, L. Wojtas, M. Eddaoudi, The unique rht-MOF platform, ideal for pinpointing the functionalization and CO 2 adsorption relationship, Chem. Commun. 48 (2012) 1455–1457. doi:10.1039/c1cc15962c.

[167]   D.X. Xue, A.J. Cairns, Y. Belmabkhout, L. Wojtas, Y. Liu, M.H. Alkordi, M. Eddaoudi, Tunable rare-earth fcu-MOFs: A platform for systematic enhancement of CO2 adsorption energetics and uptake, J. Am. Chem. Soc. 135 (2013) 7660–7667. doi:10.1021/ja401429x.

[168]   P. Deria, S. Li, H. Zhang, R.Q. Snurr, J.T. Hupp, O.K. Farha, A MOF platform for incorporation of complementary organic motifs for CO 2 binding † ChemComm, Chem. Commun. 51 (1247) 12478. doi:10.1039/c5cc04808g.

[169]   H.J. Park, M.P. Suh, Enhanced isosteric heat, selectivity, and uptake capacity of CO2 adsorption in a metal-organic framework by impregnated metal ions, Chem. Sci. 4 (2013) 685–690. doi:10.1039/c2sc21253f.

[170]   A.L. Khan, S. Basu, A. Cano-Odena, I.F.J. Vankelecom, Novel high throughput equipment for membrane-based gas separations, J. Memb. Sci. 354 (2010) 32–39. doi:10.1016/j.memsci.2010.02.069.

[171]   A. Torrisi, C. Mellot-Draznieks, R.G. Bell, Impact of ligands on CO2 adsorption in metal-organic frameworks: First principles study of the interaction of CO2 with functionalized benzenes. II. Effect of polar and acidic substituents, J. Chem. Phys. 132 (2010) 044705. doi:10.1063/1.3276105.

[172]   L-Serine ReagentPlus®, ≥99% (HPLC) | Sigma-Aldrich, (n.d.). https://www.sigmaaldrich.com/catalog/product/sigma/s4500?lang=en&region… (accessed March 23, 2020).

[173]   Z. Hu, I. Castano, S. Wang, Y. Wang, Y. Peng, Y. Qian, C. Chi, X. Wang, D. Zhao, Modulator Effects on the Water-Based Synthesis of Zr/Hf Metal-Organic Frameworks: Quantitative Relationship Studies between Modulator, Synthetic Condition, and Performance, Cryst. Growth Des. 16 (2016) 2295–2301. doi:10.1021/acs.cgd.6b00076.

[174]   A. Schaate, P. Roy, A. Godt, J. Lippke, F. Waltz, M. Wiebcke, P. Behrens, Modulated Synthesis of Zr-Based Metal-Organic Frameworks: From Nano to Single Crystals, Chem. - A Eur. J. 17 (2011) 6643–6651. doi:10.1002/chem.201003211.

[175]   T. Ungár, Microstructural parameters from X-ray diffraction peak broadening, Scr. Mater. 51 (2004) 777–781. doi:10.1016/j.scriptamat.2004.05.007.

[176]   B. Chen, X. Wang, Q. Zhang, X. Xi, J. Cai, H. Qi, S. Shi, J. Wang, D. Yuan, M. Fang, Synthesis and characterization of the interpenetrated MOF-5, J. Mater. Chem. 20 (2010) 3758. doi:10.1039/b922528e.

[177]   R. Seetharaj, P. V. Vandana, P. Arya, S. Mathew, Dependence of solvents, pH, molar ratio and temperature in tuning metal organic framework architecture, Arab. J. Chem. 12 (2019) 295–315. doi:10.1016/j.arabjc.2016.01.003.

[178]   B. Shan, J.B. James, M.R. Armstrong, E.C. Close, P.A. Letham, K. Nikkhah, Y.S. Lin, B. Mu, Influences of Deprotonation and Modulation on Nucleation and Growth of UiO-66: Intergrowth and Orientation, (2018). doi:10.1021/acs.jpcc.7b11012.

