Kan je je geheugen verbeteren door look te eten of yoghurt te drinken?

Pieter-Jan
Lenaerts

Wist je dat er triljoenen micro-organismen in en op ons lichaam leven? De meesten van die organismen leven in onze darmen, waar ze samen het microbioom vormen. De laatste jaren wordt er heel wat onderzoek verricht naar het effect van voeding om ons microbioom te verbeteren. Dit is namelijk goed voor onze gezondheid. Maar zou het niet geweldig zijn als je met voeding ook je geheugen zou kunnen verbeteren?

 

Waarom onderzoeken we ons geheugen?

Het geheugen is heel belangrijk. Het stelt ons in staat om met elkaar te communiceren, vriendschappen te onderhouden en een identiteit vormen. Het geheugen werkt spijtig genoeg niet altijd even goed, denk maar aan mensen met dementie. Bij hen wordt vooral het kortetermijngeheugen aangetast. Maar er zijn nog andere onderdelen zoals het werkgeheugen of het langetermijngeheugen. Om het geheugen te stimuleren bestaan er verschillende methoden. Maar zou het ook verbeterd kunnen worden door voeding? En wat eet je dan het beste?

 

Pre- en probiotica?

Er wordt tegenwoordig heel wat (dier- en mens)wetenschappelijk onderzoek verricht waarin de effecten van pre- en probiotica worden onderzocht. Prebiotica zijn onverteerbare voedselbestanddelen die ervoor zorgen dat bacteriën in de darm kunnen groeien. Deze kunnen teruggevonden worden in alledaagse voeding zoals look, asperges, ajuinen, bananen, artisjok of yacon. Probiotica daarentegen zijn strengen van levende micro-organismen, ze zitten onder andere in yoghurt. De strengen ‘Lactobacillus’ en ‘Bifidobacterium’ zijn bekend van reclamespots. Het is ondertussen aangetoond dat beide voedingsmiddelen gunstige effecten kunnen hebben op verschillende lichamelijke aandoeningen.

 

Een kattenbrein in onze darmen?

Door het gebruik van voedingsmiddelen zoals pre- en probiotica is het mogelijk om het microbioom te stimuleren. Het microbioom in de darmen is verbonden met het brein via het enterisch zenuwstelsel en de nervus vagus. Het enterisch zenuwstelsel beslaat het zenuwstelsel van de darmen en bevat bijna evenveel neuronen als het brein van een kat. Dat zenuwstelsel staat in contact met het brein via de nervus vagus, een zenuw die het brein onder andere verbindt met de buikstreek. De hersenen en de darmen staan dus sterk met elkaar in verbinding en hebben een wederzijdse invloed op elkaar. Denk maar aan het gezegde ‘vlinders in de buik hebben’ wanneer door verliefdheid het maagdarmstelsel van streek geraakt en je geen eetlust meer hebt.

 

Een lange zoektocht

Om een antwoord te krijgen op de vraag welke effecten pre- en probiotica op het geheugen hebben werden een systematisch literatuuronderzoek en een meta-analyse verricht. In een systematisch literatuuronderzoek wordt op een overzichtelijke wijze al het relevante onderzoek verzameld om de onderzoeksvraag te kunnen beantwoorden. In een meta-analyse worden vervolgens de relevante resultaten gebundeld en herberekend om zo het effect van een behandeling te kunnen inschatten. Voor beide analyses werden wetenschappelijke databases doorzocht. Van de meer dan 1300 gepubliceerde onderzoeken voldeden er uiteindelijk slechts 9  aan de strenge inclusiecriteria. Zo moest ieder onderzoek aan enkele specifieke voorwaarden voldoen. Een bruikbaar onderzoek diende een randomized controlled trial (een experiment waarin de deelnemers worden gerandomiseerd over de interventie- en controlegroep) te zijn, er mochten uitsluitend mensen deelnemen, de pre- en probiotische bestanddelen dienden internationaal erkend zijn en het geheugen moest gemeten worden op een gestructureerde manier.  

 

Moet ik nu elke dag look eten of yoghurt drinken om beter te kunnen onthouden?

Helaas is deze vraag niet zo gemakkelijk te beantwoorden. De vraag of prebiotica (zoals look) het korte- of langetermijngeheugen kunnen verbeteren kon niet worden beantwoord aangezien er te weinig bruikbare gegevens zijn. Wat betreft het effect van probiotica (zoals yoghurt) konden geen gunstige of nadelige effecten worden gevonden. Deze vaststellingen liggen nochtans niet in lijn met eerder neurofysiologisch onderzoek, waarin wel gunstige effecten konden worden vastgesteld bij mens en dier.

Hoe komt dit dan? Er kunnen verschillende verklaringen zijn waarom er geen effecten worden gevonden. Mogelijk was er te weinig onderzoek beschikbaar om een krachtig effect vast te stellen. Of misschien was de kwaliteit van de gebruikte studies te laag? Het kan ook zijn dat de deelnemers te gezond waren om nog een gunstig effect te kunnen vaststellen.   Bovendien kunnen belangrijke bevindingen uit dieronderzoek mogelijk niet zomaar veralgemeend worden naar mensen. Er zijn dus heel wat mogelijke redenen.

Het staat in ieder geval vast dat er veel meer onderzoek nodig is om betrouwbare antwoorden te krijgen. Zo zou het aangewezen kunnen zijn om toekomstig onderzoek te richten op kinderen, omdat de ontwikkeling van het microbioom en het neurologisch systeem op jonge leeftijd centraal staat. Onderzoek zou zich ook kunnen toespitsen op ouderen, omdat het verouderingsproces de kans op het krijgen bepaalde aandoeningen zoals dementie vergroot. Misschien is het ook nuttig om rekening te houden met het vroegere antibioticagebruik van deelnemers. We weten namelijk dat een antiobioticakuur zowel schadelijke als goede bacteriën vernietigt en op lange termijn het microbioom kan verstoren.

Er zijn dus nog heel wat thema’s en topics te onderzoeken. Vooraleer je je volledig op de pre- en probioticamarkt richt om je geheugen te verbeteren is het bijgevolg aan te raden om toekomstig kwaliteitsvol onderzoek af te wachten. Om je hersenen en je lichaam in tussentijd optimaal te stimuleren hou je je best aan de aanbevolen dagelijkse hoeveelheid groenten en fruit.

