Om de groeiende wereldbevolking te blijven voeden moet de landbouw haar productie verder verhogen, terwijl het belang van een ecologische voedselproductie verder toeneemt. Consumenten keren zich steeds vaker af van chemische pesticiden, maar hoe zullen we in de toekomst onze gewassen gezond houden? Kunnen we planten vaccineren?
Sinds de Corona-pandemie is iedereen wel vertrouwd geraakt met het belang van vaccinaties om ziektes te bestrijden. Zo versterken we het immuunsysteem om met ons eigen lichaam de ziekte te verslaan. Is het dan zo’n gek idee om onze gewassen te vaccineren om het gebruik van chemische pesticiden te verlagen? Zeker niet!
Het planten-immuunsysteem is verschillend van dat van dieren, maar kan mits gepaste stimulatie zich ook voorbereiden op een toekomstige besmetting. Dit noemen we in planten ‘geïnduceerde resistentie’ en is conceptueel vergelijkbaar met een vaccinatie. Deze benadering brengt ook voordelen in vergelijking met het gebruik van pesticiden. Omdat we het immuunsysteem van de plant activeren zijn we niet op zoek naar toxische chemicaliën die naast voor de ziekte ook voor de omgeving en de mens toxisch kunnen zijn. Daarenboven zorgt dit ervoor dat de plantenziektes minder snel resistent worden tegen de behandeling. Tot slot resulteert geïnduceerde resistentie vaak in bescherming tegen diverse soorten ziektes en zelfs tolerantie tegen hitte, droogte en andere omgevingsstressoren, wat erg verschillend is van een vaccinatie, waarbij slechts één specifieke ziekte herkend wordt door het immuunsysteem.
In mijn thesis werd onderzoek verricht naar een specifiek plantenvaccin, “mCCOPE”. mCCOPE is een biologisch extract gebaseerd op meloenenschillen en dus een duurzame manier om plantenziektes te bestrijden. Dit extract staat ons toe om een afvalstroom te valoriseren tot een natuurlijk en hoogwaardig plantenbeschermingsproduct om zo bij te dragen aan een duurzamere landbouw. In mijn thesis werd er specifiek gefocust op de behandeling van rijstplanten om resistentie tegen de nematode (of rondworm) Meloidogyne graminicola te bekomen. Meloidogyne graminicola is een microscopisch kleine worm die de wortels van de rijstplant binnendringt en zich er voedt. Algemeen wordt geschat dat planten parasiterende nematoden jaarlijks meer dan 65 miljard euro aan schade berokkenen in de wereldwijde landbouw. Verder hebben recente ontwikkelingen in de rijstkweek, met als doel om duurzamere rijst te produceren, geleid tot een toename in besmettingen met Meloidogyne graminicola. Daarenboven zijn de traditionele nematiciden (pesticiden gebruikt tegen nematoden) extreem toxisch en schadelijk voor het milieu. Dus om de productie van rijst in de toekomst op een duurzame wijze te garanderen is er dringend nood aan alternatieve beschermingsmiddelen. Het vaccineren van rijst met bijvoorbeeld mCCOPE kan een eerste stap in de goede richting zijn.
Het doel van mijn thesis was om na te gaan wat het precieze effect is van een mCCOPE vaccinatie op het rijstimmuunsysteem en dit op een moleculair niveau. Zo kunnen we ons begrip van deze vaccinatie strategieën verder uitbouwen en op lange termijn gewassen proberen te kweken met een betere immuunrespons en gevoeligheid voor deze plantenvaccins. Om het effect op het immuunsysteem na te gaan werd gekeken naar de activiteit van de genen in de plant via een analyse van het mRNA. mRNA zijn moleculen die als een template werken voor de plantencel en de informatie bevatten voor de synthese van eiwitten. Deze eiwitten kunnen op hun beurt bijdragen aan de verdediging van de plantencel. Hier werd er gezien dat mCCOPE diverse verdedigingssignalen en -genen activeert en dus effectief het immuunsysteem stimuleert. Verder werden typische verdedigingsmechanismen biochemisch gevalideerd. Zo zagen we dat mCCOPE plantenhormonen beïnvloedt en ook de vorming van fysische barrières stimuleert.
Vervolgens werd ook nagegaan of het plantenvaccin de groei van de plant beïnvloedt en of het toxisch is voor Meloidogyne graminicola. Hieruit bleek dat rijstplanten na herhaaldelijke behandeling met mCCOPE niet slechter groeiden en evenveel rijst produceerden. Het plantenvaccin kan dus toegepast worden in de landbouw zonder lange termijn negatieve effecten op de plantengroei. Daarnaast bleek ook dat het extract een negatief effect heeft op de Meloidogyne graminicola infectie, zowel door de activatie van het rijstimmuunsysteem als door een toxisch effect op de nematode.
Dus kunnen we planten “vaccineren”? Ja, en zelfs door gebruik te maken van plantaardig afval! Verder onderzoek naar deze duurzame en biologische manier van plantenbescherming zal ons het plantenimmuunsysteem beter kunnen laten begrijpen en ons toestaan om hier beter gebruik van te maken. Zo kunnen we streven naar een duurzamere, gezondere landbouw en wie weet ooit het gebruik van chemische pesticiden stoppen…
In bijschrift: Microscopische foto’s van rijstwortels geïnfecteerd met de nematode Meloidogyne graminicola. De linker foto toont het vroege infectie stadium, de rechter foto toont een volwassen nematode die eitjes legt (witte pijl).
ADDIN Mendeley
Bibliography CSL_BIBLIOGRAPHY Abd El-Rahman, S. S. and Mohamed, H. I. (2014) ‘Application of benzothiadiazole and Trichoderma harzianum to control faba bean chocolate spot disease and their effect on some physiological and biochemical traits’, Acta Physiologiae Plantarum, 36(1), pp. 343–354. doi: 10.1007/s11738-013-1416-5.
Abdel-Shafy, S. and Zayed, A. A. (2002) ‘In vitro acaricidal effect of plant extract of neem seed oil (Azadirachta indica) on egg, immature, and adult stages of Hyalomma anatolicum excavatum (Ixodoidea: Ixodidae)’, Veterinary Parasitology. Elsevier, 106(1), pp. 89–96. doi: 10.1016/S0304-4017(02)00023-7.
Agorio, A. and Vera, P. (2007) ‘ARGONAUTE4 is required for resistance to Pseudomonas syringae in Arabidopsis’, Plant Cell. American Society of Plant Biologists, 19(11), pp. 3778–3790. doi: 10.1105/tpc.107.054494.
Aitchison, J. (2015) A Concise Guide to Compositional Data Analysis. 1st edn. Glasgow: Department of Statistics University of Glasgow.
Akimoto, K. et al. (2007) ‘Epigenetic inheritance in rice plants’, Annals of Botany. Oxford Academic, 100(2), pp. 205–217. doi: 10.1093/aob/mcm110.
Alexandersson, E. et al. (2016) ‘Plant resistance inducers against pathogens in Solanaceae species-from molecular mechanisms to field application’, International Journal of Molecular Sciences. MDPI AG, p. 1673. doi: 10.3390/ijms17101673.
Ali, A. et al. (2014) ‘Induction of lignin and pathogenesis related proteins in dragon fruit plants in response to submicron chitosan dispersions’, Crop Protection. Elsevier Ltd, 63, pp. 83–88. doi: 10.1016/j.cropro.2014.05.009.
Ali, M. K. M. et al. (2018) ‘Impacts of Ascophyllum marine plant extract powder (AMPEP) on the growth, incidence of the endophyte Neosiphonia apiculata and associated carrageenan quality of three commercial cultivars of Kappaphycus’, Journal of Applied Phycology. Springer Netherlands, 30(2), pp. 1185–1195. doi: 10.1007/s10811-017-1312-2.
Alvarez-Venegas, R. et al. (2007) ‘Epigenetic control of a transcription factor at the cross section of two antagonistic pathways’, Epigenetics. Taylor and Francis Inc., 2(2), pp. 106–113. doi: 10.4161/epi.2.2.4404.
Andrews, S. (2010) FastQC: A Quality Control Tool for High Throughput Sequence Data. Available at: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (Accessed: 25 March 2021).
Anita, B. and Samiyappan, R. (2012) ‘Induction of systemic resistance in rice by Pseudomonas fluorescens against rice root knot nematode Meloidogyne graminicola’, JBiopest, 5, p. 59.
Anupama, R. T. (2020) ‘Antimicrobial Compounds (Phytoanticipins and Phytoalexins) and Their Role in Plant Defense’, Springer, pp. 845–868. doi: 10.1007/978-3-319-96397-6_63.
Apel, K. and Hirt, H. (2004) ‘REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction’, Annual Review of Plant Biology. Annual Reviews, 55(1), pp. 373–399. doi: 10.1146/annurev.arplant.55.031903.141701.
Arnaiz, A. et al. (2021) ‘Nitric Oxide, an Essential Intermediate in the Plant–Herbivore Interaction’, Frontiers in Plant Science. Frontiers Media S.A., 11. doi: 10.3389/fpls.2020.620086.
Arrigoni, O. and De Tullio, M. C. (2002) ‘Ascorbic acid: Much more than just an antioxidant’, Biochimica et Biophysica Acta - General Subjects. Elsevier, pp. 1–9. doi: 10.1016/S0304-4165(01)00235-5.
Asghar, M. A. et al. (2019) ‘Crosstalk between Abscisic Acid and Auxin under Osmotic Stress’, Agronomy Journal. American Society of Agronomy, 111(5), pp. 2157–2162. doi: 10.2134/agronj2018.10.0633.
Astier, J. et al. (2019) ‘The evolution of nitric oxide signalling diverges between animal and green lineages’, Journal of Experimental Botany. Oxford University Press, pp. 4355–4364. doi: 10.1093/jxb/erz088.
Azarabadi, S. et al. (2017) ‘ROS generation, oxidative burst and dynamic expression profiles of ROS-scavenging enzymes of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) in response to Erwinia amylovora in pear (Pyrus communis L)’, European Journal of Plant Pathology. Springer Netherlands, 147(2), pp. 279–294. doi: 10.1007/s10658-016-1000-0.
Baccelli, I. and Mauch-Mani, B. (2016) ‘Beta-aminobutyric acid priming of plant defense: the role of ABA and other hormones’, Plant Molecular Biology. Springer Netherlands, 91(6), pp. 703–711. doi: 10.1007/s11103-015-0406-y.
Badhani, B., Sharma, N. and Kakkar, R. (2015) ‘Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications’, RSC Advances. Royal Society of Chemistry, 5(35), pp. 27540–27557. doi: 10.1039/c5ra01911g.
Baider, A. and Cohen, Y. (2003) ‘Synergistic Interaction between BABA and Mancozeb in Controlling Phytophthora infestans in Potato and Tomato and Pseudoperonospora cubensis in Cucumber’, Phytoparasitica, 31(4), pp. 399–409.
Bailey, T. A. et al. (2009) ‘Role of Ethylene, Abscisic Acid and MAP Kinase Pathways in Rice Blast Resistance’, in Advances in Genetics, Genomics and Control of Rice Blast Disease. Springer Netherlands, pp. 185–190. doi: 10.1007/978-1-4020-9500-9_19.
Baljeet, S. Y., Roshanlal, Y. and Ritika, B. Y. (2016) ‘Effect of cooking methods and extraction solvents on the antioxidant activity of summer squash (Cucurbita pepo) vegetable extracts’, International Food Research Journal, 23(4), pp. 1531–1540.
Balmer, A. et al. (2015) ‘The “prime-ome”: Towards a holistic approach to priming’, Trends in Plant Science. Elsevier Ltd, pp. 443–452. doi: 10.1016/j.tplants.2015.04.002.
Balmer, A. et al. (2018) ‘Accumulation patterns of endogenous β‐aminobutyric acid during plant development and defence in Arabidopsis thaliana’, Plant Biology. Edited by A. Martinez‐Medina. Blackwell Publishing Ltd, 21(2), p. plb.12940. doi: 10.1111/plb.12940.
Barnes, W. J. and Anderson, C. T. (2017) ‘Acetyl Bromide Soluble Lignin (ABSL) Assay for Total Lignin Quantification from Plant Biomass’, Bio-protocol, 7(05). doi: 10.21769/BioProtoc.2149.
Bartels, S. and Boller, T. (2015) ‘Quo vadis, Pep? Plant elicitor peptides at the crossroads of immunity, stress, and development’, Journal of Experimental Botany. Oxford University Press, pp. 5183–5193. doi: 10.1093/jxb/erv180.
Barth, C. et al. (2004) ‘The timing of senescence and response to pathogens is altered in the ascorbate-deficient arabidopsis mutant vitamin c-1’, Plant Physiology. American Society of Plant Biologists, 134(4), pp. 1784–1792. doi: 10.1104/pp.103.032185.
Bashandy, T. et al. (2010) ‘Interplay between the NADP-linked thioredoxin and glutathione systems in Arabidopsis auxin signaling’, Plant Cell. American Society of Plant Biologists, 22(2), pp. 376–391. doi: 10.1105/tpc.109.071225.
Bateman, A. et al. (2021) ‘UniProt: The universal protein knowledgebase in 2021’, Nucleic Acids Research. Oxford University Press, 49(D1), pp. D480–D489. doi: 10.1093/nar/gkaa1100.
Baysal, Ö. and Zeller, W. (2004) ‘Extract of Hedera helix induces resistance on apple rootstock M26 similar to Acibenzolar-S-methyl against Fire Blight (Erwinia amylovora)’, Physiological and Molecular Plant Pathology. Academic Press, 65(6), pp. 305–315. doi: 10.1016/j.pmpp.2005.03.003.
Beckers, G. J. M. et al. (2009) ‘Mitogen-Activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana’, Plant Cell. American Society of Plant Biologists, 21(3), pp. 944–953. doi: 10.1105/tpc.108.062158.
Benfey, P. N. and Scheres, B. (2000) ‘Root development’, Current Biology. Cell Press, 10(22), pp. R813–R815. doi: 10.1016/S0960-9822(00)00814-9.
Bentham, A. R. et al. (2020) ‘A molecular roadmap to the plant immune system’, Journal of Biological Chemistry. American Society for Biochemistry and Molecular Biology Inc., 295(44), pp. 14916–14935. doi: 10.1074/jbc.REV120.010852.
Bergs, M. et al. (2020) ‘Comparing chemical composition and lignin structure of: Miscanthus x giganteus and Miscanthus nagara harvested in autumn and spring and separated into stems and leaves’, RSC Advances. Royal Society of Chemistry, 10(18), pp. 10740–10751. doi: 10.1039/c9ra10576j.
Berk, Z. (2016) ‘Shelf life of citrus products: packaging and storage’, in Citrus Fruit Processing. Haifa: Elsevier, pp. 251–259. doi: 10.1016/b978-0-12-803133-9.00012-6.
Bernier, F. and Berna, A. (2001) ‘Germins and germin-like proteins: Plant do-all proteins. But what do they do exactly?’, Plant Physiology and Biochemistry. ESME - Gauthier-Villars, pp. 545–554. doi: 10.1016/S0981-9428(01)01285-2.
Bernillon, S. et al. (2013) ‘Metabolomic and elemental profiling of melon fruit quality as affected by genotype and environment’, Metabolomics. Springer Science and Business Media, LLC, 9(1), pp. 57–77. doi: 10.1007/s11306-012-0429-1.
Berthet, S. et al. (2012) ‘Role of Plant Laccases in Lignin Polymerization’, in Advances in Botanical Research. Academic Press Inc., pp. 145–172. doi: 10.1016/B978-0-12-416023-1.00005-7.
Bianchi, G. et al. (1993) ‘The unusual sugar composition in leaves of the resurrection plant Myrothamnus flabellifolia’, Physiologia Plantarum. John Wiley & Sons, Ltd, 87(2), pp. 223–226. doi: 10.1111/j.1399-3054.1993.tb00146.x.