[179]   G.L. Fan, Y.L. Liu, H. Wang, Identification of thermophilic proteins by incorporating evolutionary and acid dissociation information into Chou’s general pseudo amino acid composition, J. Theor. Biol. 407 (2016) 138–142. doi:10.1016/j.jtbi.2016.07.010.

[180]   P. Luis, Use of monoethanolamine (MEA) for CO2 capture in a global scenario: Consequences and alternatives, Desalination. 380 (2016) 93–99. doi:10.1016/j.desal.2015.08.004.

[181]   C. Ardila-Suárez, J. Rodríguez-Pereira, V.G. Baldovino-Medrano, G.E. Ramírez-Caballero, An analysis of the effect of zirconium precursors of MOF-808 on its thermal stability, and structural and surface properties, CrystEngComm. 21 (2019) 1407–1415. doi:10.1039/c8ce01722k.

[182]   J. Hafizovic, M. Bjørgen, U. Olsbye, P.D.C. Dietzel, S. Bordiga, C. Prestipino, C. Lamberti, K.P. Lillerud, The Inconsistency in Adsorption Properties and Powder XRD Data of MOF-5 Is Rationalized by Framework Interpenetration and the Presence of Organic and Inorganic Species in the Nanocavities, (2007). doi:10.1021/ja0675447.

[183]   S. Øien-ØDegaard, G.C. Shearer, D.S. Wragg, K.P. Lillerud, Pitfalls in metal-organic framework crystallography: Towards more accurate crystal structures, Chem. Soc. Rev. 46 (2017) 4867–4876. doi:10.1039/c6cs00533k.

[184]   W. Zhang, A. Bu, Q. Ji, L. Min, S. Zhao, Y. Wang, J. Chen, pK a-Directed Incorporation of Phosphonates into MOF-808 via Ligand Exchange: Stability and Adsorption Properties for Uranium, (2019). doi:10.1021/acsami.9b10920.

[185]   S.-Y. Moon, Y. Liu, J.T. Hupp, O.K. Farha, Instantaneous Hydrolysis of Nerve-Agent Simulants with a Six-Connected Zirconium-Based Metal-Organic Framework, Angew. Chemie Int. Ed. 54 (2015) 6795–6799. doi:10.1002/anie.201502155.

[186]   H.Q. Zheng, C.Y. Liu, X.Y. Zeng, J. Chen, J. Lü, R.G. Lin, R. Cao, Z.J. Lin, J.W. Su, MOF-808: A Metal-Organic Framework with Intrinsic Peroxidase-Like Catalytic Activity at Neutral pH for Colorimetric Biosensing, Inorg. Chem. 57 (2018) 9096–9104. doi:10.1021/acs.inorgchem.8b01097.

[187]   † Houston  Frost, ‡ and Tina  Düren, † Randall Q.  Snurr*, Effects of Surface Area, Free Volume, and Heat of Adsorption on Hydrogen Uptake in Metal−Organic Frameworks, (2006). doi:10.1021/JP060433+.

[188]   Y.S. Bae, O.K. Farha, J.T. Hupp, R.Q. Snurr, Enhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification, J. Mater. Chem. 19 (2009) 2131–2134. doi:10.1039/b900390h.

[189]   S.R. Venna, M. Lartey, T. Li, A. Spore, S. Kumar, H.B. Nulwala, D.R. Luebke, N.L. Rosi, E. Albenze, Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles †, (2015). doi:10.1039/c4ta05225k.

[190]   H. Ren, J. Jin, J. Hu, H. Liu, Affinity between Metal−Organic Frameworks and Polyimides in Asymmetric Mixed Matrix Membranes for Gas Separations, (2012). doi:10.1021/ie300553k.

[191]   H.M. Lee, I.S. Youn, M. Saleh, J.W. Lee, K.S. Kim, Interactions of CO2 with various functional molecules, Phys. Chem. Chem. Phys. 17 (2015) 10925–10933. doi:10.1039/c5cp00673b.

[192]   Z. Niu, Q. Guan, Y. Shi, Y. Chen, Q. Chen, Z. Kong, P. Ning, S. Tian, R. Miao, A lithium-modified zirconium-based metal organic framework (UiO-66) for efficient CO2 adsorption, New J. Chem. 42 (2018) 19764–19770. doi:10.1039/c8nj04945a.