 

Bibliografie

Aguirre, G. K., Detre, J. A., Alsop, D. C., & D’Esposito, M. (1996). The parahippocampus subserves topographical learning in man. Cerebral Cortex 6, 823–829. doi: 10.1093/cercor/6.6.823

 

Aguirre, G. K., Zarahn, E., and D’Esposito, M. (1998). An area within human ventral cortex sensitive to “building” stimuli: evidence and implications. Neuron 21, 373–383. doi: 10.1016/S0896-6273(00)80546-2

 

AlFaleh, K., & Anabrees, J. (2014). Probiotics for prevention of necrotizing enterocolitis in preterm infants. The Cochrane database of systematic reviews, (4), CD005496. https://doi.org/10.1002/14651858.CD005496.pub4

 

Allen, A. P., Dinan, T. G., Clarke, G., & Cryan, J. F. (2017). A psychology of the human brain-gut-microbiome axis. Social and personality psychology compass, 11(4), e12309. https://doi.org/10.1111/spc3.12309

 

Allen, A. P., Hutch, W., Borre, Y. E., Kennedy, P. J., Temko, A., Boylan, G., Murphy, E., Cryan, J. F., Dinan, T. G., & Clarke, G. (2016). Bifidobacterium longum 1714 as a translational psychobiotic: modulation of stress, electrophysiology and neurocognition in healthy volunteers. Translational psychiatry6(11), e939. https://doi.org/10.1038/tp.2016.191

 

Ahrne, S., & Hagslatt, M. L. (2011). Effect of lactobacilli on paracellular permeability in the gut. Nutrients3(1), 104–117. https://doi.org/10.3390/nu3010104

 

Athari Nik Azm, S., Djazayeri, A., Safa, M., Azami, K., Ahmadvand, B., Sabbaghziarani, F., Sharifzadeh, M., & Vafa, M. (2018). Lactobacilli and bifidobacteria ameliorate memory and learning deficits and oxidative stress in β-amyloid (1-42) injected rats. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme, 43(7), 718–726. https://doi.org/10.1139/apnm-2017-0648

 

Baddeley A. (2000). The episodic buffer: a new component of working memory?. Trends in cognitive sciences4(11), 417–423. https://doi.org/10.1016/s1364-6613(00)01538-2

 

Baddeley A. (1992). Working memory. Science (New York, N.Y.)255(5044), 556–559. https://doi.org/10.1126/science.1736359

 

Baddeley A. & Hitch G. (1974). Working Memory. Psychology of Learning and Motivation, 8, 47-89. https://doi.org/10.1016/S0079-7421(08)60452-1

 

Belmonte, L., Beutheu Youmba, S., Bertiaux-Vandaële, N., Antonietti, M., Lecleire, S., Zalar, A., Gourcerol, G., Leroi, A. M., Déchelotte, P., Coëffier, M., & Ducrotté, P. (2012). Role of toll like receptors in irritable bowel syndrome: differential mucosal immune activation according to the disease subtype. PloS one7(8), e42777. https://doi.org/10.1371/journal.pone.0042777

 

Belorkar, S. A., & Gupta, A. K. (2016). Oligosaccharides: a boon from nature's desk. AMB Express6(1), 82. https://doi.org/10.1186/s13568-016-0253-5

 

Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. Trends in cognitive sciences15(11), 527–536. https://doi.org/10.1016/j.tics.2011.10.001

 

Brandão, R. L., Castro, I. M., Bambirra, E. A., Amaral, S. C., Fietto, L. G., Tropia, M. J., Neves, M. J., Dos Santos, R. G., Gomes, N. C., & Nicoli, J. R. (1998). Intracellular signal triggered by cholera toxin in Saccharomyces boulardii and Saccharomyces cerevisiae. Applied and environmental microbiology, 64(2), 564–568. https://doi.org/10.1128/AEM.64.2.564-568.1998

 

Brigadski, T & Lessmann, V. (2014). BDNF: A regulator of learning and memory processes with clinical potential. e-Neuroforum. 5. 1-11. 10.1007/s13295-014-0053-9.

 

Burokas, A., Arboleya, S., Moloney, R. D., Peterson, V. L., Murphy, K., Clarke, G., Stanton, C., Dinan, T. G., & Cryan, J. F. (2017). Targeting the Microbiota-Gut-Brain Axis: Prebiotics Have Anxiolytic and Antidepressant-like Effects and Reverse the Impact of Chronic Stress in Mice. Biological psychiatry82(7), 472–487. https://doi.org/10.1016/j.biopsych.2016.12.031

 

Campbell, J. M., Fahey, G. C., Jr, & Wolf, B. W. (1997). Selected indigestible oligosaccharides affect large bowel mass, cecal and fecal short-chain fatty acids, pH and microflora in rats. The Journal of nutrition127(1), 130–136. https://doi.org/10.1093/jn/127.1.130

 

Camina, E., & Güell, F. (2017). The Neuroanatomical, Neurophysiological and Psychological Basis of Memory: Current Models and Their Origins. Frontiers in pharmacology8, 438. https://doi.org/10.3389/fphar.2017.00438

 

Caselli, M., Cassol, F., Calò, G., Holton, J., Zuliani, G., & Gasbarrini, A. (2013). Actual concept of "probiotics": is it more functional to science or business?. World journal of gastroenterology19(10), 1527–1540. https://doi.org/10.3748/wjg.v19.i10.1527

 

Christian, K.M., Poulos, A.M., Thompson, R.F. (2014). Chapter 2 – Learning and memory: basic principles and model systems. In Selzer, M., Clarke, S., Cohen, L., Kwakkel, G., Miller, R (Reds). Textbook of Neural Repair and Rehabilitation (pp. 22-35). Cambridge University Press

 