Birch, A. N. E. et al. (1993) ‘DMDP — A Plant-Derived Sugar Analogue with Systemic Activity Against Plant Parasitic Nematodes’, Nematologica. Brill, 39(1–4), pp. 521–535. doi: 10.1163/187529293X00466.
Biswas, M. S. et al. (2019) ‘Reactive oxygen species and reactive carbonyl species constitute a feed‐forward loop in auxin signaling for lateral root formation’, The Plant Journal. Blackwell Publishing Ltd, 100(3), pp. 536–548. doi: 10.1111/tpj.14456.
Bolger, A. M., Lohse, M. and Usadel, B. (2014) ‘Trimmomatic: a flexible trimmer for Illumina sequence data’, Bioinformatics. Oxford University Press, 30(15), pp. 2114–2120. doi: 10.1093/bioinformatics/btu170.
Bolwell, G. P. (2002) ‘The apoplastic oxidative burst in response to biotic stress in plants: a three-component system’, Journal of Experimental Botany. Oxford University Press (OUP), 53(372), pp. 1367–1376. doi: 10.1093/jexbot/53.372.1367.
Boubakri, H. et al. (2016) ‘Vitamins for enhancing plant resistance’, Planta. Springer Verlag, pp. 529–543. doi: 10.1007/s00425-016-2552-0.
Boughton, A. J., Hoover, K. and Felton, G. W. (2005) ‘Methyl jasmonate application induces increased densities of glandular trichomes on tomato, Lycopersicon esculentum’, Journal of Chemical Ecology. Springer, 31(9), pp. 2211–2216. doi: 10.1007/s10886-005-6228-7.
Bouman, B. A. M. et al. (2005) ‘Yield and water use of irrigated tropical aerobic rice systems’, Agricultural Water Management. Elsevier, 74(2), pp. 87–105. doi: 10.1016/j.agwat.2004.11.007.
Boyce, C. K. et al. (2004) ‘Evolution of xylem lignification and hydrogel transport regulation’, Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 101(50), pp. 17555–17558. doi: 10.1073/pnas.0408024101.
Bridge, J. and Page, S. L. (1982) ‘The rice root-knot nematode, Meloidogyne graminicola, on deep water rice (Oryza sativa subsp. indica).’, Rev. Nematol., 5(2), pp. 225–232.
Bridge, J., Plowright, R. and Peng, D. (2005) Plant Parasitic Nematodes in Subtropical and Tropical Agriculture. 2nd edn. Edited by L. Michel, R. A. Sikora, and John Bridge. CAB International. Available at: https://books.google.be/books?hl=en&lr=&id=GAdsEt6dEtwC&oi=fnd&pg=PA87&… (Accessed: 21 February 2021).
Brightman, A. O. et al. (1988) ‘Auxin-Stimulated NADH Oxidase Purified from Plasma Membrane of Soybean’, Plant Physiology. Oxford University Press (OUP), 86(4), pp. 1264–1269. doi: 10.1104/pp.86.4.1264.
Brotman, Y. et al. (2012) ‘Transcript and metabolite analysis of the Trichoderma-induced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana’, Microbiology. Microbiology Society, 158(1), pp. 139–146. doi: 10.1099/mic.0.052621-0.
Bryan, G. et al. (2006) ‘Investigations of Globodera pallida invasion and syncytia formation within roots of the susceptible potato cultivar Désirée and resistant species Solanum canasense’, Nematology, 8(1), pp. 103–110.
Burketova, L. et al. (2015) ‘Bio-based resistance inducers for sustainable plant protection against pathogens’, Biotechnology Advances. Elsevier Inc., pp. 994–1004. doi: 10.1016/j.biotechadv.2015.01.004.
Busuioc, A. C. et al. (2020) ‘Comparative Study of the Chemical Compositions and Antioxidant Activities of Fresh Juices from Romanian Cucurbitaceae Varieties’, Molecules. NLM (Medline), 25(22), p. 5468. doi: 10.3390/molecules25225468.
Butler, A., Bierman, S. and Marion, G. (2005) ‘Statistical methods for environmental risk assessment Compositional data module’, Compositional data module . Edinburgh: Biomathematics and Statistics Scotland, The University of Edinburgh, pp. 1–45.
Cabrera, C., Giménez, R. and López, M. C. (2003) ‘Determination of tea components with antioxidant activity’, Journal of Agricultural and Food Chemistry. American Chemical Society , 51(15), pp. 4427–4435. doi: 10.1021/jf0300801.
Camejo, D., Guzmán-Cedeño, Á. and Moreno, A. (2016) ‘Reactive oxygen species, essential molecules, during plant-pathogen interactions’, Plant Physiology and Biochemistry. Elsevier Masson SAS, pp. 10–23. doi: 10.1016/j.plaphy.2016.02.035.
Cao, Y. R. et al. (2015) ‘Tobacco ankyrin protein NEIP2 interacts with ethylene receptor NTHK1 and regulates plant growth and stress responses’, Plant and Cell Physiology. Oxford University Press, 56(4), pp. 803–818. doi: 10.1093/pcp/pcv009.
Caruso, G. et al. (2019) ‘Protein hydrolysate or plant extract-based biostimulants enhanced yield and quality performances of greenhouse perennial wall rocket grown in different seasons’, Plants. MDPI AG, 8(7), p. 208. doi: 10.3390/plants8070208.
Chaouch, S., Queval, G. and Noctor, G. (2012) ‘AtRbohF is a crucial modulator of defence-associated metabolism and a key actor in the interplay between intracellular oxidative stress and pathogenesis responses in Arabidopsis’, The Plant Journal. John Wiley & Sons, Ltd, 69(4), pp. 613–627. doi: 10.1111/j.1365-313X.2011.04816.x.
Chen, C.-W. et al. (2006) ‘A Novel Function of Abscisic Acid in the Regulation of Rice (Oryza sativa L.) Root Growth and Development’, Plant and Cell Physiology. Oxford Academic, 47(1), pp. 1–13. doi: 10.1093/pcp/pci216.
Chen, K. et al. (2020) ‘Abscisic acid dynamics, signaling, and functions in plants’, Journal of Integrative Plant Biology. Blackwell Publishing Ltd, 62(1), pp. 25–54. doi: 10.1111/jipb.12899.
Choi, H. W. and Klessig, D. F. (2016) ‘DAMPs, MAMPs, and NAMPs in plant innate immunity’, BMC Plant Biology. BioMed Central, 16(1), p. 232. doi: 10.1186/s12870-016-0921-2.
Choi, W. G. et al. (2014) ‘Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants’, Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 111(17), pp. 6497–6502. doi: 10.1073/pnas.1319955111.
Cohen, Y. and Gisi, U. (1994) ‘Systemic translocation of 14C-dl-3-aminobutyric acid in tomato plants in relation to induced resistance against Phytophthora infestans’, Physiological and Molecular Plant Pathology. Academic Press, 45(6), pp. 441–456. doi: 10.1016/S0885-5765(05)80041-4.
Cohen, Y. R. (2002) ‘β-aminobutyric acid-induced resistance against plant pathogens’, Plant Disease. American Phytopathological Society, pp. 448–457. doi: 10.1094/PDIS.2002.86.5.448.
Cohen, Y., Vaknin, M. and Mauch-Mani, B. (2016) ‘BABA-induced resistance: milestones along a 55-year journey’, Phytoparasitica. Springer Netherlands, pp. 513–538. doi: 10.1007/s12600-016-0546-x.
Coleman, J. R., Smidt, S. and York, R. (1964) ‘Optimum Plant Design for Seasonal Production’, Management Science. Institute for Operations Research and the Management Sciences (INFORMS), 10(4), pp. 778–785. doi: 10.1287/mnsc.10.4.778.
Cong, W. et al. (2019) ‘Transgenerational memory of gene expression changes induced by heavy metal stress in rice (Oryza sativa L.)’, BMC Plant Biology. BioMed Central Ltd., 19(1), pp. 1–14. doi: 10.1186/s12870-019-1887-7.
Conrath, U. et al. (2006) ‘Priming: Getting Ready for Battle Prime-A-Plant Group’, Molecular Plant-Microbe Interactions MPMI, 19(10), pp. 1062–1071. doi: 10.1094/MPMI.
Conrath, U. et al. (2015) ‘Priming for Enhanced Defense’, Annual Review of Phytopathology. Annual Reviews Inc., pp. 97–119. doi: 10.1146/annurev-phyto-080614-120132.
Craigie, J. S. (2011) ‘Seaweed extract stimuli in plant science and agriculture’, Journal of Applied Phycology. Springer, pp. 371–393. doi: 10.1007/s10811-010-9560-4.
D’Hondt, M. et al. (2011) ‘Dry heat stress stability evaluation of casein peptide mixture’, Food Chemistry. Elsevier, 128(1), pp. 114–122. doi: 10.1016/j.foodchem.2011.03.004.
Daayf, F., Schmitt, A. and Bélanger, R. R. (1995) ‘The effects of plant extracts of Reynoutria sachalinensis on powdery mildew development and leaf physiology of long English cucumber’, Plant Disease. American Phytopathological Society, 79(6), pp. 577–580. doi: 10.1094/PD-79-0577.
Daayf, F., Schmitt, A. and Bélanger, R. R. (1997) ‘Evidence of phytoalexins in cucumber leaves infected with powdery mildew following treatment with leaf extracts of Reynoutria sachalinensis’, Plant Physiology. American Society of Plant Biologists, 113(3), pp. 719–727. doi: 10.1104/pp.113.3.719.
Datta, R. et al. (2015) ‘Glutathione regulates 1-aminocyclopropane-1-carboxylate synthase transcription via WRKY33 and 1-aminocyclopropane-1-carboxylate oxidase by modulating messenger RNA stability to induce ethylene synthesis during stress’, Plant Physiology. American Society of Plant Biologists, 169(4), pp. 2963–2981. doi: 10.1104/pp.15.01543.
Daudi, A. et al. (2012) ‘The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity’, Plant Cell. American Society of Plant Biologists, 24(1), pp. 275–287. doi: 10.1105/tpc.111.093039.
Davey, M. W. et al. (2000) ‘PlantL-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing’, Journal of the Science of Food and Agriculture. John Wiley and Sons Ltd, 80(7), pp. 825–860. doi: 10.1002/(SICI)1097-0010(20000515)80:7<825::AID-JSFA598>3.0.CO;2-6.
Davin, L. B. et al. (1997) ‘Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center’, Science. American Association for the Advancement of Science, 275(5298), pp. 362–366. doi: 10.1126/science.275.5298.362.
Deborah, S. D. et al. (2001) ‘Time-course study of the induction of defense enzymes, phenolics and lignin in rice in response to infection by pathogen and non-pathogen’, Journal of Plant Diseases and Protection. Oxford University Press (OUP), 108(2), pp. 204–216. doi: 10.1104/pp.91.3.889.
Deng, Y. et al. (2020) ‘Molecular Basis of Disease Resistance and Perspectives on Breeding Strategies for Resistance Improvement in Crops’, Molecular Plant. Cell Press, pp. 1402–1419. doi: 10.1016/j.molp.2020.09.018.
Deutsch, J. C. (2000) ‘Dehydroascorbic acid’, Journal of Chromatography A. Elsevier, pp. 299–307. doi: 10.1016/S0021-9673(00)00166-7.
Devireddy, A. R. et al. (2018) ‘Coordinating the overall stomatal response of plants: Rapid leaf-to-leaf communication during light stress’, Science Signaling. American Association for the Advancement of Science, 11(518). doi: 10.1126/scisignal.aam9514.
Devireddy, A. R., Arbogast, J. and Mittler, R. (2020) ‘Coordinated and rapid whole‐plant systemic stomatal responses’, New Phytologist. Blackwell Publishing Ltd, 225(1), pp. 21–25. doi: 10.1111/nph.16143.
Dewhirst, R. A. and Fry, S. C. (2018) ‘The oxidation of dehydroascorbic acid and 2,3-diketogulonate by distinct reactive oxygen species’, The Biochemical journal. NLM (Medline), 475(21), pp. 3451–3470. doi: 10.1042/BCJ20180688.
Dhakshinamoorthy, S. et al. (2014) ‘Phenols and lignin are involved in the defence response of banana (Musa) plants to Radopholus similis infection’, Nematology, 16(5), pp. 565–576. Available at: https://doi.org/10.1163/15685411-00002788 (Accessed: 10 March 2020).
Diallinas, G. et al. (1997) ‘Melon ascorbate oxidase: Cloning of a multigene family, induction during fruit development and repression by wounding’, Plant Molecular Biology. Kluwer Academic Publishers, 34(5), pp. 759–770. doi: 10.1023/A:1005851527227.
Ding, H. et al. (2020) ‘The pivotal function of dehydroascorbate reductase in glutathione homeostasis in plants’, Journal of Experimental Botany. Oxford University Press (OUP), 71(12), pp. 3405–3416. doi: 10.1093/jxb/eraa107.
Dixon, D. P. et al. (2005) ‘Stress-induced protein S-glutathionylation in arabidopsis’, Plant Physiology. American Society of Plant Biologists, 138(4), pp. 2233–2244. doi: 10.1104/pp.104.058917.
Dobin, A. et al. (2013) ‘STAR: Ultrafast universal RNA-seq aligner’, Bioinformatics. Bioinformatics, 29(1), pp. 15–21. doi: 10.1093/bioinformatics/bts635.
Dubreuil-Maurizi, C. et al. (2010) ‘β-Aminobutyric acid primes an NADPH oxidase-dependent reactive oxygen species production during grapevine-triggered immunity’, Molecular Plant-Microbe Interactions. The American Phytopathological Society , 23(8), pp. 1012–1021. doi: 10.1094/MPMI-23-8-1012.
Dunwell, J. M. et al. (2008) ‘Germin and Germin-like Proteins: Evolution, Structure, and Function’, Critical Reviews in Plant Sciences. Taylor & Francis Group , 27(5), pp. 342–375. doi: 10.1080/07352680802333938.
El-Soud, W. A. et al. (2013) ‘Ability of ellagic acid to alleviate osmotic stress on chickpea seedlings’, Plant Physiology and Biochemistry. Elsevier Masson, 71, pp. 173–183. doi: 10.1016/j.plaphy.2013.07.007.
Elbadri, G. A. et al. (2008) ‘Evaluation of various plant extracts for their nematicidal efficacies against juveniles of Meloidogyne incognita’, Journal of Asia-Pacific Entomology. Elsevier, 11(2), pp. 99–102. doi: 10.1016/j.aspen.2008.04.004.
Ella, E. S. et al. (2003) ‘Blocking ethylene perception enhances flooding tolerance in rice seedlings’, Functional Plant Biology. CSIRO PUBLISHING, 30(7), pp. 813–819. doi: 10.1071/FP03049.
Eman, A. A. and El-Nuby, A. S. M. (2019) ‘Phytochemical and Antinematodal Screening on Water Extracts of Some Plant Wastes against Meloidogyne incognita’, International Journal of Chemical and Pharmaceutical Sciences, 10(4). Available at: www.ijcps.com (Accessed: 18 March 2021).
Van Der Ent, S. et al. (2009) ‘Priming of plant innate immunity by rhizobacteria and β-aminobutyric acid: Differences and similarities in regulation’, New Phytologist. John Wiley & Sons, Ltd, 183(2), pp. 419–431. doi: 10.1111/j.1469-8137.2009.02851.x.
Espinas, N. A., Saze, H. and Saijo, Y. (2016) ‘Epigenetic Control of Defense Signaling and Priming in Plants’, Frontiers in Plant Science. Frontiers Media S.A., 7(AUG2016), p. 1201. doi: 10.3389/fpls.2016.01201.
European and Mediterranean Plant Protection Organization (2020) EPPO Alert List – Meloidogyne graminicola Rice root-knot nematode. Available at: https://www.eppo.int/ACTIVITIES/plant_quarantine/alert_list_nematodes/m… (Accessed: 23 March 2021).