[193]   Y.S. Bae, B.G. Hauser, O.K. Farha, J.T. Hupp, R.Q. Snurr, Enhancement of CO2/CH4 selectivity in metal-organic frameworks containing lithium cations, Microporous Mesoporous Mater. 141 (2011) 231–235. doi:10.1016/j.micromeso.2010.10.048.

[194]   J.P. Pancras, G.A. Norris, M.S. Landis, K.D. Kovalcik, J.K. McGee, A.S. Kamal, Application of ICP-OES for evaluating energy extraction and production wastewater discharge impacts on surface waters in Western Pennsylvania, Sci. Total Environ. 529 (2015) 21–29. doi:10.1016/j.scitotenv.2015.04.011.

[195]   D. Lide, CRC Handbook of Chemistry and Physics, 91th Edition, 91st ed., Taylor & Francis Group, 2010.

[196]   Q. Meng, X. Xin, L. Zhang, F. Dai, R. Wang, D. Sun, A multifunctional Eu MOF as a fluorescent pH sensor and exhibiting highly solvent-dependent adsorption and degradation of rhodamine B †, (2015). doi:10.1039/c5ta04989j.

[197]   J. Konopka, T.F. Scientific, Options for Quantitative Analysis of Light Elements by SEM/EDS, (n.d.). http://tools.thermofisher.com/content/sfs/brochures/TN52523_E_0713M_Lig… (accessed March 28, 2020).

[198]   K. Xuan, Y. Pu, F. Li, J. Luo, N. Zhao, F. Xiao, Metal-organic frameworks MOF-808-X as highly efficient catalysts for direct synthesis of dimethyl carbonate from CO2 and methanol, Chinese J. Catal. 40 (2019) 553–566. doi:10.1016/S1872-2067(19)63291-2.

[199]   C. Ardila-Suárez, A.M. Díaz-Lasprilla, L.A. Díaz-Vaca, P.B. Balbuena, V.G. Baldovino-Medrano, G.E. Ramírez-Caballero, Synthesis, characterization, and post-synthetic modification of a micro/mesoporous zirconium-tricarboxylate metal-organic framework: Towards the addition of acid active sites, CrystEngComm. 21 (2019) 3014–3030. doi:10.1039/c9ce00218a.

[200]   S. Kumar, A.K. Rai, S.B. Rai, D.K. Rai, Infrared and Raman spectra of Histidine: An ab initio DFT calculations of Histidine molecule and its different protonated forms, Indian J. Phys. 84 (2010) 563–573. doi:10.1007/s12648-010-0039-6.

[201]   Introduction to Infrared and Raman Spectroscopy, Elsevier, 1975. doi:10.1016/b978-0-12-182552-2.x5001-3.

[202]   IR Spectrum Table & Chart | Sigma-Aldrich, (n.d.). https://www.sigmaaldrich.com/technical-documents/articles/biology/ir-sp… (accessed March 29, 2020).

[203]   S.G. Stepanian, I.D. Reva, E.D. Radchenko, G.G. Sheina, Infrared spectra of benzoic acid monomers and dimers in argon matrix, Vib. Spectrosc. 11 (1996) 123–133. doi:10.1016/0924-2031(95)00068-2.

[204]   F.A. Najar, G.B. Vakil, B. Want, Infrared, Raman, electrical and thermal analysis of lithium sulphate monohydrate single crystals, J. Mater. Sci. Mater. Electron. 28 (2017) 14170–14178. doi:10.1007/s10854-017-7271-1.

[205]   M.J.C. Ordoñez, K.J. Balkus, J.P. Ferraris, I.H. Musselman, Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes, J. Memb. Sci. 361 (2010) 28–37. doi:10.1016/j.memsci.2010.06.017.

[206]   J.A. Mason, K. Sumida, Z.R. Herm, R. Krishna, J.R. Long, Evaluating metal-organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption, Energy Environ. Sci. 4 (2011) 3030–3040. doi:10.1039/c1ee01720a.

[207]   B. Arstad, H. Fjellvåg, · Kjell, O. Kongshaug, O. Swang, R. Blom, H. Fjellvåg, · K O Kongshaug, Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide, Adsorption. 14 (2008) 755–762. doi:10.1007/s10450-008-9137-6.