Chunchai, T., Thunapong, W., Yasom, S., Wanchai, K., Eaimworawuthikul, S., Metzler, G., Lungkaphin, A., Pongchaidecha, A., Sirilun, S., Chaiyasut, C., Pratchayasakul, W., Thiennimitr, P., Chattipakorn, N., & Chattipakorn, S. C. (2018). Decreased microglial activation through gut-brain axis by prebiotics, probiotics, or synbiotics effectively restored cognitive function in obese-insulin resistant rats. Journal of neuroinflammation, 15(1), 11. https://doi.org/10.1186/s12974-018-1055-2

 

Chung, Y.C., Jin, H.M., Cui, Y., Kim, D.S., Jung, J.M., Park, J.I., Jung, E.S., Choi, E.K. & Chae, S.W. (2014). Fermented milk of Lactobacillus helveticus IDCC3801 improves cognitive functioning during cognitive fatigue tests in healthy older adults. Journal of Functional Foods, 10, 465-474. https://doi.org/10.1016/j.jff.2014.07.007

 

Cong, X., Xu, W., Janton, S., Henderson, W. A., Matson, A., McGrath, J. M., Maas, K., & Graf, J. (2016). Gut Microbiome Developmental Patterns in Early Life of Preterm Infants: Impacts of Feeding and Gender. PloS one, 11(4), e0152751. https://doi.org/10.1371/journal.pone.0152751

 

Constantinidis, C., & Procyk, E. (2004). The primate working memory networks. Cognitive, affective & behavioral neuroscience4(4), 444–465. https://doi.org/10.3758/cabn.4.4.444

 

Craver, C. F. (2003). The making of a memory mechanism. J. History Biol. 36, 153–195. doi: 10.1023/A:1022596107834

 

Cunha, C., Brambilla, R., & Thomas, K. L. (2010). A simple role for BDNF in learning and memory?. Frontiers in molecular neuroscience, 3, 1. https://doi.org/10.3389/neuro.02.001.2010

 

de Vos, W. M., & de Vos, E. A. (2012). Role of the intestinal microbiome in health and disease: from correlation to causation. Nutrition reviews70 Suppl 1, S45–S56. https://doi.org/10.1111/j.1753-4887.2012.00505.x

 

Deng, H., Dong, X., Chen, M., & Zou, Z. (2020). Efficacy of probiotics on cognition, and biomarkers of inflammation and oxidative stress in adults with Alzheimer's disease or mild cognitive impairment - a meta-analysis of randomized controlled trials. Aging, 12(4), 4010–4039. https://doi.org/10.18632/aging.102810

 

Desbonnet, L., Garrett, L., Clarke, G., Bienenstock, J., & Dinan, T. G. (2008). The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat. Journal of psychiatric research43(2), 164–174. https://doi.org/10.1016/j.jpsychires.2008.03.009

 

Diaz Heijtz R. (2016). Fetal, neonatal, and infant microbiome: Perturbations and subsequent effects on brain development and behavior. Seminars in fetal & neonatal medicine, 21(6), 410–417. https://doi.org/10.1016/j.siny.2016.04.012

 

Dinan, T. G., & Cryan, J. F. (2017). Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. The Journal of physiology, 595(2), 489–503. https://doi.org/10.1113/JP273106

 

Dinan, T. G., Stanton, C., & Cryan, J. F. (2013). Psychobiotics: a novel class of psychotropic. Biological psychiatry74(10), 720–726.https://doi.org/10.1016/j.biopsych.2013.05.001

 

Diplock AT, Aggett P.J., Alexander, J., Alles, M., Anderson, A., Antoine, M., Ashwell M, Asp, N.-G., Barth, C.A., Beaufrère, B., Bellisle, F., Biacs, P.A., Bindels, G., Binns, N.M., Blundell, J.E., Booth, J., Bornet, F., Bruce, A., Contor, L., Danse, B., Doyran, S., Elmadfa, I., Fern, E., Fletcher, R.J., Franck, A., Guarner, F., Guillon, F., Guittard, C., Haehnlein, W., Hanley, B., Hautvast, J., Hirahara, T., Hislop, J.R., Hornstra, G., Howlett, J., Huis in’t Veld, J., Knorr, D., Kok, F.J., Koletzko, B., Korhonen, H., Korpela, R., Kruseman, J., Lambert, J., Lindley, M.G., Lucas, J., Malgarini, G., Meah, M.N., Michel-Drees, Müller, D.J.F., Nielsen, B., Nordmann, H., Ovesen, L., Pascal, G., Peters, A.L.J., Riccardi, G., Roberfroid, M., Salminen, S., Saris, W.H.M., Stephen, A.M., Tello-Achuela, O., Timmermans, E., Top, R., van den Berg, H., Verschuren, P.M., Videla, S., Viechtbauer, V., Viell, B., Vogel, M., Voragen, A.G.J., Walter, P., Whitmore, A., Wils, D., Wiseman, J. (1999). Scientific concepts of functional foods in Europe: consensus document. British Journal of Nutrition, 81(1), 1-27. https://doi.org/10.1017/S0007114599000471

 

Dickerson, B. C., & Eichenbaum, H. (2010). The episodic memory system: neurocircuitry and disorders. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology35(1), 86–104. https://doi.org/10.1038/npp.2009.126

 

Dogra, S., Sakwinska, O., Soh, S. E., Ngom-Bru, C., Brück, W. M., Berger, B., Brüssow, H., Lee, Y. S., Yap, F., Chong, Y. S., Godfrey, K. M., Holbrook, J. D., & GUSTO Study Group (2015). Dynamics of infant gut microbiota are influenced by delivery mode and gestational duration and are associated with subsequent adiposity. mBio, 6(1), e02419-14. https://doi.org/10.1128/mBio.02419-14

 

Dowlati, Y., Herrmann, N., Swardfager, W., Liu, H., Sham, L., Reim, E. K., & Lanctôt, K. L. (2010). A meta-analysis of cytokines in major depression. Biological psychiatry, 67(5), 446–457. https://doi.org/10.1016/j.biopsych.2009.09.033

 

Drakoularakou, A., Tzortzis, G., Rastall, R. A., & Gibson, G. R. (2010). A double-blind, placebo-controlled, randomized human study assessing the capacity of a novel galacto-oligosaccharide mixture in reducing travellers' diarrhoea. European journal of clinical nutrition, 64(2), 146–152. https://doi.org/10.1038/ejcn.2009.120

Duncan, J., & Owen, A. M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in neurosciences23(10), 475–483. https://doi.org/10.1016/s0166-2236(00)01633-7

 

Duval, S., & Tweedie, R. (2000). Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics, 56(2), 455–463. https://doi.org/10.1111/j.0006-341x.2000.00455.x

 

Epstein, R. & Kanwisher, N. (1998). A cortical representation of the local visual environment. Nature 392, 598–601. https://doi.org/10.1038/33402

 

European Food Safety Authority (EFSA). (2005, April). Opinion of the Scientific Committee on a request from EFSA related to a generic approach to the safety assessment by EFSA of microorganisms used in food/feed and the production of food/feed additives (No. 226). https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2005.226

 

Eysenck, M. (Eds.). (2012). Attention and Arousal : Cognition and Performance. Berlin, Heidelberg: Springer Berlin Heidelberg.