Eyheraguibel, B. et al. (2010) ‘Photoprotection by plant extracts: A new ecological means to reduce pesticide photodegradation’, Journal of Agricultural and Food Chemistry. American Chemical Society, 58(17), pp. 9692–9696. doi: 10.1021/jf101792h.
Ezzat, S. M. et al. (2019) ‘In vivo anti-inflammatory activity and UPLC-MS/MS profiling of the peels and pulps of Cucumis melo var. cantalupensis and Cucumis melo var. reticulatus’, Journal of Ethnopharmacology. Elsevier Ireland Ltd, 237, pp. 245–254. doi: 10.1016/j.jep.2019.03.015.
Fan, L. et al. (2006) ‘Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics’, Plant Physiology. American Society of Plant Biologists, 140(2), pp. 603–612. doi: 10.1104/pp.105.073130.
FAOSTAT (2021) Food and Agriculture Organization of the United Nations., FAOSTAT Database. Available at: http://www.fao.org/faostat/en/#data/QC (Accessed: 11 February 2021).
Fayle, S. E. et al. (2000) ‘Crosslinkage of proteins by dehydroascorbic acid and its degradation products’, Food Chemistry. Elsevier, 70(2), pp. 193–198. doi: 10.1016/S0308-8146(00)00077-7.
Feige, M. J. and Hendershot, L. M. (2011) ‘Disulfide bonds in ER protein folding and homeostasis’, Current Opinion in Cell Biology. Elsevier Current Trends, pp. 167–175. doi: 10.1016/j.ceb.2010.10.012.
Fernandez, L., Cabasan, M. T. N. and De Waele, D. (2014) ‘Life cycle of the rice root-knot nematode Meloidogyne graminicola at different temperatures under non-flooded and flooded conditions’, Archives of Phytopathology and Plant Protection. Taylor and Francis Ltd., 47(9), pp. 1042–1049. doi: 10.1080/03235408.2013.829627.
Ferreira, F. J. and Kieber, J. J. (2005) ‘Cytokinin signaling’, Current Opinion in Plant Biology. Elsevier Current Trends, pp. 518–525. doi: 10.1016/j.pbi.2005.07.013.
Fichman, Y., Miller, G. and Mittler, R. (2019) ‘Whole-Plant Live Imaging of Reactive Oxygen Species’, Molecular Plant. Cell Press, 12(9), pp. 1203–1210. doi: 10.1016/j.molp.2019.06.003.
Fichman, Y. and Mittler, R. (2020) ‘Rapid systemic signaling during abiotic and biotic stresses: is the ROS wave master of all trades?’, The Plant Journal. Blackwell Publishing Ltd, 102(5), pp. 887–896. doi: 10.1111/tpj.14685.
Fofana, B. et al. (2002) ‘Milsana-induced resistance in powdery mildew-infected cucumber plants correlates with the induction of chalcone synthase and chalcone isomerase’, Physiological and Molecular Plant Pathology. Elsevier BV, 61(2), pp. 121–132. doi: 10.1006/pmpp.2002.0420.
Foyer, C. H., Kyndt, T. and Hancock, R. D. (2020) ‘Vitamin C in Plants: Novel Concepts, New Perspectives, and Outstanding Issues’, ANTIOXIDANTS & REDOX SIGNALING, 32(7), pp. 463–485. doi: 10.1089/ars.2019.7819.
Foyer, C. H. and Noctor, G. (2005) ‘Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses’, Plant Cell. American Society of Plant Biologists, pp. 1866–1875. doi: 10.1105/tpc.105.033589.
Foyer, C. H. and Noctor, G. (2011) ‘Ascorbate and glutathione: The heart of the redox hub’, Plant Physiology. Oxford Academic, pp. 2–18. doi: 10.1104/pp.110.167569.
de Freitas, M. B. and Stadnik, M. J. (2015) ‘Ulvan-induced resistance in Arabidopsis thaliana against Alternaria brassicicola requires reactive oxygen species derived from NADPH oxidase’, Physiological and Molecular Plant Pathology. Academic Press, 90, pp. 49–56. doi: 10.1016/j.pmpp.2015.03.002.
Fry, S. C. (1979) ‘Phonolic components of the primary cell wall and their possible rôle in the hormonal regulation of growth’, Planta. Springer-Verlag, 146(3), pp. 343–351. doi: 10.1007/BF00387807.
Fry, S. C. (1986) ‘Cross-Linking of Matrix Polymers in the Growing Cell Walls of Angiosperms’, Annual Review of Plant Physiology. Annual Reviews, 37(1), pp. 165–186. doi: 10.1146/annurev.pp.37.060186.001121.
Fujikawa, I. et al. (2021) ‘Magnesium oxide induces immunity against Fusarium wilt by triggering the jasmonic acid signaling pathway in tomato’, Journal of Biotechnology. Elsevier B.V., 325, pp. 100–108. doi: 10.1016/j.jbiotec.2020.11.012.
Fujimoto, T. et al. (2015) ‘Sclareol Induces Plant Resistance to Root-Knot Nematode Partially Through Ethylene-Dependent Enhancement of Lignin Accumulation’, Molecular Plant-Microbe Interactions. American Phytopathological Society, 28(4), pp. 398–407. doi: 10.1094/MPMI-10-14-0320-R.
Fujiwara, A. et al. (2016) ‘Ascorbic acid accumulates as a defense response to Turnip mosaic virus in resistant Brassica rapa cultivars’, Journal of Experimental Botany. Oxford University Press, 67(14), pp. 4391–4402. doi: 10.1093/jxb/erw223.
Fukushima, R. S. and Dehority, B. A. (2000) ‘Feasibility of using lignin isolated from forages by solubilization in acetyl bromide as a standard for lignin analyses’, Journal of Animal Science. American Society of Animal Science, 78(12), pp. 3135–3143. doi: 10.2527/2000.78123135x.
Gad, S. B. et al. (2018) ‘In vivo and In vitro Inhibition of Three Plants Water Extracts on Meloidogyne incognita (Meloidogynidae)’, Indian Journal of Nematology, 48(1), pp. 77–83. Available at: https://www.indianjournals.com/ijor.aspx?target=ijor:ijn&volume=48&issu… (Accessed: 21 April 2021).
Gallie, D. R. (2013) ‘The role of l-ascorbic acid recycling in responding to environmental stress and in promoting plant growth’, Journal of Experimental Botany. Oxford Academic, 64(2), pp. 433–443. doi: 10.1093/jxb/ers330.
Gamir, J., Sánchez-Bel, P. and Flors, V. (2014) ‘Molecular and physiological stages of priming: how plants prepare for environmental challenges’, Plant Cell Reports. Springer Verlag, pp. 1935–1949. doi: 10.1007/s00299-014-1665-9.
Gao, Y. et al. (2020) ‘Antagonistic activity against rice blast disease and elicitation of host‐defence response capability of an endophytic Streptomyces albidoflavus OsiLf‐2’, Plant Pathology. Blackwell Publishing Ltd, 69(2), pp. 259–271. doi: 10.1111/ppa.13118.
García, T., Veloso, J. and Díaz, J. (2018) ‘Vanillyl nonanoate induces systemic resistance and lignification in pepper plants’, Journal of Plant Physiology. Elsevier GmbH, 231, pp. 251–260. doi: 10.1016/j.jplph.2018.10.002.
Gaujoux, R. and Seoighe, C. (2010) ‘A flexible R package for nonnegative matrix factorization’, BMC Bioinformatics. BioMed Central, 11(1), p. 367. doi: 10.1186/1471-2105-11-367.
Gauthier, A. et al. (2014) ‘The Sulfated Laminarin Triggers a Stress Transcriptome before Priming the SA- and ROS-Dependent Defenses during Grapevine’s Induced Resistance against Plasmopara viticola’, PLoS ONE. Edited by M. Gijzen. Public Library of Science, 9(2), p. e88145. doi: 10.1371/journal.pone.0088145.
Giacomelli, L., Rudella, A. and Van Wijk, K. J. (2006) ‘High light response of the thylakoid proteome in Arabidopsis wild type and the ascorbate-deficient mutant vtc2-2. A comparative proteomics study’, Plant Physiology. American Society of Plant Biologists, 141(2), pp. 685–701. doi: 10.1104/pp.106.080150.
Gil, M. I. et al. (2000) ‘Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing’, Journal of Agricultural and Food Chemistry. American Chemical Society , 48(10), pp. 4581–4589. doi: 10.1021/jf000404a.
Gilroy, S. et al. (2014) ‘A tidal wave of signals: Calcium and ROS at the forefront of rapid systemic signaling’, Trends in Plant Science. Elsevier Ltd, pp. 623–630. doi: 10.1016/j.tplants.2014.06.013.
Global Industry Analysts Inc. (2020) Plant Biostimulants ‐ Global Market Trajectory & Analytics., StrategyR. Available at: https://www.strategyr.com/market-report-plant-biostimulant-forecasts-gl… (Accessed: 22 April 2021).
Gomes, D. G. et al. (2021) ‘Seed priming with copper‐loaded chitosan nanoparticles promotes early growth and enzymatic antioxidant defense of maize (Zea mays L.) seedlings’, Journal of Chemical Technology & Biotechnology. John Wiley and Sons Ltd, p. jctb.6738. doi: 10.1002/jctb.6738.
Gómez-García, R. et al. (2020) ‘Valorization of melon fruit (Cucumis melo L.) by-products: Phytochemical and Biofunctional properties with Emphasis on Recent Trends and Advances’, Trends in Food Science and Technology. Elsevier Ltd, pp. 507–519. doi: 10.1016/j.tifs.2020.03.033.
González-Bosch, C. (2018) ‘Priming plant resistance by activation of redox-sensitive genes’, Free Radical Biology and Medicine. Elsevier Inc., 122, pp. 171–180. doi: 10.1016/j.freeradbiomed.2017.12.028.
Görlach, J. et al. (1996) ‘Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat’, Plant Cell. American Society of Plant Biologists, 8(4), pp. 629–643. doi: 10.1105/tpc.8.4.629.
Groß, F., Durner, J. and Gaupels, F. (2013) ‘Nitric oxide, antioxidants and prooxidants in plant defence responses’, Frontiers in Plant Science. Frontiers Research Foundation, p. 419. doi: 10.3389/fpls.2013.00419.
Grunewald, W. et al. (2009) ‘Expression of the Arabidopsis jasmonate signalling repressor JAZ1 / TIFY10A is stimulated by auxin’, EMBO reports. John Wiley & Sons, Ltd, 10(8), pp. 923–928. doi: 10.1038/embor.2009.103.
Grzybek, M. et al. (2016) ‘Evaluation of anthelmintic activity and composition of pumpkin (Cucurbita pepo L.) seed extracts—in vitro and in vivo studies’, International Journal of Molecular Sciences. MDPI AG, 17(9). doi: 10.3390/ijms17091456.
Haeck, A. et al. (2018) ‘Trace analysis of multi-class phytohormones in Oryza sativa using different scan modes in high-resolution Orbitrap mass spectrometry: method validation, concentration levels, and screening in multiple accessions’, Analytical and Bioanalytical Chemistry. Springer Verlag, 410(18), pp. 4527–4539. doi: 10.1007/s00216-018-1112-9.
Häkkinen, S. H. et al. (2000) ‘Ellagic acid content in berries: Influence of domestic processing and storage’, European Food Research and Technology. Springer Verlag, 212(1), pp. 75–80. doi: 10.1007/s002170000184.
Han, B. et al. (2007) ‘Rice functional genomics research in China’, Philosophical Transactions of the Royal Society B: Biological Sciences. Royal Society, 362(1482), pp. 1009–1021. doi: 10.1098/rstb.2007.2030.
Han, Y., Chaouch, S., et al. (2013) ‘Functional analysis of arabidopsis mutants points to novel roles for glutathione in coupling H2O2 to activation of salicylic acid accumulation and signaling’, Antioxidants and Redox Signaling. Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA , 18(16), pp. 2106–2121. doi: 10.1089/ars.2012.5052.
Han, Y., Mhaldi, A., et al. (2013) ‘Regulation of basal and oxidative stress-triggered jasmonic acid-related gene expression by glutathione’, Plant, Cell & Environment. John Wiley & Sons, Ltd, 36(6), pp. 1135–1146. doi: 10.1111/pce.12048.
Hasanuzzaman, M. et al. (2019) ‘Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress’, Antioxidants. MDPI AG, p. 384. doi: 10.3390/antiox8090384.
Hennessy, D. A. and Roosen, J. (2003) ‘A cost-based model of seasonal production with application to milk policy’, Journal of Agricultural Economics. Agricultural Economics Society, 54(2), pp. 285–312. doi: 10.1111/j.1477-9552.2003.tb00064.x.
Hentrich, M. et al. (2013) ‘The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of YUCCA8 and YUCCA9 gene expression’, The Plant Journal. John Wiley & Sons, Ltd, 74(4), pp. 626–637. doi: 10.1111/tpj.12152.
Hoagland, D. R. and Arnon, D. I. (1950) The water-culture method for growing plants without soil. 2nd edn, Circular. California Agricultural Experiment Station. 2nd edn. Berkeley, Calif. : College of Agriculture, University of California.
Hoffmann, D., Vierheilig, H. and Schausberger, P. (2011) ‘Mycorrhiza-induced trophic cascade enhances fitness and population growth of an acarine predator’, Oecologia, 166, pp. 141–149. doi: 10.1007/s00442-010-1821-z.
Holbein, J., Grundler, F. M. W. and Siddique, S. (2016) ‘Plant basal resistance to nematodes: an update’, Journal of Experimental Botany. Oxford Academic, 67(7), pp. 2049–2061. doi: 10.1093/jxb/erw005.
Horemans, N., Asard, M. and Caubergs, R. J. (1997) ‘The ascorbate carrier of higher plant plasma membranes preferentially translocates the fully oxidized (dehydroascorbate) molecule’, Plant Physiology. American Society of Plant Biologists, 114(4), pp. 1247–1253. doi: 10.1104/pp.114.4.1247.
Hu, X. et al. (2003) ‘Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower’, Plant Physiology. American Society of Plant Biologists, 133(1), pp. 170–181. doi: 10.1104/pp.103.024026.
Hu, X. et al. (2005) ‘Nitric oxide mediates gravitropic bending in soybean roots’, Plant Physiology. American Society of Plant Biologists, 137(2), pp. 663–670. doi: 10.1104/pp.104.054494.
Huang, B. L. et al. (2019) ‘Transcriptomic analysis of Eruca vesicaria subs. sativa lines with contrasting tolerance to polyethylene glycol-simulated drought stress’, BMC Plant Biology. BioMed Central Ltd., 19(1), pp. 1–11. doi: 10.1186/s12870-019-1997-2.
Huang, W. K. et al. (2016) ‘Thiamine-induced priming against root-knot nematode infection in rice involves lignification and hydrogen peroxide generation’, Molecular Plant Pathology. Blackwell Publishing Ltd, 17(4), pp. 614–624. doi: 10.1111/mpp.12316.
Huang, Y. et al. (2019) ‘OsNCED5, a 9-cis-epoxycarotenoid dioxygenase gene, regulates salt and water stress tolerance and leaf senescence in rice’, Plant Science. Elsevier Ireland Ltd, 287, p. 110188. doi: 10.1016/j.plantsci.2019.110188.
Ibrahim, T. A., El-Hefnawy, H. M. and El-Hela, A. A. (2010) ‘Antioxidant potential and phenolic acid content of certain cucurbitaceous plants cultivated in Egypt’, Natural Product Research. Taylor & Francis Group , 24(16), pp. 1537–1545. doi: 10.1080/14786419.2010.489049.
Jakab, G. et al. (2001) ‘β-aminobutyric acid-induced resistance in plants’, European Journal of Plant Pathology. Springer, 107(1), pp. 29–37. doi: 10.1023/A:1008730721037.