[208]   H.Y. Cho, D.A. Yang, J. Kim, S.Y. Jeong, W.S. Ahn, CO 2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating, in: Catal. Today, Elsevier, 2012: pp. 35–40. doi:10.1016/j.cattod.2011.08.019.

[209]   M.I. Hossain, J.D. Cunningham, T.M. Becker, B.E. Grabicka, K.S. Walton, B.D. Rabideau, T.G. Glover, Impact of MOF defects on the binary adsorption of CO2 and water in UiO-66, Chem. Eng. Sci. 203 (2019) 346–357. doi:10.1016/j.ces.2019.03.053.

[210]   M. Asgari, S. Jawahery, E.D. Bloch, M.R. Hudson, R. Flacau, B. Vlaisavljevich, J.R. Long, C.M. Brown, W.L. Queen, An experimental and computational study of CO2 adsorption in the sodalite-type M-BTT (M = Cr, Mn, Fe, Cu) metal-organic frameworks featuring open metal sites, Chem. Sci. 9 (2018) 4579–4588. doi:10.1039/c8sc00971f.

[211]   M. Stawowy, M. Róziewicz, E. Szczepańska, J. Silvestre-Albero, M. Zawadzki, M. Musioł, R. Łuzny, J. Kaczmarczyk, J. Trawczyński, A. Łamacz, The Impact of Synthesis Method on the Properties and CO2 Sorption Capacity of UiO-66(Ce), Catalysts. 9 (2019) 309. doi:10.3390/catal9040309.

[212]   H.H. Mautschke, F. Drache, I. Senkovska, S. Kaskel, F.X.I. Llabrés Xamena, Catalytic properties of pristine and defect-engineered Zr-MOF-808 metal organic frameworks, Catal. Sci. Technol. 8 (2018) 3610–3616. doi:10.1039/c8cy00742j.

[213]   P.D.C. Dietzel, V. Besikiotis, R. Blom, Application of metal-organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide, J. Mater. Chem. 19 (2009) 7362–7370. doi:10.1039/b911242a.

[214]   C. Song, Y. Ling, L. Jin, M. Zhang, D.-L. Chen, Y. He, CO2 adsorption of three isostructural metal–organic frameworks depending on the incorporated highly polarized heterocyclic moieties, Dalt. Trans. 45 (2015) 190. doi:10.1039/c5dt02845k.

[215]   P. Xydias, I. Spanopoulos, E. Klontzas, G.E. Froudakis, P.N. Trikalitis, Drastic Enhancement of the CO 2 Adsorption Properties in Sulfone-Functionalized Zr-and Hf-UiO-67 MOFs with Hierarchical Mesopores, (2013). doi:10.1021/ic402430n.

[216]   B. Ghalei, K. Sakurai, Y. Kinoshita, K. Wakimoto, A. Pournaghshband Isfahani, Q. Song, K. Doitomi, S. Furukawa, H. Hirao, H. Kusuda, S. Kitagawa, E. Sivaniah, Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles, (2017) 17086. doi:10.1038/nenergy.2017.86.

[217]   M.Z. Ahmad, T.A. Peters, N.M. Konnertz, T. Visser, C. Téllez, J. Coronas, V. Fila, W.M. de Vos, N.E. Benes, High-pressure CO2/CH4 separation of Zr-MOFs based mixed matrix membranes, Sep. Purif. Technol. 230 (2020) 115858. doi:10.1016/j.seppur.2019.115858.

[218]   C. Ma, J.J. Urban, Enhanced CO 2 Capture and Hydrogen Purification by Hydroxy Metal–Organic Framework/Polyimide Mixed Matrix Membranes, ChemSusChem. 12 (2019) 4405–4411. doi:10.1002/cssc.201902248.

[219]   P.S. Tin, T.S. Chung, Y. Liu, R. Wang, S.L. Liu, K.P. Pramoda, Effects of cross-linking modification on gas separation performance of Matrimid membranes, J. Memb. Sci. 225 (2003) 77–90. doi:10.1016/j.memsci.2003.08.005.