 

El Aidy, S., Dinan, T. G., & Cryan, J. F. (2015). Gut Microbiota: The Conductor in the Orchestra of Immune-Neuroendocrine Communication. Clinical therapeutics, 37(5), 954–967. https://doi.org/10.1016/j.clinthera.2015.03.002

 

Fernandez R.C., Maresma B.G., Juarez A., Martinez J. (2003) Production of fructooligosaccharides

by β-fructofuranosidase from Aspergillus sp. 27 H. Journal of Chemical Technology & Biotechnology, 79(3):268–272

 

Field, A. P., & Gillett, R. (2010). How to do a meta-analysis. The British journal of mathematical and statistical psychology, 63(Pt 3), 665–694. https://doi.org/10.1348/000711010X502733

 

Fjell, A. M., & Walhovd, K. B. (2010). Structural brain changes in aging: courses, causes and cognitive consequences. Reviews in the neurosciences, 21(3), 187–221. https://doi.org/10.1515/revneuro.2010.21.3.187

 

Floch, M. H., Ringel, Y., & Walker, W. A. (2016). The Microbiota in Gastrointestinal Pathophysiology. Elsevier Gezondheidszorg.

 

Food and Agriculture Organization of the United Nations (FAO) & World Health Organization (WHO). (2002, May). Guidelines for the Evaluation of Probiotics in Food; Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food. Food and Agriculture Organization of the United Nations (FAO). https://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf

 

Franceschi, C., Bonafè, M., Valensin, S., Olivieri, F., De Luca, M., Ottaviani, E., & De Benedictis, G. (2000). Inflamm-aging. An evolutionary perspective on immunosenescence. Annals of the New York Academy of Sciences, 908, 244–254. https://doi.org/10.1111/j.1749-6632.2000.tb06651.x

 

Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid, G. (2017). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature reviews. Gastroenterology & hepatology, 14(8), 491–502. https://doi.org/10.1038/nrgastro.2017.75

 

Gareau, M. G., Wine, E., Rodrigues, D. M., Cho, J. H., Whary, M. T., Philpott, D. J., Macqueen, G., & Sherman, P. M. (2011). Bacterial infection causes stress-induced memory dysfunction in mice. Gut, 60(3), 307–317. https://doi.org/10.1136/gut.2009.202515

 

Gibson, G. R., & Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. The Journal of nutrition, 125(6), 1401–1412. https://doi.org/10.1093/jn/125.6.1401

 

Grenham, S., Clarke, G., Cryan, J. F., & Dinan, T. G. (2011). Brain-gut-microbe communication in health and disease. Frontiers in physiology, 2, 94. https://doi.org/10.3389/fphys.2011.00094

 

Grigorenko, E. L., Mambrino, E., & Preiss, D. D. (Eds.). (2012). Writing: A mosaic of new perspectives. Psychology Press. https://doi.org/10.4324/9780203808481

 

Guillot, J.F. (2003). Probiotic feed additives. J. Vet. Pharmacol. Ther., 26, 52–55.

 

Hamady, M., & Knight, R. (2009). Microbial community profiling for human microbiome projects: Tools, techniques, and challenges. Genome research19(7), 1141–1152. https://doi.org/10.1101/gr.085464.108

 

Heldt, S. A., Stanek, L., Chhatwal, J. P., & Ressler, K. J. (2007). Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories. Molecular psychiatry12(7), 656–670. https://doi.org/10.1038/sj.mp.4001957

 

Higgins, J. P. T., & Green, S. (2011). Cochrane Handbook for Systematic Reviews of Interventions (Version 5.1.0 ed.). Wiley. https://handbook-5-1.cochrane.org/

 

Higgins, J. P., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. BMJ (Clinical research ed.), 327(7414), 557–560. https://doi.org/10.1136/bmj.327.7414.557

 

Ho, S. T., Hsieh, Y. T., Wang, S. Y., & Chen, M. J. (2019). Improving effect of a probiotic mixture on memory and learning abilities in d-galactose-treated aging mice. Journal of dairy science, 102(3), 1901–1909. https://doi.org/10.3168/jds.2018-15811

 

Hwang, Y. H., Park, S., Paik, J. W., Chae, S. W., Kim, D. H., Jeong, D. G., Ha, E., Kim, M., Hong, G., Park, S. H., Jung, S. J., Lee, S. M., Na, K. H., Kim, J., & Chung, Y. C. (2019). Efficacy and Safety of Lactobacillus Plantarum C29-Fermented Soybean (DW2009) in Individuals with Mild Cognitive Impairment: A 12-Week, Multi-Center, Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients, 11(2), 305. https://doi.org/10.3390/nu11020305

 

Inoue, T., Kobayashi, Y., Mori, N., Sakagawa, M., Xiao, J. Z., Moritani, T., Sakane, N., & Nagai, N. (2018). Effect of combined bifidobacteria supplementation and resistance training on cognitive function, body composition and bowel habits of healthy elderly subjects. Beneficial microbes, 9(6), 843–853. https://doi.org/10.3920/BM2017.0193

 

Ishai, A., Ungerleider, L. G., Martin, A., Schouten, J. L., & Haxby, J. V. (1999). Distributed representation of objects in the human ventral visual pathway. Proc. Natl. Acad. Sci. U.S.A. 96, 9379–9384. doi: 10.1073/PNAS.96.16.9379