Jaskiewicz, M., Conrath, U. and Peterhänsel, C. (2011) ‘Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response’, EMBO reports. John Wiley & Sons, Ltd, 12(1), pp. 50–55. doi: 10.1038/embor.2010.186.
Ji, H. et al. (2013) ‘Transcriptional analysis through RNA sequencing of giant cells induced by Meloidogyne graminicola in rice roots’, Journal of Experimental Botany. Oxford Academic, 64(12), pp. 3885–3898. doi: 10.1093/jxb/ert219.
Ji, H. et al. (2015) ‘β-aminobutyric acid-induced resistance against root-knot nematodes in rice is based on increased basal defense’, Molecular Plant-Microbe Interactions. American Phytopathological Society, 28(5), pp. 519–533. doi: 10.1094/MPMI-09-14-0260-R.
Jian, C. C. et al. (2005) ‘Cucurbitacins and cucurbitane glycosides: Structures and biological activities’, Natural Product Reports. Royal Society of Chemistry, pp. 386–399. doi: 10.1039/b418841c.
Jiang, J. et al. (2017) ‘WRKY transcription factors in plant responses to stresses’, Journal of Integrative Plant Biology. Blackwell Publishing Ltd, 59(2), pp. 86–101. doi: 10.1111/jipb.12513.
Jiang, K., Meng, Y. L. and Feldman, L. J. (2003) ‘Quiescent center formation in maize roots is associated with an auxin-regulated oxidizing environment’, Development. The Company of Biologists Ltd, pp. 1429–1438. doi: 10.1242/dev.00359.
Jin, H. (2008) ‘Endogenous small RNAs and antibacterial immunity in plants’, FEBS Letters. No longer published by Elsevier, pp. 2679–2684. doi: 10.1016/j.febslet.2008.06.053.
Jones, J. D. G. and Dangl, J. L. (2006) ‘The plant immune system’, Nature. Nature Publishing Group, pp. 323–329. doi: 10.1038/nature05286.
Jones, J. T. et al. (2013) ‘Top 10 plant-parasitic nematodes in molecular plant pathology’, Molecular Plant Pathology. John Wiley & Sons, Ltd, 14(9), pp. 946–961. doi: 10.1111/mpp.12057.
Kadota, Y. et al. (2014) ‘Direct Regulation of the NADPH Oxidase RBOHD by the PRR-Associated Kinase BIK1 during Plant Immunity’, Molecular Cell. Cell Press, 54(1), pp. 43–55. doi: 10.1016/j.molcel.2014.02.021.
Kalaskar, M. G. and Surana, S. J. (2014) ‘Free radical scavenging, immunomodulatory activity and chemical composition of luffa acutangula var. amara (cucurbitaceae) pericarp’, Journal of the Chilean Chemical Society. Sociedad Chilena de Quimica, 59(1), pp. 2299–2302. doi: 10.4067/s0717-97072014000100012.
Kano, A. et al. (2013) ‘The rare sugar d-allose acts as a triggering molecule of rice defence via ROS generation’, Journal of Experimental Botany. Oxford University Press, 64(16), pp. 4939–4951. doi: 10.1093/jxb/ert282.
Kärkönen, A. et al. (2017) ‘Metabolites of 2,3-diketogulonate delay peroxidase action and induce non-enzymic H2O2 generation: Potential roles in the plant cell wall’, Archives of Biochemistry and Biophysics. Academic Press Inc., 620, pp. 12–22. doi: 10.1016/j.abb.2017.03.006.
Kende, H., Van Knaap, E. Der and Cho, H. T. (1998) ‘Deepwater rice: A model plant to study stem elongation’, Plant Physiology. American Society of Plant Biologists, 118(4), pp. 1105–1110. doi: 10.1104/pp.118.4.1105.
Kerchev, P. I. et al. (2013) ‘Vitamin C and the abscisic acid-insensitive 4 transcription factor are important determinants of aphid resistance in arabidopsis’, Antioxidants and Redox Signaling. Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA , 18(16), pp. 2091–2105. doi: 10.1089/ars.2012.5097.
Kerk, N. M., Jiang, K. and Feldman, L. J. (2000) ‘Auxin metabolism in the root apical meristem’, Plant Physiology. American Society of Plant Biologists, 122(3), pp. 925–932. doi: 10.1104/pp.122.3.925.
De Kesel, J. et al. (2020) ‘The use of PTI-marker genes to identify novel compounds that establish induced resistance in rice’, International Journal of Molecular Sciences. MDPI AG, 21(1), p. 317. doi: 10.3390/ijms21010317.
De Kesel, J. et al. (2021) ‘The Induced Resistance Lexicon: Do’s and Don’ts’, Trends in Plant Science. Elsevier Ltd. doi: 10.1016/j.tplants.2021.01.001.
Key, J. L. (1962) ‘Changes in Ascorbic Acid Metabolism Associated With Auxin-Induced Growth’, Plant Physiology. Oxford University Press (OUP), 37(3), pp. 349–356. doi: 10.1104/pp.37.3.349.
Khan, S. R. (1995) Calcium Oxalate in Biological Systems. 1st edn. Edited by S. R. Khan. New York: CRC Press.
Khokon, M. A. R. et al. (2010) ‘Yeast Elicitor-Induced Stomatal Closure and Peroxidase-Mediated ROS Production in Arabidopsis’, Plant and Cell Physiology. Oxford Academic, 51(11), pp. 1915–1921. doi: 10.1093/pcp/pcq145.
Kiddle, G. et al. (2003) ‘Effects of leaf ascorbate content on defense and photosynthesis gene expression in Arabidopsis thaliana’, Antioxidants and Redox Signaling. Mary Ann Liebert, Inc. , 5(1), pp. 23–32. doi: 10.1089/152308603321223513.
Kimura, S. et al. (2017) ‘Bound by fate: The role of reactive oxygen species in receptor-like kinase signaling’, Plant Cell. American Society of Plant Biologists, pp. 638–654. doi: 10.1105/tpc.16.00947.
Knight, H., Trewavas, A. J. and Knight, M. R. (1997) ‘Calcium signalling in Arabidopsis thaliana responding to drought and salinity’, The Plant Journal. Blackwell Publishing Ltd, 12(5), pp. 1067–1078. doi: 10.1046/j.1365-313X.1997.12051067.x.
Kollist, H. et al. (2019) ‘Rapid Responses to Abiotic Stress: Priming the Landscape for the Signal Transduction Network’, Trends in Plant Science. Elsevier Ltd, pp. 25–37. doi: 10.1016/j.tplants.2018.10.003.
Koprivova, A., Mugford, S. T. and Kopriva, S. (2010) ‘Arabidopsis root growth dependence on glutathione is linked to auxin transport’, Plant Cell Reports. Springer, 29(10), pp. 1157–1167. doi: 10.1007/s00299-010-0902-0.
Koshiishi, I. and Imanari, T. (1997) ‘Measurement of ascorbate and dehydroascorbate contents in biological fluids’, Analytical Chemistry. American Chemical Society , 69(2), pp. 216–220. doi: 10.1021/ac960704k.
Krzyzaniak, Y. et al. (2018) ‘A Plant Extract Acts Both as a Resistance Inducer and an Oomycide Against Grapevine Downy Mildew’, Frontiers in Plant Science. Frontiers Media S.A., 9, p. 1085. doi: 10.3389/fpls.2018.01085.
Kukawka, R. et al. (2018) ‘New ionic liquids based on systemic acquired resistance inducers combined with the phytotoxicity reducing cholinium cation’, New Journal of Chemistry. Royal Society of Chemistry, 42(14), pp. 11984–11990. doi: 10.1039/C8NJ00778K.
Kumar, A. et al. (2014) ‘Histopathology of the rice root-knot nematode, Meloidogyne graminicola, on Oryza sativa and O. glaberrima’, Nematology. Brill, 16(1), pp. 73–81. doi: 10.1163/15685411-00002746.
Kusajima, M. et al. (2018) ‘Involvement of ethylene signaling in Azospirillum sp. B510-induced disease resistance in rice’, Bioscience, Biotechnology, and Biochemistry. Japan Society for Bioscience Biotechnology and Agrochemistry, 82(9), pp. 1522–1526. doi: 10.1080/09168451.2018.1480350.
Kuźniak, E. et al. (2015) ‘Salicylic acid and cysteine contribute to arbutin-induced alleviation of angular leaf spot disease development in cucumber’, Journal of Plant Physiology. Urban und Fischer Verlag GmbH und Co. KG, 181, pp. 9–13. doi: 10.1016/j.jplph.2015.03.017.
Kuźnicki, D. et al. (2019) ‘BABA-induced DNA methylome adjustment to intergenerational defense priming in potato to Phytophthora infestans’, Frontiers in Plant Science. Frontiers Media S.A., 10. doi: 10.3389/fpls.2019.00650.
Kwang, J. W. (2004) International Review of Cytology: A Survey of Cell Biology. Edited by J. W. Kwang. London: Elsevier Inc. Available at: https://books.google.be/books?hl=nl&lr=&id=11-yw92c13kC&oi=fnd&pg=PA1&d… (Accessed: 15 April 2021).
Kyndt, T. et al. (2012) ‘Transcriptional reprogramming by root knot and migratory nematode infection in rice’, New Phytologist. John Wiley & Sons, Ltd, 196(3), pp. 887–900. doi: 10.1111/j.1469-8137.2012.04311.x.
Kyndt, T. et al. (2013) ‘Nematode feeding sites: Unique organs in plant roots’, Planta. Springer, pp. 807–818. doi: 10.1007/s00425-013-1923-z.
Kyndt, T. et al. (2020) ‘Plant extract for controlling parasitic nematodes’. Patent WO2021/009164A1. Belgium: World Intellectual Property Organisation. Available at: https://patents.google.com/patent/WO2021009164A1/en?oq=WO2021%2F009164+… (Accessed: 28 April 2021).
Kyndt, T., Fernandez, D. and Gheysen, G. (2014) ‘Plant-Parasitic Nematode Infections in Rice: Molecular and Cellular Insights’, Annual Review of Phytopathology. Annual Reviews Inc., 52(1), pp. 135–153. doi: 10.1146/annurev-phyto-102313-050111.
Lawrence, M. et al. (2013) ‘Software for Computing and Annotating Genomic Ranges’, PLoS Computational Biology. Edited by A. Prlic. Public Library of Science, 9(8), p. e1003118. doi: 10.1371/journal.pcbi.1003118.
Lawton, K. A. et al. (1996) ‘Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway’, The Plant Journal. Blackwell Publishing Ltd, 10(1), pp. 71–82. doi: 10.1046/j.1365-313X.1996.10010071.x.
Lee, S. C. and Hwang, B. K. (2005) ‘Induction of some defense-related genes and oxidative burst is required for the establishment of systemic acquired resistance in Capsicum annuum’, Planta. Springer, 221(6), pp. 790–800. doi: 10.1007/s00425-005-1488-6.
Lester, G. E. and Crosby, K. M. (2002) ‘Ascorbic acid, folic acid, and potassium content in postharvest green-flesh honeydew muskmelons: Influence of cultivar, fruit size, soil type, and year’, Journal of the American Society for Horticultural Science. American Society for Horticultural Science, 127(5), pp. 843–847. doi: 10.21273/jashs.127.5.843.
Levine, A. et al. (1996) ‘Calcium-mediated apoptosis in a plant hypersensitive disease resistance response’, Current Biology. Cell Press, 6(4), pp. 427–437. doi: 10.1016/S0960-9822(02)00510-9.
Li, H. et al. (2009) ‘The Sequence Alignment/Map format and SAMtools’, Bioinformatics. Bioinformatics, 25(16), pp. 2078–2079. doi: 10.1093/bioinformatics/btp352.
Li, T. et al. (2019) ‘β-Aminobutyric Acid Priming Acquisition and Defense Response of Mango Fruit to Colletotrichum gloeosporioides Infection Based on Quantitative Proteomics’, Cells. NLM (Medline), 8(9), p. 1029. doi: 10.3390/cells8091029.
Li, Y. et al. (2019) ‘Over-expression of OsPT2 under a rice root specific promoter Os03g01700’, Plant Physiology and Biochemistry. Elsevier Masson SAS, 136, pp. 52–57. doi: 10.1016/j.plaphy.2019.01.009.
Liszkay, A., Van Der Zalm, E. and Schopfer, P. (2004) ‘Production of reactive oxygen intermediates (O2.-, H2O2, and .OH) by maize roots and their role in wall loosening and elongation growth’, Plant Physiology. American Society of Plant Biologists, 136(2), pp. 3114–3123. doi: 10.1104/pp.104.044784.
Liu, C. J. (2012) ‘Deciphering the enigma of lignification: Precursor transport, oxidation, and the topochemistry of lignin assembly’, in Molecular Plant. Oxford University Press, pp. 304–317. doi: 10.1093/mp/ssr121.
Liu, X. yu, Ou, H. and Gregersen, H. (2020) ‘Ultrasound-assisted supercritical CO2 extraction of cucurbitacin E from Iberis amara seeds’, Industrial Crops and Products. Elsevier B.V., 145, p. 112093. doi: 10.1016/j.indcrop.2020.112093.
Liu, Y. and Zhang, S. (2004) ‘Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in arabidopsis’, Plant Cell. American Society of Plant Biologists, 16(12), pp. 3386–3399. doi: 10.1105/tpc.104.026609.
Lopez, M. G. and Feather, M. S. (1992) ‘The production of threose as a degradation product from l-ascorbic acid1’, Journal of Carbohydrate Chemistry. Taylor & Francis Group, 11(6), pp. 799–806. doi: 10.1080/07328309208020093.
López Sánchez, A. et al. (2016) ‘The role of DNA (de)methylation in immune responsiveness of Arabidopsis’, The Plant Journal. Blackwell Publishing Ltd, 88(3), pp. 361–374. doi: 10.1111/tpj.13252.
López Sánchez, A. et al. (2021) ‘Costs and Benefits of Transgenerational Induced Resistance in Arabidopsis’, Frontiers in Plant Science. Frontiers Media S.A., 12, p. 644999. doi: 10.3389/fpls.2021.644999.
Lori, M. et al. (2015) ‘Evolutionary divergence of the plant elicitor peptides (Peps) and their receptors: interfamily incompatibility of perception but compatibility of downstream signalling’, Journal of Experimental Botany. Oxford University Press, 66(17), pp. 5315–5325. doi: 10.1093/jxb/erv236.
Love, M. I., Huber, W. and Anders, S. (2014) ‘Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2’, Genome Biology. BioMed Central Ltd., 15(12), p. 550. doi: 10.1186/s13059-014-0550-8.
Lu, K. et al. (2016) ‘Overexpression of an Arabidopsis cysteine-rich receptor-like protein kinase, CRK5, enhances abscisic acid sensitivity and confers drought tolerance’, Journal of Experimental Botany. Oxford University Press, 67(17), pp. 5009–5027. doi: 10.1093/jxb/erw266.
Luc, M., Bridge, J. and Sikora, R. A. (2005) Plant Parasitic Nematodes in Subtropical and Tropical Agriculture. 2nd edn. Edited by M. Luc, J. Bridge, and R. A. Sikora. Wallingford: CABI. Available at: https://books.google.be/books?hl=nl&lr=&id=GAdsEt6dEtwC&oi=fnd&pg=PR7&o… (Accessed: 13 March 2021).
Luna, E. et al. (2012) ‘Next-generation systemic acquired resistance’, Plant Physiology. American Society of Plant Biologists, 158(2), pp. 844–853. doi: 10.1104/pp.111.187468.
Luna, E. and Ton, J. (2012) ‘The epigenetic machinery controlling transgenerational systemic acquired resistance’, Plant Signaling & Behavior. Taylor & Francis, 7(6), pp. 615–618. doi: 10.4161/psb.20155.
Ma, F. and Peterson, C. A. (2003) ‘Current insights into the development, structure, and chemistry of the endodermis and exodermis of roots’, Canadian Journal of Botany. NRC Research Press Ottawa, Canada , 81(5), pp. 405–421. doi: 10.1139/b03-042.