[220]   M. Khdhayyer, A.F. Bushell, P.M. Budd, M.P. Attfield, D. Jiang, A.D. Burrows, E. Esposito, P. Bernardo, M. Monteleone, A. Fuoco, G. Clarizia, F. Bazzarelli, A. Gordano, J.C. Jansen, Mixed matrix membranes based on MIL-101 metal–organic frameworks in polymer of intrinsic microporosity PIM-1, Sep. Purif. Technol. 212 (2019) 545–554. doi:10.1016/j.seppur.2018.11.055.

[221]   A. Ebadi Amooghin, M. Omidkhah, A. Kargari, Enhanced CO2 transport properties of membranes by embedding nano-porous zeolite particles into Matrimid®5218 matrix, RSC Adv. 5 (2015) 8552–8565. doi:10.1039/c4ra14903c.

[222]   Z. Hu, Z. Kang, Y. Qian, Y. Peng, X. Wang, C. Chi, D. Zhao, Mixed Matrix Membranes Containing UiO-66(Hf)-(OH) 2 Metal− Organic Framework Nanoparticles for Efficient H 2 /CO 2 Separation, (2016). doi:10.1021/acs.iecr.5b04568.

[223]   Introduction to Probability and Statistics for Engineers and Scientists, 5th ed., Elsevier, 2014. doi:10.1016/C2013-0-19397-X.

[224]   B.D. Conley, B.C. Yearwood, S. Parkin, D.A. Atwood, Ammonium hexafluorosilicate salts, J. Fluor. Chem. 115 (2002) 155–160. doi:10.1016/S0022-1139(02)00046-5.

[225]   A. Ouasri, A. Rhandour, M.C. Dhamelincourt, P. Dhamelincourt, A. Mazzah, The infrared and Raman spectra of ethylammonium hexafluorosilicate [C2H5NH3]2SiF6, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 59 (2003) 357–362. doi:10.1016/S1386-1425(02)00165-8.

[226]   M.H. Zaghal, H.A. Qaseer, Complexes of 2-(2′-pyridyl)quinoline and 3,6-Di(4′-pyridyl)-S-tetrazine, Inorganica Chim. Acta. 163 (1989) 193–200. doi:10.1016/S0020-1693(00)83451-9.

[227]   A. Ehsani, M. Pakizeh, Synthesis, characterization and gas permeation study of ZIF-11/Pebax® 2533 mixed matrix membranes, J. Taiwan Inst. Chem. Eng. 66 (2016) 414–423. doi:10.1016/j.jtice.2016.07.005.

[228]   Y. Li, T.S. Chung, C. Cao, S. Kulprathipanja, The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrix membranes, J. Memb. Sci. 260 (2005) 45–55. doi:10.1016/j.memsci.2005.03.019.

[229]   Y. Wang, X. Ma, B.S. Ghanem, F. Alghunaimi, I. Pinnau, Y. Han, Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations, Mater. Today Nano. 3 (2018) 69–95. doi:10.1016/j.mtnano.2018.11.003.

Extra referenties persartikel:

https://www.iea.org/reports/world-energy-outlook-2019 [geraadpleegd op 4/10/2020]

https://www.demorgen.be/nieuws/nieuw-nationaal-hitterecord-40-7-graden~… [geraadpleegd op 4/10/2020]

https://www.dekrantenkoppen.be/detail/1355341/545-graden-gemeten-in-Dea… op 4/10/2020]

https://www.vrt.be/vrtnws/nl/2020/09/15/het-weer-de-hitte-blijft/ [gera… op 4/10/2020]

https://www.vrt.be/vrtnws/nl/2020/09/01/stijging-zeeniveau-door-afsmelt… op 4/10/2020] 

https://www.vrt.be/vrtnws/nl/2020/09/12/gouverneur-californie-over-bosb… op 4/10/2020]

https://www.vrt.be/vrtnws/nl/dossiers/2020/01/bosbranden-in-australie/ … op 4/10/2020]

Download scriptie (13.6 MB)
Universiteit of Hogeschool
KU Leuven
Thesis jaar
2020
Promotor(en)
Ivo Vankelecom