 

Isolauri, E., Sütas, Y., Kankaanpää, P., Arvilommi, H., & Salminen, S. (2001). Probiotics: effects on immunity. The American journal of clinical nutrition, 73(2 Suppl), 444S–450S. https://doi.org/10.1093/ajcn/73.2.444s

 

Jakobsson, H. E., Abrahamsson, T. R., Jenmalm, M. C., Harris, K., Quince, C., Jernberg, C., Björkstén, B., Engstrand, L., & Andersson, A. F. (2014). Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut, 63(4), 559–566. https://doi.org/10.1136/gutjnl-2012-303249

 

Karczewski, J., Troost, F. J., Konings, I., Dekker, J., Kleerebezem, M., Brummer, R. J., & Wells, J. M. (2010). Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier. American journal of physiology. Gastrointestinal and liver physiology298(6), G851–G859. https://doi.org/10.1152/ajpgi.00327.2009

 

Kim, C. S., Cha, L., Sim, M., Jung, S., Chun, W. Y., Baik, H. W., & Shin, D. M. (2021). Probiotic Supplementation Improves Cognitive Function and Mood with Changes in Gut Microbiota in Community-Dwelling Older Adults: A Randomized, Double-Blind, Placebo-Controlled, Multicenter Trial. The journals of gerontology. Series A, Biological sciences and medical sciences, 76(1), 32–40. https://doi.org/10.1093/gerona/glaa090

 

Kobayashi, Y., Kuhara, T., Oki, M., & Xiao, J. Z. (2019). Effects of Bifidobacterium breve A1 on the cognitive function of older adults with memory complaints: a randomised, double-blind, placebo-controlled trial. Beneficial microbes, 10(5), 511–520. https://doi.org/10.3920/BM2018.0170

 

Kobayashi, Y., Sugahara, H., Shimada, K., Mitsuyama, E., Kuhara, T., Yasuoka, A., Kondo, T., Abe, K., & Xiao, J. Z. (2017). Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer's disease. Scientific reports, 7(1), 13510. https://doi.org/10.1038/s41598-017-13368-2

 

Koh, A., De Vadder, F., Kovatcheva-Datchary, P., & Bäckhed, F. (2016). From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell, 165(6), 1332–1345. https://doi.org/10.1016/j.cell.2016.05.041

 

Komanduri, M., Gondalia, S., Scholey, A., & Stough, C. (2019). The microbiome and cognitive aging: a review of mechanisms. Psychopharmacology, 236(5), 1559–1571. https://doi.org/10.1007/s00213-019-05231-1

 

Kreitzer A. C. (2009). Physiology and pharmacology of striatal neurons. Annual review of neuroscience32, 127–147. https://doi.org/10.1146/annurev.neuro.051508.135422

 

Lambrecht, W., Hermans, N. (2013). Geheugen. In Lambrecht, W. & Hermans, N (Reds), Breinzicht, Toegepaste neuropsychologie bij niet-aangeboren hersenletsel (pp. 105-130). Gent: Acamedia Press

 

Lew, L. C., Hor, Y. Y., Yusoff, N., Choi, S. B., Yusoff, M., Roslan, N. S., Ahmad, A., Mohammad, J., Abdullah, M., Zakaria, N., Wahid, N., Sun, Z., Kwok, L. Y., Zhang, H., & Liong, M. T. (2018). Probiotic Lactobacillus plantarum P8 alleviated stress and anxiety while enhancing memory and cognition in stressed adults: A randomised, double-blind, placebo-controlled study. Clinical nutrition (Edinburgh, Scotland), 38(5), 2053–2064. https://doi.org/10.1016/j.clnu.2018.09.010

 

Lin, L., Zheng, L. J., & Zhang, L. J. (2018). Neuroinflammation, Gut Microbiome, and Alzheimer's Disease. Molecular neurobiology55(11), 8243–8250. https://doi.org/10.1007/s12035-018-0983-2

 

Liu, B., He, Y., Wang, M., Liu, J., Ju, Y., Zhang, Y., Liu, T., Li, L., & Li, Q. (2018). Efficacy of probiotics on anxiety-A meta-analysis of randomized controlled trials. Depression and anxiety35(10), 935–945. https://doi.org/10.1002/da.22811

 

Liu, R. T., Walsh, R., & Sheehan, A. E. (2019). Prebiotics and probiotics for depression and anxiety: A systematic review and meta-analysis of controlled clinical trials. Neuroscience and biobehavioral reviews102, 13–23. https://doi.org/10.1016/j.neubiorev.2019.03.023

 

Lu, Y., Christian, K., & Lu, B. (2008). BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory?. Neurobiology of learning and memory89(3), 312–323. https://doi.org/10.1016/j.nlm.2007.08.018

 

Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K., & Knight, R. (2012). Diversity, stability and resilience of the human gut microbiota. Nature489(7415), 220–230. https://doi.org/10.1038/nature11550

 

Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature reviews. Neuroscience, 10(6), 434–445. https://doi.org/10.1038/nrn2639

 

Meeter, M., Hendriks, M. (2018). Geheugen. In Kessels, R., Eling, P., Ponds, R., Spikman, J., Van Zandvoort, M (Reds),  Klinische Neuropsychologie (8ste druk, pp. 197-218). Amsterdam: Boom Uitgevers Amsterdam

 

Mao, Y., Nobaek, S., Kasravi, B., Adawi, D., Stenram, U., Molin, G., & Jeppsson, B. (1996). The effects of Lactobacillus strains and oat fiber on methotrexate-induced enterocolitis in rats. Gastroenterology111(2), 334–344. https://doi.org/10.1053/gast.1996.v111.pm8690198

 

Markowiak, P., & Śliżewska, K. (2017). Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients, 9(9), 1021. https://doi.org/10.3390/nu9091021

 

Mardini, H. E., & Grigorian, A. Y. (2014). Probiotic mix VSL#3 is effective adjunctive therapy for mild to moderately active ulcerative colitis: a meta-analysis. Inflammatory bowel diseases, 20(9), 1562–1567. https://doi.org/10.1097/MIB.0000000000000084

 