Maietti, A. et al. (2012) ‘Analytical Traceability of Melon (Cucumis Melo Var Reticulatus): Proximate Composition, Bioactive Compounds, and Antioxidant Capacity in Relation to Cultivar, Plant Physiology State, and Seasonal Variability’, Journal of Food Science. John Wiley & Sons, Ltd, 77(6), pp. C646–C652. doi: 10.1111/j.1750-3841.2012.02712.x.
Mandal, S. et al. (2013) ‘Elicitor-induced defense responses in solanum lycopersicum against Ralstonia solanacearum’, The Scientific World Journal, 2013. doi: 10.1155/2013/561056.
Mangano, S. et al. (2017) ‘Molecular link between auxin and ROS-mediated polar growth’, Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 114(20), pp. 5289–5294. doi: 10.1073/pnas.1701536114.
Mantelin, S., Bellafiore, S. and Kyndt, T. (2017) ‘Meloidogyne graminicola: a major threat to rice agriculture’, Molecular Plant Pathology. Blackwell Publishing Ltd, 18(1), pp. 3–15. doi: 10.1111/mpp.12394.
Marcec, M. J. et al. (2019) ‘Mutual interplay of Ca 2+ and ROS signaling in plant immune response’, Plant Science. Elsevier Ireland Ltd, pp. 343–354. doi: 10.1016/j.plantsci.2019.03.004.
Marinho, H. S. et al. (2014) ‘Hydrogen peroxide sensing, signaling and regulation of transcription factors’, Redox Biology. Elsevier B.V., pp. 535–562. doi: 10.1016/j.redox.2014.02.006.
Marjamaa, K., Kukkola, E. M. and Fagerstedt, K. V. (2009) ‘The role of xylem class III peroxidases in lignification’, Journal of Experimental Botany. Oxford Academic, 60(2), pp. 367–376. doi: 10.1093/jxb/ern278.
Market Data Forecast (2020) BioPesticides Market | Growth, Trends, and Forecast 2021-2026. Available at: https://www.marketdataforecast.com/market-reports/bio-pesticide-market (Accessed: 22 May 2021).
Marrè, E. and Arrigoni, O. (1957) ‘Metabolic Reactions to Auxin I. The Effects of Auxin on Glutathione and the Effects of Glutathione on Growth of Isolated Plant Parts’, Physiologia Plantarum, 10(2), pp. 289–301. doi: 10.1111/j.1399-3054.1957.tb06951.x.
Martinez-Medina, A. et al. (2016) ‘Recognizing Plant Defense Priming’, Trends in Plant Science. Elsevier Ltd, pp. 818–822. doi: 10.1016/j.tplants.2016.07.009.
Mashela, P. W. et al. (2017) ‘Alternative nematode management strategies’, in Nematology in South Africa: A View from the 21st Century. Springer International Publishing, pp. 151–181. doi: 10.1007/978-3-319-44210-5_7.
Mashela, P. W. and Shokoohi, E. (2021) ‘Morphometric and total protein responses in Meloidogyne incognita second-stage juveniles to Nemafric-BL phytonematicide’, Scientific Reports. Nature Research, 11(1), p. 1135. doi: 10.1038/s41598-020-80210-7.
Mata-Pérez, C. and Spoel, S. H. (2019) ‘Thioredoxin-mediated redox signalling in plant immunity’, Plant Science. Elsevier Ireland Ltd, pp. 27–33. doi: 10.1016/j.plantsci.2018.05.001.
Matamoros, M. A. et al. (2006) ‘Biosynthesis of ascorbic acid in legume root nodules’, Plant Physiology. American Society of Plant Biologists, 141(3), pp. 1068–1077. doi: 10.1104/pp.106.081463.
Matsumura, T. et al. (2002) ‘Wheat catalase expressed in transgenic rice can improve tolerance against low temperature stress’, Physiologia Plantarum. John Wiley & Sons, Ltd, 116(3), pp. 317–327. doi: 10.1034/j.1399-3054.2002.1160306.x.
Matzke, M. A. and Mosher, R. A. (2014) ‘RNA-directed DNA methylation: An epigenetic pathway of increasing complexity’, Nature Reviews Genetics. Nature Publishing Group, pp. 394–408. doi: 10.1038/nrg3683.
Mauch-Mani, B. et al. (2017) ‘Defense Priming: An Adaptive Part of Induced Resistance’, Annual Review of Plant Biology. Annual Reviews Inc., 68(1), pp. 485–512. doi: 10.1146/annurev-arplant-042916-041132.
De Medeiros, H. A. et al. (2017) ‘Tomato progeny inherit resistance to the nematode Meloidogyne javanica linked to plant growth induced by the biocontrol fungus Trichoderma atroviride’, Scientific Reports. Nature Publishing Group, 7(1), pp. 1–13. doi: 10.1038/srep40216.
Melillo, M. T., Leonetti, P. and Veronico, P. (2014) ‘Benzothiadiazole effect in the compatible tomato-Meloidogyne incognita interaction: changes in giant cell development and priming of two root anionic peroxidases’, Planta. Springer Verlag, 240(4), pp. 841–854. doi: 10.1007/s00425-014-2138-7.
Mendy, B. et al. (2017) ‘Arabidopsis leucine-rich repeat receptor–like kinase NILR1 is required for induction of innate immunity to parasitic nematodes’, PLOS Pathogens. Edited by D. Mackey. Public Library of Science, 13(4), p. e1006284. doi: 10.1371/journal.ppat.1006284.
Meng, F. et al. (2019) ‘Molecular Mechanisms of Root Development in Rice’, Rice. Springer New York LLC, pp. 1–10. doi: 10.1186/s12284-018-0262-x.
Meng, X. and Zhang, S. (2013) ‘MAPK cascades in plant disease resistance signaling’, Annual Review of Phytopathology. Annual Reviews , 51, pp. 245–266. doi: 10.1146/annurev-phyto-082712-102314.
Mhamdi, A. and Van Breusegem, F. (2018) ‘Reactive oxygen species in plant development’, Development (Cambridge). Company of Biologists Ltd, 145(15). doi: 10.1242/dev.164376.
Miller, G. et al. (2009) ‘The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli’, Science Signaling. American Association for the Advancement of Science, 2(84), pp. ra45–ra45. doi: 10.1126/scisignal.2000448.
Mirica, L. M. and Klinman, J. P. (2008) ‘The nature of O2 activation by the ethylene-forming enzyme 1-aminocyclopropane-1-carboxylic acid oxidase’, Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 105(6), pp. 1814–1819. doi: 10.1073/pnas.0711626105.
Mitkowski, N. and Abawi George (2003) ‘Reproductive fitness on lettuce of populations of Meloidogyne hapla from New York State vegetable fields’, Nematology, 5(1), pp. 77–83. Available at: https://brill.com/view/journals/nemy/5/1/article-p77_9.xml (Accessed: 20 March 2020).
Mittler, R. et al. (2004) ‘Reactive oxygen gene network of plants’, Trends in Plant Science. Elsevier Current Trends, pp. 490–498. doi: 10.1016/j.tplants.2004.08.009.
Miyazawa, J., Kawabata, T. and Ogasawara, N. (1998) ‘Induction of an acidic isozyme of peroxidase and acquired resistance to wilt disease in response to treatment of tomato roots with 2-furoic acid, 4-hydroxybenzoic hydrazide or salicylic hydrazide’, Physiological and Molecular Plant Pathology. Academic Press, 52(2), pp. 115–126. doi: 10.1006/pmpp.1997.0141.
Mochizuki, S. et al. (2020) ‘The rare sugar d-tagatose protects plants from downy mildews and is a safe fungicidal agrochemical’, Communications Biology. Nature Research, 3(1), pp. 1–15. doi: 10.1038/s42003-020-01133-7.
Moghaddam, M. R. B. and Van Den Ende, W. (2012) ‘Sugars and plant innate immunity’, Journal of Experimental Botany. Oxford Academic, pp. 3989–3998. doi: 10.1093/jxb/ers129.
Momma, K. et al. (2008) ‘Direct interaction of Cucurbitacin E isolated from Alsomitra macrocarpa to actin filament’, Cytotechnology, 56, pp. 33–39. doi: 10.1007/s10616-007-9100-5.
Morita, Y. and Kyozuka, J. (2007) ‘Characterization of OsPID, the Rice Ortholog of PINOID, and its Possible Involvement in the Control of Polar Auxin Transport’, Plant and Cell Physiology. Oxford Academic, 48(3), pp. 540–549. doi: 10.1093/pcp/pcm024.
Morkunas, I. and Ratajczak, L. (2014) ‘The role of sugar signaling in plant defense responses against fungal pathogens’, Acta Physiologiae Plantarum. Polish Academy of Sciences, pp. 1607–1619. doi: 10.1007/s11738-014-1559-z.
Moroz, N., Huffaker, A. and Tanaka, K. (2017) ‘Extracellular Alkalinization Assay for the Detection of Early Defense Response’, Current Protocols in Plant Biology. Blackwell Publishing Ltd, 2(3), pp. 210–220. doi: 10.1002/cppb.20057.
Mosery, O. and Kanellis, A. K. (1994) ‘Ascorbate oxidase of Cucumis melo L. var. reticulatus: purification, characterization and antibody production’, Journal of Experimental Botany. Oxford Academic, 45(6), pp. 717–724. doi: 10.1093/jxb/45.6.717.
Moushib, L. I. et al. (2013) ‘Sugar beet extract induces defence against Phytophthora infestans in potato plants’, European Journal of Plant Pathology. Kluwer Academic Publishers, 136(2), pp. 261–271. doi: 10.1007/s10658-012-0160-9.
Mucharromah, E. and Kuc, J. (1991) ‘Oxalate and phosphates induce systemic resistance against diseases caused by fungi, bacteria and viruses in cucumber’, Crop Protection. Elsevier, 10(4), pp. 265–270. doi: 10.1016/0261-2194(91)90004-B.
Müller-Moulé, P., Golan, T. and Niyogi, K. K. (2004) ‘Ascorbate-deficient mutants of Arabidopsis grow in high light despite chronic photooxidative stress’, Plant Physiology. American Society of Plant Biologists, 134(3), pp. 1163–1172. doi: 10.1104/pp.103.032375.
Muthayya, S. et al. (2014) ‘An overview of global rice production, supply, trade, and consumption’, Ann. N.Y. Acad. Sci, (1324), pp. 7–14. doi: 10.1111/nyas.12540.
Nagahara, N. (2011) ‘Intermolecular disulfide bond to modulate protein function as a redox-sensing switch’, Amino Acids. Springer, pp. 59–72. doi: 10.1007/s00726-010-0508-4.
Nahar, K. et al. (2011) ‘The jasmonate pathway is a key player in systemically induced defense against root knot nematodes in rice’, Plant Physiology. American Society of Plant Biologists, 157(1), pp. 305–316. doi: 10.1104/pp.111.177576.
Nahar, K. et al. (2012) ‘Abscisic acid interacts antagonistically with classical defense pathways in rice-migratory nematode interaction’, New Phytologist. John Wiley & Sons, Ltd, 196(3), pp. 901–913. doi: 10.1111/j.1469-8137.2012.04310.x.
Naseem, M., Kaltdorf, M. and Dandekar, T. (2015) ‘The nexus between growth and defence signalling: Auxin and cytokinin modulate plant immune response pathways’, in Journal of Experimental Botany. Oxford University Press, pp. 4885–4896. doi: 10.1093/jxb/erv297.
Nguyen, D. M. C. et al. (2013) ‘Nematicidal activity of gallic acid purified from Terminalia nigrovenulosa bark against the root-knot nematode Meloidogyne incognita’, Nematology. Brill, 15(5), pp. 507–518. doi: 10.1163/15685411-00002696.
Nguyễn, P. V. et al. (2014) ‘Meloidogyne incognita - rice (Oryza sativa) interaction: a new model system to study plant–root-knot nematode interactions in monocotyledons’, Rice. Springer New York LLC, 7(1), p. 23. doi: 10.1186/s12284-014-0023-4.
Nicol, J. M. et al. (2011) ‘Current Nematode Threats to World Agriculture’, in Genomics and Molecular Genetics of Plant-Nematode Interactions. Springer Netherlands, pp. 21–43. doi: 10.1007/978-94-007-0434-3_2.
Niederhuth, C. E. and Schmitz, R. J. (2014) ‘Covering your bases: Inheritance of DNA methylation in plant genomes’, Molecular Plant. Oxford University Press, pp. 472–480. doi: 10.1093/mp/sst165.
Noctor, G., Reichheld, J. P. and Foyer, C. H. (2018) ‘ROS-related redox regulation and signaling in plants’, Seminars in Cell and Developmental Biology. Elsevier Ltd, pp. 3–12. doi: 10.1016/j.semcdb.2017.07.013.
Ogasawara, Y. et al. (2008) ‘Synergistic activation of the arabidopsis NADPH oxidase AtrbohD by Ca 2+ and phosphorylation’, Journal of Biological Chemistry. Elsevier, 283(14), pp. 8885–8892. doi: 10.1074/jbc.M708106200.
Oka, Y. (2020) ‘From Old-Generation to Next-Generation Nematicides’, Agronomy. MDPI AG, 10(9), p. 1387. doi: 10.3390/agronomy10091387.
Okuma, E. et al. (2011) ‘Negative regulation of abscisic acid-induced stomatal closure by glutathione in Arabidopsis’, Journal of Plant Physiology. Urban & Fischer, 168(17), pp. 2048–2055. doi: 10.1016/j.jplph.2011.06.002.
Olatunji, D., Geelen, D. and Verstraeten, I. (2017) ‘Control of Endogenous Auxin Levels in Plant Root Development’, International Journal of Molecular Sciences. MDPI AG, 18(12), p. 2587. doi: 10.3390/ijms18122587.
Omokhua-Uyi, A. G. and Van Staden, J. (2020) ‘Phytomedicinal relevance of South African Cucurbitaceae species and their safety assessment: A review’, Journal of Ethnopharmacology. Elsevier Ireland Ltd, p. 112967. doi: 10.1016/j.jep.2020.112967.
Orozco-Cardenas, M. and Ryan, C. A. (1999) ‘Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway’, Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 96(11), pp. 6553–6557. doi: 10.1073/pnas.96.11.6553.
Ortwerth, B. J. et al. (1994) ‘Ascorbic Acid Glycation: the Reactions of l-Threose in Lens Tissue’, Experimental Eye Research. Academic Press, 58(6), pp. 665–674. doi: 10.1006/exer.1994.1064.
Ou, S. H. (1985) Rice Diseases. 2nd edn. Edited by D. L. Hawksworth. Aberystwyth: CABI. Available at: https://books.google.be/books?hl=nl&lr=&id=-k3mewv9nMoC&oi=fnd&pg=PR1&d… &f=false (Accessed: 16 April 2021).
Overvoorde, P., Fukaki, H. and Beeckman, T. (2010) ‘Auxin control of root development.’, Cold Spring Harbor perspectives in biology. Cold Spring Harbor Laboratory Press, p. a001537. doi: 10.1101/cshperspect.a001537.
Owino, W. O. et al. (2002) ‘Differential regulation of genes encoding ethylene biosynthesis enzymes and ethylene response sensor ortholog during ripening and in response to wounding in avocados’, Journal of the American Society for Horticultural Science. American Society for Horticultural Science, 127(4), pp. 520–527. doi: 10.21273/jashs.127.4.520.
Papademetriou, M. K., Dent, F. J. and Herath, E. M. (1999) Bridging the rice yield gap in the asia-pacific region. Rome. Available at: http://www.fao.org/3/X6905e/x6905e00.htm#Contents (Accessed: 13 March 2021).
Paramalingam, S. (2004) Modelling, Optimisation and Control of a Falling-Film Evaporator. Massey University.