Mayer E. A. (2011). Gut feelings: the emerging biology of gut-brain communication. Nature reviews. Neuroscience, 12(8), 453–466. https://doi.org/10.1038/nrn3071

 

Mayer, E. A., Knight, R., Mazmanian, S. K., Cryan, J. F., & Tillisch, K. (2014). Gut microbes and the brain: paradigm shift in neuroscience. The Journal of neuroscience : the official journal of the Society for Neuroscience34(46), 15490–15496. https://doi.org/10.1523/JNEUROSCI.3299-14.2014

 

McFall-Ngai, M., Hadfield, M. G., Bosch, T. C., Carey, H. V., Domazet-Lošo, T., Douglas, A. E., Dubilier, N., Eberl, G., Fukami, T., Gilbert, S. F., Hentschel, U., King, N., Kjelleberg, S., Knoll, A. H., Kremer, N., Mazmanian, S. K., Metcalf, J. L., Nealson, K., Pierce, N. E., Rawls, J. F., … Wernegreen, J. J. (2013). Animals in a bacterial world, a new imperative for the life sciences. Proceedings of the National Academy of Sciences of the United States of America110(9), 3229–3236. https://doi.org/10.1073/pnas.1218525110

 

McNaught, C. E., Woodcock, N. P., Anderson, A. D., & MacFie, J. (2005). A prospective randomised trial of probiotics in critically ill patients. Clinical nutrition (Edinburgh, Scotland)24(2), 211–219. https://doi.org/10.1016/j.clnu.2004.08.008

 

McRae, K., & Jones, M. (2013). Semantic memory. In D. Reisberg (Ed.), Oxford library of psychology. The Oxford handbook of cognitive psychology (p. 206–219). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780195376746.013.0014

 

Messaoudi, M., Violle, N., Bisson, J. F., Desor, D., Javelot, H., & Rougeot, C. (2011). Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut microbes, 2(4), 256–261. https://doi.org/10.4161/gmic.2.4.16108

 

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097

 

Moore, N., Chao, C., Yang, L. P., Storm, H., Oliva-Hemker, M., & Saavedra, J. M. (2003). Effects of fructo-oligosaccharide-supplemented infant cereal: a double-blind, randomized trial. The British journal of nutrition90(3), 581–587. https://doi.org/10.1079/bjn2003950

 

Neu J. (2016). The microbiome during pregnancy and early postnatal life. Seminars in fetal & neonatal medicine, 21(6), 373–379. https://doi.org/10.1016/j.siny.2016.05.001

 

Ng, Q. X., Soh, A., Venkatanarayanan, N., Ho, C., Lim, D. Y., & Yeo, W. S. (2019). A Systematic Review of the Effect of Probiotic Supplementation on Schizophrenia Symptoms. Neuropsychobiology78(1), 1–6. https://doi.org/10.1159/000498862

 

Niers, L., Martín, R., Rijkers, G., Sengers, F., Timmerman, H., van Uden, N., Smidt, H., Kimpen, J., & Hoekstra, M. (2009). The effects of selected probiotic strains on the development of eczema (the PandA study). Allergy, 64(9), 1349–1358. https://doi.org/10.1111/j.1398-9995.2009.02021.x

 

Niv, E., Naftali, T., Hallak, R., & Vaisman, N. (2005). The efficacy of Lactobacillus reuteri ATCC 55730 in the treatment of patients with irritable bowel syndrome--a double blind, placebo-controlled, randomized study. Clinical nutrition (Edinburgh, Scotland), 24(6), 925–931. https://doi.org/10.1016/j.clnu.2005.06.001

 

O'Hara, A. M., & Shanahan, F. (2006). The gut flora as a forgotten organ. EMBO reports7(7), 688–693. https://doi.org/10.1038/sj.embor.7400731

 

Ohsawa, K., Nakamura, F., Uchida, N., Mizuno, S., & Yokogoshi, H. (2018). Lactobacillus helveticus-fermented milk containing lactononadecapeptide (NIPPLTQTPVVVPPFLQPE) improves cognitive function in healthy middle-aged adults: a randomised, double-blind, placebo-controlled trial. International journal of food sciences and nutrition, 69(3), 369–376. https://doi.org/10.1080/09637486.2017.1365824

 

Oishi, K., Sato, T., Yokoi, W., Yoshida, Y., Ito, M., & Sawada, H. (2008). Effect of probiotics, Bifidobacterium breve and Lactobacillus casei, on bisphenol A exposure in rats. Bioscience, biotechnology, and biochemistry72(6), 1409–1415. https://doi.org/10.1271/bbb.70672

 

Oliveros, E., Ramirez, M., Vazquez, E., Barranco, A., Gruart, A., Delgado-Garcia, J. M., Buck, R., Rueda, R., & Martin, M. J. (2016). Oral supplementation of 2'-fucosyllactose during lactation improves memory and learning in rats. The Journal of nutritional biochemistry31, 20–27. https://doi.org/10.1016/j.jnutbio.2015.12.014

 

Pavlov, I. P. (2010). Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex. Annals of Neuroscience, 17(3), 136-141. https://doi.org/ 10.5214/ans.0972.7531.1017309

 

Pittenger C. (2013). Disorders of memory and plasticity in psychiatric disease. Dialogues in clinical neuroscience, 15(4), 455–463. https://doi.org/10.31887/DCNS.2013.15.4/cpittenger

 

Potter, M. C. (1999). Understanding sentences and scenes: The role of conceptual short-term memory. In V. Coltheart (Ed.), MIT Press/Bradford Books series in cognitive psychology. Fleeting memories: Cognition of brief visual stimuli (p. 13–46). The MIT Press.

 

Quigley E. (2017). Microbiota-Brain-Gut Axis and Neurodegenerative Diseases. Current neurology and neuroscience reports, 17(12), 94. https://doi.org/10.1007/s11910-017-0802-6

 

Reid, L. M., & Maclullich, A. M. (2006). Subjective memory complaints and cognitive impairment in older people. Dementia and geriatric cognitive disorders22(5-6), 471–485. https://doi.org/10.1159/000096295

 

Rudzki, L., Ostrowska, L., Pawlak, D., Małus, A., Pawlak, K., Waszkiewicz, N., & Szulc, A. (2019). Probiotic Lactobacillus Plantarum 299v decreases kynurenine concentration and improves cognitive functions in patients with major depression: A double-blind, randomized, placebo controlled study. Psychoneuroendocrinology, 100, 213–222. https://doi.org/10.1016/j.psyneuen.2018.10.010

 

Sanborn, V., Azcarate-Peril, M. A., Updegraff, J., Manderino, L., & Gunstad, J. (2020). Randomized Clinical Trial Examining the Impact of Lactobacillus rhamnosus GG Probiotic Supplementation on Cognitive Functioning in Middle-aged and Older Adults. Neuropsychiatric disease and treatment, 16, 2765–2777. https://doi.org/10.2147/NDT.S270035

 

Sanders, M. E., Guarner, F., Guerrant, R., Holt, P. R., Quigley, E. M., Sartor, R. B., Sherman, P. M., & Mayer, E. A. (2013). An update on the use and investigation of probiotics in health and disease. Gut62(5), 787–796. https://doi.org/10.1136/gutjnl-2012-302504

 

Sanders, M. E., Merenstein, D. J., Reid, G., Gibson, G. R., & Rastall, R. A. (2019). Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nature reviews. Gastroenterology & hepatology, 16(10), 605–616. https://doi.org/10.1038/s41575-019-0173-3

 

Saminathan M., Sieo C.C., Kalavathy R., Abdullah N., Ho Y.W. (2011). Effect of prebiotic oligosaccharides on growth of Lactobacillus strains used as a probiotic for chickens. African Journal of Microbiology Research, 5(1), 57–64. https:// 10.5897/AJMR10.700

 

Sarkar, A., Harty, S., Lehto, S. M., Moeller, A. H., Dinan, T. G., Dunbar, R., Cryan, J. F., & Burnet, P. (2018). The Microbiome in Psychology and Cognitive Neuroscience. Trends in cognitive sciences22(7), 611–636. https://doi.org/10.1016/j.tics.2018.04.006

 

Sarkar, A., Lehto, S. M., Harty, S., Dinan, T. G., Cryan, J. F., & Burnet, P. (2016). Psychobiotics and the Manipulation of Bacteria-Gut-Brain Signals. Trends in neurosciences39(11), 763–781. https://doi.org/10.1016/j.tins.2016.09.002

 

Savignac, H. M., Corona, G., Mills, H., Chen, L., Spencer, J. P., Tzortzis, G., & Burnet, P. W. (2013). Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-D-aspartate receptor subunits and D-serine. Neurochemistry international63(8), 756–764. https://doi.org/10.1016/j.neuint.2013.10.006

 

Savignac, H. M., Tramullas, M., Kiely, B., Dinan, T. G., & Cryan, J. F. (2015). Bifidobacteria modulate cognitive processes in an anxious mouse strain. Behavioural brain research287, 59–72. https://doi.org/10.1016/j.bbr.2015.02.044

 

Schmidt, K., Cowen, P. J., Harmer, C. J., Tzortzis, G., Errington, S., & Burnet, P. W. (2015). Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology, 232(10), 1793–1801. https://doi.org/10.1007/s00213-014-3810-0

 

Senok, A. C., Ismaeel, A. Y., & Botta, G. A. (2005). Probiotics: facts and myths. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 11(12), 958–966. https://doi.org/10.1111/j.1469-0691.2005.01228.x

 

Shallice, T. (2002). Fractionation of the supervisory system. In D. T. Stuss & R. T. Knight (Eds.), Principles of frontal lobe function (p. 261–277). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195134971.003.0017

 

Sharon, G., Sampson, T. R., Geschwind, D. H., & Mazmanian, S. K. (2016). The Central Nervous System and the Gut Microbiome. Cell, 167(4), 915–932. https://doi.org/10.1016/j.cell.2016.10.027

 

Smith, A. P., Sutherland, D., & Hewlett, P. (2015). An Investigation of the Acute Effects of Oligofructose-Enriched Inulin on Subjective Wellbeing, Mood and Cognitive Performance. Nutrients, 7(11), 8887–8896. https://doi.org/10.3390/nu7115441

 

Smith A. P. (2005). The concept of well-being: relevance to nutrition research. The British journal of nutrition, 93 Suppl 1, S1–S5. https://doi.org/10.1079/bjn20041351

 

Sommer, F., & Bäckhed, F. (2016). Know your neighbor: Microbiota and host epithelial cells interact locally to control intestinal function and physiology. BioEssays : news and reviews in molecular, cellular and developmental biology, 38(5), 455–464. https://doi.org/10.1002/bies.201500151

 

Souza, J. P., Pileggi, C., & Cecatti, J. G. (2007). Assessment of funnel plot asymmetry and publication bias in reproductive health meta-analyses: an analytic survey. Reproductive health, 4, 3. https://doi.org/10.1186/1742-4755-4-3

 

Squire L. R. (2004). Memory systems of the brain: a brief history and current perspective. Neurobiology of learning and memory82(3), 171–177. https://doi.org/10.1016/j.nlm.2004.06.005

 

Szajewska, H., Kołodziej, M., Gieruszczak-Białek, D., Skórka, A., Ruszczyński, M., & Shamir, R. (2019). Systematic review with meta-analysis: Lactobacillus rhamnosus GG for treating acute gastroenteritis in children - a 2019 update. Alimentary pharmacology & therapeutics, 49(11), 1376–1384. https://doi.org/10.1111/apt.15267

 

Theis, K. R., Dheilly, N. M., Klassen, J. L., Brucker, R. M., Baines, J. F., Bosch, T. C., Cryan, J. F., Gilbert, S. F., Goodnight, C. J., Lloyd, E. A., Sapp, J., Vandenkoornhuyse, P., Zilber-Rosenberg, I., Rosenberg, E., & Bordenstein, S. R. (2016). Getting the Hologenome Concept Right: an Eco-Evolutionary Framework for Hosts and Their Microbiomes. mSystems1(2), e00028-16. https://doi.org/10.1128/mSystems.00028-16

 

Thompson, R. F., & Kim, J. J. (1996). Memory systems in the brain and localization of a memory. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13438–13444. https://doi.org/10.1073/pnas.93.24.13438