Pasternak, T., Palme, K. and Paponov, I. A. (2020) ‘Glutathione enhances auxin sensitivity in arabidopsis roots’, Biomolecules. MDPI AG, 10(11), pp. 1–24. doi: 10.3390/biom10111550.
Pastor, V. et al. (2013) ‘Fine tuning of reactive oxygen species homeostasis regulates primed immune responses in arabidopsis’, Molecular Plant-Microbe Interactions. The American Phytopathological Society , 26(11), pp. 1334–1344. doi: 10.1094/MPMI-04-13-0117-R.
Pastor, V. et al. (2014) ‘Preparing to fight back: Generation and storage of priming compounds’, Frontiers in Plant Science. Frontiers Research Foundation, 5(JUN). doi: 10.3389/fpls.2014.00295.
Pastrana-Bonilla, E. et al. (2003) ‘Phenolic content and antioxidant capacity of muscadine grapes’, Journal of Agricultural and Food Chemistry. American Chemical Society , 51(18), pp. 5497–5503. doi: 10.1021/jf030113c.
Patra, F., Patel, A. and Shah, N. (2017) ‘Microbial Production of Low-Calorie Sugars’, in Microbial Production of Food Ingredients and Additives. Elsevier, pp. 259–290. doi: 10.1016/b978-0-12-811520-6.00009-x.
Paul, P. K. and Sharma, P. D. (2002) ‘Azadirachta indica leaf extract induces resistance in barley against leaf stripe disease’, Physiological and Molecular Plant Pathology. Academic Press, 61(1), pp. 3–13. doi: 10.1006/pmpp.2002.0412.
Pavet, V. et al. (2005) ‘Ascorbic acid deficiency activates cell death and disease resistance responses in Arabidopsis’, Plant Physiology. American Society of Plant Biologists, 139(3), pp. 1291–1303. doi: 10.1104/pp.105.067686.
Pavet, V. et al. (2006) ‘Arabidopsis displays centromeric DNA hypomethylation and cytological alterations of heterochromatin upon attack by Pseudomonas syringae’, Molecular Plant-Microbe Interactions. The American Phytopathological Society , 19(6), pp. 577–587. doi: 10.1094/MPMI-19-0577.
Peck, S. C. and Kende, H. (1998) ‘Differential regulation of genes encoding 1-aminocyclopropane-1-carboxylate (ACC) synthase in etiolated pea seedlings: Effects of indole-3-acetic acid, wounding, and ethylene’, Plant Molecular Biology. Springer, 38(6), pp. 977–982. doi: 10.1023/A:1006033030081.
Peer, W. A., Cheng, Y. and Murphy, A. S. (2013) ‘Evidence of oxidative attenuation of auxin signalling’, Journal of Experimental Botany. Oxford Academic, 64(9), pp. 2629–2639. doi: 10.1093/jxb/ert152.
Peiffer, M. et al. (2009) ‘Plants on Early Alert: Glandular Trichomes as Sensors for Insect Herbivores’, The New Phytologist, 184(3), pp. 644–656. Available at: https://www.jstor.org/stable/27735815?seq=1#metadata_info_tab_contents (Accessed: 30 August 2020).
Perold, G. W., Beylis, P. and Howard, A. S. (1973) ‘Metabolites of proteaceae. Part VIII. The occurrence of (+)-D-allose in nature: Rubropilosin and pilorubrosin from protea rubropilosa beard’, Journal of the Chemical Society, Perkin Transactions 1. The Royal Society of Chemistry, (0), pp. 643–649. doi: 10.1039/P19730000643.
Petrov, V. et al. (2015) ‘ROS-mediated abiotic stress-induced programmed cell death in plants’, Frontiers in Plant Science. Frontiers Research Foundation, 6(FEB), p. 69. doi: 10.3389/fpls.2015.00069.
Pieterse, C. M. J. et al. (2012) ‘Hormonal Modulation of Plant Immunity’, Annual Review of Cell and Developmental Biology. Annual Reviews , 28(1), pp. 489–521. doi: 10.1146/annurev-cellbio-092910-154055.
Pieterse, C. M. J. (2012) ‘Prime time for transgenerational defense’, Plant Physiology. American Society of Plant Biologists, p. 545. doi: 10.1104/pp.112.900430.
Pignocchi, C. et al. (2003) ‘The function of ascorbate oxidase in tobacco’, Plant Physiology. American Society of Plant Biologists, 132(3), pp. 1631–1641. doi: 10.1104/pp.103.022798.
Pignocchi, C. et al. (2006) ‘Ascorbate oxidase-dependent changes in the redox state of the apoplast modulate gene transcript accumulation leading to modified hormone signaling and orchestration of defense processes in tobacco’, Plant Physiology. American Society of Plant Biologists, 141(2), pp. 423–435. doi: 10.1104/pp.106.078469.
Pignocchi, C. and Foyer, C. H. (2003) ‘Apoplastic ascorbate metabolism and its role in the regulation of cell signalling’, Current Opinion in Plant Biology. Elsevier Ltd, pp. 379–389. doi: 10.1016/S1369-5266(03)00069-4.
Pohjamo, S. P. et al. (2003) ‘Phenolic extractives in Salix caprea wood and knots’, Phytochemistry. Elsevier Ltd, 63(2), pp. 165–169. doi: 10.1016/S0031-9422(03)00050-5.
Pokholok, D. K. et al. (2005) ‘Genome-wide map of nucleosome acetylation and methylation in yeast’, Cell. Cell Press, 122(4), pp. 517–527. doi: 10.1016/j.cell.2005.06.026.
Ponzio, C. et al. (2016) ‘Compatible and incompatible pathogen–plant interactions differentially affect plant volatile emissions and the attraction of parasitoid wasps’, Functional Ecology. Edited by S. Rasmann. Blackwell Publishing Ltd, 30(11), pp. 1779–1789. doi: 10.1111/1365-2435.12689.
Popko, J. et al. (2010) ‘The role of abscisic acid and auxin in the response of poplar to abiotic stress’, Plant Biology. John Wiley & Sons, Ltd, 12(2), pp. 242–258. doi: 10.1111/j.1438-8677.2009.00305.x.
Portillo, M. et al. (2013) ‘Distinct and conserved transcriptomic changes during nematode-induced giant cell development in tomato compared with Arabidopsis: A functional role for gene repression’, New Phytologist. John Wiley & Sons, Ltd, 197(4), pp. 1276–1290. doi: 10.1111/nph.12121.
Priyadarsini, K. I. et al. (2002) ‘Free radical studies of ellagic acid, a natural phenolic antioxidant’, Journal of Agricultural and Food Chemistry. American Chemical Society , 50(7), pp. 2200–2206. doi: 10.1021/jf011275g.
Prot, J. C. and Matias, D. M. (1995) ‘Effects of water regime on the distribution of meloidogyne graminicola and other root-parasitic nematodes in a rice field toposequence and pathogenicity of M. graminicola on rice cultivar upl r15’, Nematologica. Brill Academic Publishers, 41(1–4), pp. 219–228. doi: 10.1163/003925995X00189.
Puthur, S. et al. (2019) ‘Synergistic control of storage pest rice weevil using Hypericum japonicum and deltamethrin combinations: a key to combat pesticide resistance’, Environmental Sustainability. Springer Science and Business Media LLC, 2(4), pp. 411–417. doi: 10.1007/s42398-019-00086-w.
Qi, L. et al. (2012) ‘Arabidopsis thaliana plants differentially modulate auxin biosynthesis and transport during defense responses to the necrotrophic pathogen Alternaria brassicicola’, New Phytologist. John Wiley & Sons, Ltd, 195(4), pp. 872–882. doi: 10.1111/j.1469-8137.2012.04208.x.
Queval, G. et al. (2011) ‘Increased intracellular H2O2 availability preferentially drives glutathione accumulation in vacuoles and chloroplasts’, Plant, Cell & Environment. John Wiley & Sons, Ltd, 34(1), pp. 21–32. doi: 10.1111/j.1365-3040.2010.02222.x.
Von Rad, U., Mueller, M. J. and Durner, J. (2005) ‘Evaluation of natural and synthetic stimulants of plant immunity by microarray technology’, New Phytologist. John Wiley & Sons, Ltd, 165(1), pp. 191–202. doi: 10.1111/j.1469-8137.2004.01211.x.
Rahman, M. L. (1990) ‘EFFECT OF DIFFERENT CROPPING SEQUENCES ON ROOT .KNOT NEMATODE, MELOIDOGYNE GRAMINICOLA, AND YIELD OF DEEPWATER RICE’, Nematol. medit., 18, pp. 213–217.
Rajasree, R. S., Francis, F. and William, H. (2016) ‘Phytochemicals of Cucurbitaceae Family-A Review’, International Journal of Pharmacognosy and Phytochemical Research, 8(1), pp. 113–123. Available at: www.ijppr.com (Accessed: 10 April 2021).
Rasmann, S. et al. (2012) ‘Herbivory in the previous generation primes plants for enhanced insect resistance’, Plant Physiology. American Society of Plant Biologists, 158(2), pp. 854–863. doi: 10.1104/pp.111.187831.
Ratiu, I. A. et al. (2019) ‘Simultaneous Determination of Cyclitols and Sugars Following a Comprehensive Investigation of 40 Plants’, Food Analytical Methods. Springer New York LLC, 12(6), pp. 1466–1478. doi: 10.1007/s12161-019-01481-z.
Raudvere, U. et al. (2019) ‘G:Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update)’, Nucleic Acids Research. Oxford University Press, 47(W1), pp. W191–W198. doi: 10.1093/nar/gkz369.
Rawson, A. et al. (2013) ‘Effect of boiling and roasting on the polyacetylene and polyphenol content of fennel (Foeniculum vulgare) bulb’, Food Research International. Elsevier, 50(2), pp. 513–518. doi: 10.1016/j.foodres.2011.01.009.
Reuveni, M., Zahavi, T. and Cohen, Y. (2001) ‘Controlling Downy Mildew (Plasmopara viticola) in Field-grown Grapevine with/3-Aminobutyric Acid (BABA)’, Phytoparasitica, 29(2), pp. 125–133.
Ribera, A. E. and Zuñiga, G. (2012) ‘Induced plant secondary metabolites for phytopatogenic fungi control: A review’, Journal of Soil Science and Plant Nutrition. Sociedad Chilena de la Ciencia del Suelo, 12(4), pp. 893–911. doi: 10.4067/s0718-95162012005000040.
Rich, J. R. et al. (2009) ‘WEED SPECIES AS HOSTS OF MELOIDOGYNE : A REVIEW’, Nematropica, 39(2), pp. 157–185. Available at: https://journals.flvc.org/nematropica/article/view/64478 (Accessed: 26 August 2020).
del Río, L. A. (2015) ‘ROS and RNS in plant physiology: an overview’, Journal of Experimental Botany. Oxford University Press, 66(10), pp. 2827–2837. doi: 10.1093/jxb/erv099.
Riov, J. and Yang, S. F. (1982) ‘Effects of Exogenous Ethylene on Ethylene Production in Citrus Leaf Tissue’, Plant Physiology. Oxford University Press (OUP), 70(1), pp. 136–141. doi: 10.1104/pp.70.1.136.
Rizvi, T. S. and Fayyaz, S. (2014) ‘Nematicidal activity of Citrullus colocynthis extracts against root-knot nematodes Screening of the genetic diversity of wheat germplasm against cyst nematodes View project’, Pakistan Journal of Nematology , 32(1), pp. 101–112. Available at: https://www.researchgate.net/publication/275037899 (Accessed: 21 April 2021).
Roberts, D. A. (1983) ‘Acquired resistance to Tobacco mosaic virus transmitted to the progeny of hypersensitive Tobacco’, Virology. Academic Press, 124(1), pp. 161–163. doi: 10.1016/0042-6822(83)90299-4.
Rockel, P. et al. (2002) ‘Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro’, Journal of Experimental Botany. Oxford University Press (OUP), 53(366), pp. 103–110. doi: 10.1093/jexbot/53.366.103.
Rodrigues, O. et al. (2017) ‘Aquaporins facilitate hydrogen peroxide entry into guard cells to mediate ABA- and pathogen-triggered stomatal closure’, Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 114(34), pp. 9200–9205. doi: 10.1073/pnas.1704754114.
Rolim, P. M. et al. (2018) ‘Phenolic profile and antioxidant activity from peels and seeds of melon (Cucumis melo L. var. reticulatus) and their antiproliferative effect in cancer cells’, Brazilian Journal of Medical and Biological Research. Associacao Brasileira de Divulgacao Cientifica, 51(4). doi: 10.1590/1414-431x20176069.
Rolim, P. M., Seabra, L. M. J. and de Macedo, G. R. (2020) ‘Melon By-Products: Biopotential in Human Health and Food Processing’, Food Reviews International. Taylor and Francis Inc., pp. 15–38. doi: 10.1080/87559129.2019.1613662.
Roos, G. and Messens, J. (2011) ‘Protein sulfenic acid formation: From cellular damage to redox regulation’, Free Radical Biology and Medicine. Pergamon, pp. 314–326. doi: 10.1016/j.freeradbiomed.2011.04.031.
Roy, S. et al. (2016) ‘Use of plant extracts for tea pest management in India’, Applied Microbiology and Biotechnology. Springer Verlag, pp. 4831–4844. doi: 10.1007/s00253-016-7522-8.
Rumer, S., Gupta, K. J. and Kaiser, W. M. (2009) ‘Plant cells oxidize hydroxylamines to NO’, Journal of Experimental Botany. Oxford University Press, 60(7), pp. 2065–2072. doi: 10.1093/jxb/erp077.
Růžička, K. et al. (2015) ‘Xylem development - from the cradle to the grave’, New Phytologist. Blackwell Publishing Ltd, 207(3), pp. 519–535. doi: 10.1111/nph.13383.
Ryals, J. A. et al. (1996) ‘Systemic acquired resistance’, Plant Cell. American Society of Plant Physiologists, 8(10), pp. 1809–1819. doi: 10.1105/tpc.8.10.1809.
Ryan, C. A. and Pearce, G. (2003) ‘Systemins: A functionally defined family of peptide signals that regulate defensive genes in Solanaceae species’, Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 100(24), pp. 14577–14580. doi: 10.1073/pnas.1934788100.
Sakai, H. et al. (2013) ‘Rice annotation project database (RAP-DB): An integrative and interactive database for rice genomics’, Plant and Cell Physiology. Plant Cell Physiol, 54(2). doi: 10.1093/pcp/pcs183.
Sanchez Carranza, A. P. et al. (2016) ‘Hydrolases of the ILR1-like family of Arabidopsis thaliana modulate auxin response by regulating auxin homeostasis in the endoplasmic reticulum’, Scientific Reports. Nature Publishing Group, 6(1), pp. 1–11. doi: 10.1038/srep24212.
Sandroni, M. et al. (2020) ‘Plant resistance inducers (PRIs): perspectives for future disease management in the field’, CAB Reviews, 15(1). doi: 10.1079/PAVSNNR202015001.
Sanmartin, M. et al. (2007) ‘Differential expression of the ascorbate oxidase multigene family during fruit development and in response to stress’, Planta. Springer, 225(4), pp. 873–885. doi: 10.1007/s00425-006-0399-5.
Sasaki, M., Yamamoto, Y. and Matsumoto, H. (1996) ‘Lignin deposition induced by aluminum in wheat (Triticum aestivum) roots’, Physiologia Plantarum. Blackwell Publishing Ltd, 96(2), pp. 193–198. doi: 10.1111/j.1399-3054.1996.tb00201.x.
Sass, R. L. et al. (1992) ‘Methane emission from rice fields: The effect of floodwater management’, Global Biogeochemical Cycles. John Wiley & Sons, Ltd, 6(3), pp. 249–262. doi: 10.1029/92GB01674.
Sawamura, M. et al. (1994) ‘Identification of Two Degradation Products from Aqueous Dehydroascorbic Acid’, Journal of Agricultural and Food Chemistry. American Chemical Society, 42(5), pp. 1200–1203. doi: 10.1021/jf00041a028.
Schillheim, B. et al. (2018) ‘Sulforaphane modifies histone H3, unpacks chromatin, and primes defense’, Plant Physiology. American Society of Plant Biologists, 176(3), pp. 2395–2405. doi: 10.1104/pp.17.00124.
Schwarzenbacher, R. E. et al. (2020) ‘The IBI1 Receptor of β-Aminobutyric Acid Interacts with VOZ Transcription Factors to Regulate Abscisic Acid Signaling and Callose-Associated Defense’, Molecular Plant. Cell Press, 13(10), pp. 1455–1469. doi: 10.1016/j.molp.2020.07.010.
Seck, P. A. et al. (2012) ‘Crops that feed the world 7: Rice’, Food Security. Springer Science and Business Media LLC, 4(1), pp. 7–24. doi: 10.1007/s12571-012-0168-1.
Seo, S. (2002) A Review and Comparison of Methods for Detecting Outliers in Univariate Data Sets. University of Pittsburgh.
Serk, H. et al. (2015) ‘Cooperative lignification of xylem tracheary elements’, Plant Signaling and Behavior. Taylor and Francis Inc., 10(4), pp. 1–5. doi: 10.1080/15592324.2014.1003753.
Šernaitė, L. (2017) ‘Plant extracts: antimicrobial and antifungal activity and appliance in plant protection (Review)’, Sodininkystės ir daržininkystė, 36(3–4), pp. 58–68.
Sharma, R. et al. (2013) ‘Recent advances in dissecting stress-regulatory crosstalk in rice’, Molecular Plant. Oxford University Press, pp. 250–260. doi: 10.1093/mp/sss147.
Shi, Y. et al. (2020) ‘OsRbohB-mediated ROS production plays a crucial role in drought stress tolerance of rice’, Plant Cell Reports. Springer Science and Business Media Deutschland GmbH, 39(12), pp. 1767–1784. doi: 10.1007/s00299-020-02603-2.
Shimamoto, K. and Kyozuka, J. (2002) ‘Rice as a model for comparative genomics of plants’, Annual Review of Plant Biology. Annual Reviews Inc., pp. 399–419. doi: 10.1146/annurev.arplant.53.092401.134447.
Shodehinde, S. A. et al. (2016) ‘Phenolic Composition and Evaluation of Methanol and Aqueous Extracts of Bitter Gourd (Momordica charantia L) Leaves on Angiotensin-I-Converting Enzyme and Some Pro-oxidant-Induced Lipid Peroxidation In Vitro.’, Journal of Evidence-Based Complementary & Alternative Medicine. SAGE Publications Ltd, 21(4), pp. NP67–NP76. doi: 10.1177/2156587216636505.
Shoresh, M. et al. (2006) ‘Characterization of a mitogen-activated protein kinase gene from cucumber required for trichoderma-conferred plant resistance’, Plant Physiology. American Society of Plant Biologists, 142(3), pp. 1169–1179. doi: 10.1104/pp.106.082107.
Shukla, N. et al. (2017) ‘Transcriptome analysis of root-knot nematode ( Meloidogyne incognita )-infected tomato ( Solanum lycopersicum ) roots reveals complex gene expression profiles and metabolic networks of both host and nematode during susceptible and resistance responses’, Molecular Plant Pathology. John Wiley & Sons, Ltd, 19(3), pp. 615–633. doi: 10.1111/mpp.12547.
Siddique, S. et al. (2014) ‘Myo‐inositol oxygenase is important for the removal of excess myo‐inositol from syncytia induced by Heterodera schachtii in Arabidopsis roots’, New Phytologist. John Wiley & Sons, Ltd, 201(2), pp. 476–485. doi: 10.1111/nph.12535.
Simpson, G. L. W. and Ortwerth, B. J. (2000) ‘The non-oxidative degradation of ascorbic acid at physiological conditions’, Biochimica et Biophysica Acta - Molecular Basis of Disease. Elsevier, 1501(1), pp. 12–24. doi: 10.1016/S0925-4439(00)00009-0.
Singh, A., Gupta, R. and Pandey, R. (2017) ‘Exogenous application of rutin and gallic acid regulate antioxidants and alleviate reactive oxygen generation in Oryza sativa L.’, Physiology and Molecular Biology of Plants, 23(2), pp. 301–309. doi: 10.1007/s12298-017-0430-2.
Singh, P. and Roberts, M. R. (2015) ‘Keeping it in the family: Transgenerational memories of plant defence’, CAB Reviews, 10(26), pp. 1–6.
Singh, R. R., Nobleza, N., et al. (2020) ‘Ascorbate Oxidase Induces Systemic Resistance in Sugar Beet Against Cyst Nematode Heterodera schachtii’, Frontiers in Plant Science. Frontiers Media S.A., 11. doi: 10.3389/fpls.2020.591715.
Singh, R. R., Verstraeten, B., et al. (2020) ‘Ascorbate oxidation activates systemic defence against root-knot nematode Meloidogyne graminicola in rice’, Journal of Experimental Botany. Oxford University Press, 71(14), pp. 4271–4284. doi: 10.1093/jxb/eraa171.
Singh, U. B. et al. (2019) ‘Trichoderma harzianum-and methyl jasmonate-induced resistance to bipolaris sorokiniana through enhanced phenylpropanoid activities in bread wheat (Triticum aestivum L.)’, Frontiers in Microbiology. Frontiers Media S.A., 10, p. 1697. doi: 10.3389/fmicb.2019.01697.
Slaughter, A. et al. (2012) ‘Descendants of primed Arabidopsis plants exhibit resistance to biotic stress’, Plant Physiology. American Society of Plant Biologists, 158(2), pp. 835–843. doi: 10.1104/pp.111.191593.
Slight, S. H., Feather, M. S. and Ortwerth, B. J. (1990) ‘Glycation of lens proteins by the oxidation products of ascorbic acid’, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology. Elsevier, 1038(3), pp. 367–374. doi: 10.1016/0167-4838(90)90250-J.
Slusarenko, A. J., Fraser, R. S. and van Loon, L. C. (2012) Mechanisms of Resistance to Plant Diseases. Edited by A. J. Slusarenko, R. S. Fraser, and L. C. van Loon. Berlin: Springer Science & Business Media. Available at: https://books.google.be/books?hl=nl&lr=&id=Lo1qCQAAQBAJ&oi=fnd&pg=PA324… are found in many different plant families and chemical classes%22&f=false (Accessed: 8 May 2021).
De Smet, I. et al. (2006) ‘A novel role for abscisic acid emerges from underground’, Trends in Plant Science. Elsevier Current Trends, pp. 434–439. doi: 10.1016/j.tplants.2006.07.003.
Smirnoff, N. (2000) ‘Ascorbic acid: metabolism and functions of a multi-facetted molecule’, Current Opinion in Plant Biology. Elsevier BV, 3(3), pp. 229–235. doi: 10.1016/s1369-5266(00)80070-9.
Smirnoff, N. and Arnaud, D. (2019) ‘Hydrogen peroxide metabolism and functions in plants’, New Phytologist. Blackwell Publishing Ltd, 221(3), pp. 1197–1214. doi: 10.1111/nph.15488.
Smirnoff, N. and Wheeler, G. L. (2000) ‘Ascorbic acid in plants: Biosynthesis and function’, Critical Reviews in Plant Sciences. Taylor & Francis Group , 19(4), pp. 267–290. doi: 10.1080/07352680091139231.
Smit, F. and Dubery, I. A. (1997) ‘Cell wall reinforcement in cotton hypocotyls in response to a Verticillium dahliae elicitor’, Phytochemistry. Pergamon, 44(5), pp. 811–815. doi: 10.1016/S0031-9422(96)00595-X.
Song, Y. et al. (2015) ‘Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus’, Frontiers in Plant Science. Frontiers Research Foundation, 6(September), p. 786. doi: 10.3389/fpls.2015.00786.
Song, Y. Y. et al. (2013) ‘Priming of Anti-Herbivore Defense in Tomato by Arbuscular Mycorrhizal Fungus and Involvement of the Jasmonate Pathway’, Journal of Chemical Ecology. Springer, 39(7), pp. 1036–1044. doi: 10.1007/s10886-013-0312-1.
Sopelana, P. et al. (2013) ‘Effect of ultra high temperature (UHT) treatment on coffee brew stability’, Food Research International. Elsevier, 50(2), pp. 682–690. doi: 10.1016/j.foodres.2011.07.038.
Soriano, I. R. and Reversat, G. (2003) ‘Management of Meloidogyne graminicola and yield of upland rice in South-Luzon, Philippines’, Nematology. Brill, 5(6), pp. 879–884. doi: 10.1163/156854103773040781.
Speeckaert, N. et al. (2020) ‘Characterization of the udp-glycosyltransferase ugt72 family in poplar and identification of genes involved in the glycosylation of monolignols’, International Journal of Molecular Sciences. MDPI AG, 21(14), pp. 1–24. doi: 10.3390/ijms21145018.
Sripinyowanich, S. et al. (2013) ‘Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): The role of OsP5CS1 and OsP5CR gene expression during salt stress’, Environmental and Experimental Botany. Elsevier, 86, pp. 94–105. doi: 10.1016/j.envexpbot.2010.01.009.
Stassen, J. H. M. et al. (2018) ‘The relationship between transgenerational acquired resistance and global DNA methylation in Arabidopsis’, Scientific Reports. Nature Publishing Group, 8(1), p. 14761. doi: 10.1038/s41598-018-32448-5.
Stevens, R. et al. (2018) ‘Ascorbate oxidase in plant growth, Development, and stress tolerance’, in Ascorbic Acid in Plant Growth, Development and Stress Tolerance. Springer International Publishing, pp. 273–295. doi: 10.1007/978-3-319-74057-7_11.
Sultana, R., Nahar, K. and Bachar, S. C. (2018) ‘In-vitro membrane stabilizing, thrombolytic, antioxidant and antimicrobial activities of Bangladeshi origin Coccinia indica (Cucurbitaceae)’, African Journal of Pharmacy and Pharmacology, 12(16), pp. 188–192. doi: 10.5897/AJPP2018.4913.
Sun, J. et al. (2009) ‘Arabidopsis ASA1 is important for jasmonate-mediated regulation of auxin biosynthesis and transport during lateral root formation’, Plant Cell. American Society of Plant Biologists, 21(5), pp. 1495–1511. doi: 10.1105/tpc.108.064303.
Suzuki, N. et al. (2012) ‘ROS and redox signalling in the response of plants to abiotic stress’, Plant, Cell & Environment. John Wiley & Sons, Ltd, 35(2), pp. 259–270. doi: 10.1111/j.1365-3040.2011.02336.x.
Suzuki, N. et al. (2013) ‘Temporal-spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants’, Plant Cell. American Society of Plant Biologists, 25(9), pp. 3553–3569. doi: 10.1105/tpc.113.114595.
Tada, Y. et al. (2008) ‘Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins’, Science. American Association for the Advancement of Science, 321(5891), pp. 952–956. doi: 10.1126/science.1156970.
Taheri, P. and Tarighi, S. (2010) ‘Riboflavin induces resistance in rice against Rhizoctonia solani via jasmonate-mediated priming of phenylpropanoid pathway’, Journal of Plant Physiology. Urban & Fischer, 167(3), pp. 201–208. doi: 10.1016/j.jplph.2009.08.003.
Tamaoki, D. et al. (2006) ‘Effects of hypergravity conditions on elongation growth and lignin formation in the inflorescence stem of Arabidopsis thaliana’, Journal of Plant Research. Springer, 119(2), pp. 79–84. doi: 10.1007/s10265-005-0243-1.
Tanaka, K. and Heil, M. (2021) ‘Damage-Associated Molecular Patterns (DAMPs) in Plant Innate Immunity: Applying the Danger Model and Evolutionary Perspectives’, Annual Review of Phytopathology, 59(3), pp. 1–23. doi: 10.1146/annurev-phyto-082718.
Tanaka, Y. (2006) ‘Cytokinin and auxin inhibit abscisic acid-induced stomatal closure by enhancing ethylene production in Arabidopsis’, Journal of Experimental Botany. Oxford Academic, 57(10), pp. 2259–2266. doi: 10.1093/jxb/erj193.
Tannin-Spitz, T. et al. (2007) ‘Growth inhibitory activity of cucurbitacin glucosides isolated from Citrullus colocynthis on human breast cancer cells’, Biochemical Pharmacology. Elsevier, 73(1), pp. 56–67. doi: 10.1016/j.bcp.2006.09.012.
Tannin-Spitz, T., Bergman, M. and Grossman, S. (2007) ‘Cucurbitacin glucosides: Antioxidant and free-radical scavenging activities’, Biochemical and Biophysical Research Communications. Academic Press, 364(1), pp. 181–186. doi: 10.1016/j.bbrc.2007.09.075.
Tao, J. J. et al. (2015) ‘Tobacco translationally controlled tumor protein interacts with ethylene receptor tobacco histidine kinase1 and enhances plant growth through promotion of cell proliferation’, Plant Physiology. American Society of Plant Biologists, 169(1), pp. 96–114. doi: 10.1104/pp.15.00355.
Tateda, C. et al. (2014) ‘Salicylic acid regulates Arabidopsis microbial pattern receptor kinase levels and signaling’, Plant Cell. American Society of Plant Biologists, 26(10), pp. 4171–4187. doi: 10.1105/tpc.114.131938.
Tayeh, C. et al. (2014) ‘Exogenous trehalose induces defenses in wheat before and during a biotic stress caused by powdery mildew’, Phytopathology. The American Phytopathological Society , 104(3), pp. 293–305. doi: 10.1094/PHYTO-07-13-0191-R.
Terrile, M. C. et al. (2012) ‘Nitric oxide influences auxin signaling through S-nitrosylation of the Arabidopsis TRANSPORT INHIBITOR RESPONSE 1 auxin receptor’, The Plant Journal. John Wiley & Sons, Ltd, 70(3), pp. 492–500. doi: 10.1111/j.1365-313X.2011.04885.x.
Tian, S. et al. (2016) ‘Plant aquaporin AtPIP1;4 links apoplastic H2O2 induction to disease immunity pathways’, Plant Physiology. American Society of Plant Biologists, 171(3), pp. 1635–1650. doi: 10.1104/pp.15.01237.
TNAU (2016) Cereals :: Rice :: Aerobic. Available at: https://agritech.tnau.ac.in/agriculture/agri_cropproduction_cereals_ric… (Accessed: 23 March 2021).
Tobias, C. M. and Chow, E. K. (2005) ‘Structure of the cinnamyl-alcohol dehydrogenase gene family in rice and promoter activity of a member associated with lignification’, Planta. Springer, 220(5), pp. 678–688. doi: 10.1007/s00425-004-1385-4.
Tomás-Barberán, F. A. and Clifford, M. N. (2000) ‘Dietary hydroxybenzoic acid derivatives-nature, occurrence and dietary burden’, Journal of the Science of Food and Agriculture, 80(7), pp. 1024–1032.
Ton, J., Flors, V. and Mauch-Mani, B. (2009) ‘The multifaceted role of ABA in disease resistance’, Trends in Plant Science. Elsevier Current Trends, 14(6), pp. 310–317. doi: 10.1016/j.tplants.2009.03.006.
Torres, M. A., Jones, J. D. G. and Dangl, J. L. (2006) ‘Reactive oxygen species signaling in response to pathogens’, Plant Physiology. American Society of Plant Biologists, pp. 373–378. doi: 10.1104/pp.106.079467.
Trdá, L. et al. (2019) ‘Dual Mode of the Saponin Aescin in Plant Protection: Antifungal Agent and Plant Defense Elicitor’, Frontiers in Plant Science. Frontiers Media S.A., 10, p. 1448. doi: 10.3389/fpls.2019.01448.