 

Thorndike, E. L. (1932). The Fundamentals of Learning. New York, NY: Teachers College Bureau of Publications

 

Tsay, H. J., Wang, P., Wang, S. L., & Ku, H. H. (2000). Age-associated changes of superoxide dismutase and catalase activities in the rat brain. Journal of biomedical science, 7(6), 466–474. https://doi.org/10.1007/BF02253362

 

Travica, N., D'Cunha, N. M., Naumovski, N., Kent, K., Mellor, D. D., Firth, J., Georgousopoulou, E. N., Dean, O. M., Loughman, A., Jacka, F., & Marx, W. (2020). The effect of blueberry interventions on cognitive performance and mood: A systematic review of randomized controlled trials. Brain, behavior, and immunity, 85, 96–105. https://doi.org/10.1016/j.bbi.2019.04.001

 

Ursell, L. K., Haiser, H. J., Van Treuren, W., Garg, N., Reddivari, L., Vanamala, J., Dorrestein, P. C., Turnbaugh, P. J., & Knight, R. (2014). The intestinal metabolome: an intersection between microbiota and host. Gastroenterology146(6), 1470–1476. https://doi.org/10.1053/j.gastro.2014.03.001

 

Vandenbergh P.A. (1993). Lactic acid bacteria, their metabolic products and interference with microbial growth, FEMS Microbiology Reviews, 12(1-3), 221–237, https://doi.org/10.1111/j.1574-6976.1993.tb00020.x

 

Vangay, P., Ward, T., Gerber, J. S., & Knights, D. (2015). Antibiotics, pediatric dysbiosis, and disease. Cell host & microbe, 17(5), 553–564. https://doi.org/10.1016/j.chom.2015.04.006

 

Vázquez, E., Barranco, A., Ramírez, M., Gruart, A., Delgado-García, J. M., Martínez-Lara, E., Blanco, S., Martín, M. J., Castanys, E., Buck, R., Prieto, P., & Rueda, R. (2015). Effects of a human milk oligosaccharide, 2'-fucosyllactose, on hippocampal long-term potentiation and learning capabilities in rodents. The Journal of nutritional biochemistry26(5), 455–465. https://doi.org/10.1016/j.jnutbio.2014.11.016

 

Vigliocco, G., Meteyard, L., Andrews, M., and Kousta, S. (2009). Toward a theory of semantic representation. Language and Cognition, 1(2), 219–247, https://doi.org/10.1515/LANGCOG.2009.011

 

Vink, M. T., Kuin, Y., Westerhof, G. J., Lamers, S. M. A., & Pot, A. M. (2017). Handboek ouderenpsychologie. De Tijdstroom.

 

Wallace, C., & Milev, R. (2017). The effects of probiotics on depressive symptoms in humans: a systematic review. Annals of general psychiatry, 16, 14. https://doi.org/10.1186/s12991-017-0138-2

 

Wang, T., Hu, X., Liang, S., Li, W., Wu, X., Wang, L., & Jin, F. (2015). Lactobacillus fermentum NS9 restores the antibiotic induced physiological and psychological abnormalities in rats. Beneficial microbes, 6(5), 707–717. https://doi.org/10.3920/BM2014.0177

 

Wang, Y. 2009. Prebiotics: Present and future in food science and technology. Food Res. Int, 42, 8–12.

 

Weingarten, E., Chen, Q., McAdams, M., Yi, J., Hepler, J., & Albarracín, D. (2016). From primed concepts to action: A meta-analysis of the behavioral effects of incidentally presented words. Psychological bulletin142(5), 472–497. https://doi.org/10.1037/bul0000030

 

Whorwell, P. J., Altringer, L., Morel, J., Bond, Y., Charbonneau, D., O'Mahony, L., Kiely, B., Shanahan, F., & Quigley, E. M. (2006). Efficacy of an encapsulated probiotic Bifidobacterium infantis 35624 in women with irritable bowel syndrome. The American journal of gastroenterology, 101(7), 1581–1590. https://doi.org/10.1111/j.1572-0241.2006.00734.x

 

Williams, S., Chen, L., Savignac, H. M., Tzortzis, G., Anthony, D. C., & Burnet, P. W. (2016). Neonatal prebiotic (BGOS) supplementation increases the levels of synaptophysin, GluN2A-subunits and BDNF proteins in the adult rat hippocampus. Synapse (New York, N.Y.)70(3), 121–124. https://doi.org/10.1002/syn.21880

 

 

Yang, I., Corwin, E. J., Brennan, P. A., Jordan, S., Murphy, J. R., & Dunlop, A. (2016). The Infant Microbiome: Implications for Infant Health and Neurocognitive Development. Nursing research, 65(1), 76–88. https://doi.org/10.1097/NNR.0000000000000133

 

Yang, X., Yu, D., Xue, L., Li, H., & Du, J. (2020). Probiotics modulate the microbiota-gut-brain axis and improve memory deficits in aged SAMP8 mice. Acta pharmaceutica Sinica. B, 10(3), 475–487. https://doi.org/10.1016/j.apsb.2019.07.001

 

Xiao, J., Katsumata, N., Bernier, F., Ohno, K., Yamauchi, Y., Odamaki, T., Yoshikawa, K., Ito, K., & Kaneko, T. (2020). Probiotic Bifidobacterium breve in Improving Cognitive Functions of Older Adults with Suspected Mild Cognitive Impairment: A Randomized, Double-Blind, Placebo-Controlled Trial. Journal of Alzheimer's disease : JAD, 77(1), 139–147. https://doi.org/10.3233/JAD-200488

 

Zhao, J., , Tian, F., , Yan, S., , Zhai, Q., , Zhang, H., , & Chen, W., (2018). Lactobacillus plantarum CCFM10 alleviating oxidative stress and restoring the gut microbiota in d-galactose-induced aging mice. Food & function, 9(2), 917–924. https://doi.org/10.1039/c7fo01574g

Download scriptie (2.64 MB)
Universiteit of Hogeschool
Vrije Universiteit Brussel
Thesis jaar
2021
Promotor(en)
Prof. Dr. Natacha Deroost