Triantaphyllou, A. C. (1969) ‘Gametogenesis and the Chromosomes of Two Root-knot Nematodes, Meloidogyne graminicola and M. naasi.’, Journal of nematology. Society of Nematologists, 1(1), pp. 62–71. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19325656 (Accessed: 26 August 2020).
Truffault, V. et al. (2014) ‘Variation in tomato fruit ascorbate levels and consequences of manipulation of ascorbate metabolism on drought stress tolerance’, Acta Horticulturae. International Society for Horticultural Science, 1048(1), pp. 75–84. doi: 10.17660/ActaHortic.2014.1048.8.
Tupe, S. B. et al. (2013) ‘PHYTOCHEMICAL SCREENING IN SOME CUCURBITACEAE MEMBERS’, International Research Journal of Pharmaceutical and Applied Sciences, 3(1), pp. 49–51. Available at: https://scienztech.org/irjpas/article/view/396/324 (Accessed: 10 April 2021).
Turnbull, J. J. et al. (2004) ‘Mechanistic studies on three 2-oxoglutarate-dependent oxygenases of flavonoid biosynthesis: Anthocyanidin synthase, flavonol synthase, and flavanone 3β-hydroxylase’, Journal of Biological Chemistry. Elsevier, 279(2), pp. 1206–1216. doi: 10.1074/jbc.M309228200.
Underwood, W. (2012) ‘The Plant Cell Wall: A Dynamic Barrier Against Pathogen Invasion’, Frontiers in Plant Science. Frontiers Research Foundation, 3(MAY), p. 85. doi: 10.3389/fpls.2012.00085.
Usadel, B. et al. (2005) ‘Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of coresponding genes, and comparison with known responses’, Plant Physiology. Plant Physiol, pp. 1195–1204. doi: 10.1104/pp.105.060459.
UTZ (2015) LIST OF BANNED PESTICIDES AND PESTICIDES WATCHLIST. Amsterdam. Available at: www.utz.org/resource-library.org (Accessed: 22 November 2020).
Väisänen, E. E. et al. (2015) ‘Coniferyl alcohol hinders the growth of tobacco BY-2 cells and Nicotiana benthamiana seedlings’, Planta. Springer Verlag, 242(3), pp. 747–760. doi: 10.1007/s00425-015-2348-7.
Valderrama, R. et al. (2007) ‘Nitrosative stress in plants’, FEBS Letters. No longer published by Elsevier, 581(3), pp. 453–461. doi: 10.1016/j.febslet.2007.01.006.
Vandenbussche, F. et al. (2012) ‘Ethylene in vegetative development: A tale with a riddle’, New Phytologist. John Wiley & Sons, Ltd, pp. 895–909. doi: 10.1111/j.1469-8137.2012.04100.x.
Ventura, W. et al. (1981) ‘Involvement of nematodes in the soil sickness of a dryland rice-based cropping system’, Soil Science and Plant Nutrition. Taylor & Francis Group , 27(3), pp. 305–315. doi: 10.1080/00380768.1981.10431285.
Veronico, P. et al. (2018) ‘Changes in lignin biosynthesis and monomer composition in response to benzothiadiazole and root-knot nematode Meloidogyne incognita infection in tomato’, Journal of Plant Physiology. Elsevier GmbH, 230, pp. 40–50. doi: 10.1016/j.jplph.2018.07.013.
de Vleesschauwer, D. et al. (2010) ‘Abscisic acid-induced resistance against the brown spot pathogen Cochliobolus miyabeanus in rice involves MAP kinase-mediated repression of ethylene signaling’, Plant Physiology. American Society of Plant Biologists, 152(4), pp. 2036–2052. doi: 10.1104/pp.109.152702.
De Vleesschauwer, D., Gheysen, G. and Höfte, M. (2013) ‘Hormone defense networking in rice: Tales from a different world’, Trends in Plant Science. Elsevier Current Trends, pp. 555–565. doi: 10.1016/j.tplants.2013.07.002.
Vogel-Adghough, D. et al. (2013) ‘Pipecolic acid enhances resistance to bacterial infection and primes salicylic acid and nicotine accumulation in tobacco’, Plant Signaling & Behavior. Taylor & Francis, 8(11), p. e26366. doi: 10.4161/psb.26366.
Vos, C. M. et al. (2012) ‘Arbuscular mycorrhizal fungi induce systemic resistance in tomato against the sedentary nematode Meloidogyne incognita and the migratory nematode Pratylenchus penetrans’, Applied Soil Ecology. Elsevier, 61, pp. 1–6. doi: 10.1016/j.apsoil.2012.04.007.
Wada, S., Cui, S. and Yoshida, S. (2019) ‘Reactive Oxygen Species (ROS) Generation Is Indispensable for Haustorium Formation of the Root Parasitic Plant Striga hermonthica’, Frontiers in Plant Science. Frontiers Media S.A., 10, p. 328. doi: 10.3389/fpls.2019.00328.
De Waele, D. and Elsen, A. (2007) ‘Challenges in Tropical Plant Nematology’, Annual Review of Phytopathology. Annual Reviews, 45(1), pp. 457–485. doi: 10.1146/annurev.phyto.45.062806.094438.
Walters, D. R., Havis, N. D., Paterson, L., et al. (2011) ‘Cultivar effects on the expression of induced resistance in spring barley’, Plant Disease. The American Phytopathological Society , 95(5), pp. 595–600. doi: 10.1094/PDIS-08-10-0577.
Walters, D. R., Havis, N. D., Sablou, C., et al. (2011) ‘Possible trade-off associated with the use of a combination of resistance elicitors’, Physiological and Molecular Plant Pathology. Academic Press, 75(4), pp. 188–192. doi: 10.1016/j.pmpp.2011.02.001.
Walters, D. R. and Fountaine, J. M. (2009) ‘Practical application of induced resistance to plant diseases : an appraisal of effectiveness under field conditions’, Journal of Agricultural Science, 147, pp. 523–535. doi: 10.1017/S0021859609008806.
Walters, D. R. and Paterson, L. (2012) ‘Parents lend a helping hand to their offspring in plant defence’, Biology Letters. Royal Society, 8(5), pp. 871–873. doi: 10.1098/rsbl.2012.0416.
Wang, G. et al. (2019) ‘Systemic Root-Shoot Signaling Drives Jasmonate-Based Root Defense against Nematodes’, Current Biology. Cell Press, 29(20), pp. 3430-3438.e4. doi: 10.1016/j.cub.2019.08.049.
Wang, Y. et al. (2013) ‘Plant cell wall lignification and monolignol metabolism’, Frontiers in Plant Science. Frontiers Research Foundation, p. 220. doi: 10.3389/fpls.2013.00220.
Wang, Y. et al. (2014) ‘Transcriptome analysis of early responsive genes in rice during Magnaporthe oryzae infection’, Plant Pathology Journal. Korean Society of Plant Pathology, 30(4), pp. 343–354. doi: 10.5423/PPJ.OA.06.2014.0055.
Wasternack, C. and Feussner, I. (2018) ‘The Oxylipin Pathways: Biochemistry and Function’, Annual Review of Plant Biology. Annual Reviews Inc., pp. 363–386. doi: 10.1146/annurev-arplant-042817-040440.
Weijers, D. and Wagner, D. (2016) ‘Transcriptional Responses to the Auxin Hormone’, Annual Review of Plant Biology. Annual Reviews Inc., 67(1), pp. 539–574. doi: 10.1146/annurev-arplant-043015-112122.
Wen (2011) Rice Paddy Fields @ Ubud, Bali. Available at: https://wensdelight.blogspot.com/2012/08/rice-paddy-fields-ubud-bali.ht… (Accessed: 23 March 2021).
Wesemael, W., Viaene, N. and Moens, M. (2011) ‘Root-knot nematodes (Meloidogyne spp.) in Europe’, Nematology, 13(1), pp. 3–16.
Wilkinson, S. W. et al. (2019) ‘Surviving in a Hostile World: Plant Strategies to Resist Pests and Diseases’, Annual Review of Phytopathology. Annual Reviews Inc., pp. 505–529. doi: 10.1146/annurev-phyto-082718-095959.
Win, P. P. et al. (2013) ‘Population dynamics of Meloidogyne graminicola and Hirschmanniella oryzae in a double rice-cropping sequence in the lowlands of Myanmar’, Nematology. Brill, 15(7), pp. 795–807. doi: 10.1163/15685411-00002719.
Windram, O. et al. (2012) ‘Arabidopsis defense against Botrytis cinerea: Chronology and regulation deciphered by high-resolution temporal transcriptomic analysis’, Plant Cell. Oxford Academic, 24(9), pp. 3530–3557. doi: 10.1105/tpc.112.102046.
Wolucka, B. A., Goossens, A. and Inzé, D. (2005) ‘Methyl jasmonate stimulates the de novo biosynthesis of vitamin C in plant cell suspensions’, Journal of Experimental Botany. Oxford Academic, 56(419), pp. 2527–2538. doi: 10.1093/jxb/eri246.
Wong, H. L. et al. (2007) ‘Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension’, Plant Cell. American Society of Plant Biologists, 19(12), pp. 4022–4034. doi: 10.1105/tpc.107.055624.
Wuyts, N. (2006) ‘Nematode infection and reproduction in transgenic and mutant Arabidopsis and tobacco with an altered phenylpropanoid metabolism’, Journal of Experimental Botany. Oxford Academic, 57(11), pp. 2825–2835. doi: 10.1093/jxb/erl044.
Yang, D. L., Yang, Y. and He, Z. (2013) ‘Roles of plant hormones and their interplay in rice immunity’, Molecular Plant. Oxford University Press, pp. 675–685. doi: 10.1093/mp/sst056.
Yassin, M. et al. (2021) ‘The rise, fall and resurrection of chemical‐induced resistance agents’, Pest Management Science. John Wiley and Sons Ltd, p. ps.6370. doi: 10.1002/ps.6370.
Yen, G. C., Duh, P. Der and Tsai, H. L. (2002) ‘Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid’, Food Chemistry. Elsevier, 79(3), pp. 307–313. doi: 10.1016/S0308-8146(02)00145-0.
Yoda, H., Hiroi, Y. and Sano, H. (2006) ‘Polyamine oxidase is one of the key elements for oxidative burst to induce programmed cell death in tobacco cultured cells’, Plant Physiology. American Society of Plant Biologists, 142(1), pp. 193–206. doi: 10.1104/pp.106.080515.
Yoo, S. H. et al. (2014) ‘Estimating water footprint of paddy rice in Korea’, Paddy and Water Environment. Springer Verlag, 12(1), pp. 43–54. doi: 10.1007/s10333-013-0358-2.
Yoon, M. Y., Cha, B. and Kim, J. C. (2013) ‘Recent trends in studies on botanical fungicides in agriculture’, Plant Pathology Journal. The Korean Society of Plant Pathology, 29(1), pp. 1–9. doi: 10.5423/PPJ.RW.05.2012.0072.
Yoshioka, K. et al. (2008) ‘Probenazole induces systemic acquired resistance in Arabidopsis with a novel type of action’, The Plant Journal. Wiley, 25(2), pp. 149–157. doi: 10.1111/j.1365-313X.2001.00952.x.
Yu, A. et al. (2013) ‘Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense’, Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 110(6), pp. 2389–2394. doi: 10.1073/pnas.1211757110.
Yu, X. et al. (2013) ‘Plastid-localized glutathione reductase2-regulated glutathione redox status is essential for Arabidopsis root apical meristem maintenance’, Plant Cell. American Society of Plant Biologists, 25(11), pp. 4451–4468. doi: 10.1105/tpc.113.117028.
Yu, Y. et al. (2019) ‘Ascorbic acid integrates the antagonistic modulation of ethylene and abscisic acid in the accumulation of reactive oxygen species’, Plant Physiology. American Society of Plant Biologists, 179(4), pp. 1861–1875. doi: 10.1104/pp.18.01250.
Yuan, R. Q. et al. (2019) ‘Cucurbitacins extracted from Cucumis melo L. (CuEC) exert a hypotensive effect via regulating vascular tone’, Hypertension Research. Nature Publishing Group, 42(8), pp. 1152–1161. doi: 10.1038/s41440-019-0258-y.
Zacheo, G. et al. (1995) ‘The association between heat-induced susceptibility of tomato to Meloidogyne incognita and peroxidase activity’, Physiological and Molecular Plant Pathology. Academic Press, 46(6), pp. 491–507. doi: 10.1006/pmpp.1995.1037.
Zaffagnini, M. et al. (2007) ‘The thioredoxin-independent isoform of chloroplastic glyceraldehyde-3-phosphate dehydrogenase is selectively regulated by glutathionylation’, FEBS Journal. John Wiley & Sons, Ltd, 274(1), pp. 212–226. doi: 10.1111/j.1742-4658.2006.05577.x.
Zaker, M. (2016) ‘Natural Plant Products as Eco-friendly Fungicides for Plant Diseases Control- A Review’, The Agriculturists. Bangladesh Journals Online (JOL), 14(1), pp. 134–141. doi: 10.3329/agric.v14i1.29111.
Zandalinas, S. I. et al. (2019) ‘Identification and characterization of a core set of ROS wave‐associated transcripts involved in the systemic acquired acclimation response of Arabidopsis to excess light’, The Plant Journal. Blackwell Publishing Ltd, 98(1), pp. 126–141. doi: 10.1111/tpj.14205.
Zandalinas, S. I. and Mittler, R. (2018) ‘ROS-induced ROS release in plant and animal cells’, Free Radical Biology and Medicine. Elsevier Inc., pp. 21–27. doi: 10.1016/j.freeradbiomed.2017.11.028.
Zehra, A. et al. (2017) ‘Activation of defense response in tomato against Fusarium wilt disease triggered by Trichoderma harzianum supplemented with exogenous chemical inducers (SA and MeJA)’, Revista Brasileira de Botanica. Springer International Publishing, 40(3), pp. 651–664. doi: 10.1007/s40415-017-0382-3.
Zhang, H. et al. (2019) ‘Suppression of auxin signalling promotes rice susceptibility to Rice black streaked dwarf virus infection’, Molecular Plant Pathology. Blackwell Publishing Ltd, 20(8), pp. 1093–1104. doi: 10.1111/mpp.12814.
Zhang, K. et al. (2021) ‘Genome-Wide Characterization of HSP90 Gene Family in Cucumber and Their Potential Roles in Response to Abiotic and Biotic Stresses’, Frontiers in Genetics. Frontiers Media S.A., 12, p. 584886. doi: 10.3389/fgene.2021.584886.
Zhang, L., Du, L. and Poovaiah, B. W. (2014) ‘Calcium signaling and biotic defense responses in plants’, Plant Signaling and Behavior. Landes Bioscience, 9(11). doi: 10.4161/15592324.2014.973818.
Zhang, M. et al. (2018) ‘The MAP4 Kinase SIK1 Ensures Robust Extracellular ROS Burst and Antibacterial Immunity in Plants’, Cell Host and Microbe. Cell Press, 24(3), pp. 379-391.e5. doi: 10.1016/j.chom.2018.08.007.
Zhang, X. et al. (2006) ‘Genome-wide High-Resolution Mapping and Functional Analysis of DNA Methylation in Arabidopsis’, Cell. Cell Press, 126(6), pp. 1189–1201. doi: 10.1016/j.cell.2006.08.003.
Zheng, Q. L., Nakatsuka, A. and Itamura, H. (2006) ‘Involvement of negative feedback regulation in wound-induced ethylene synthesis in “Saijo” persimmon’, Journal of Agricultural and Food Chemistry. American Chemical Society , 54(16), pp. 5875–5879. doi: 10.1021/jf060048h.
Zhou, F. et al. (1998) ‘Molecular characterization of the oxalate oxidase involved in the response of barley to the powdery mildew fungus’, Plant Physiology. American Society of Plant Biologists, 117(1), pp. 33–41. doi: 10.1104/pp.117.1.33.
Zhou, G. et al. (2011) ‘Genome-wide transcriptional changes and defence-related chemical profiling of rice in response to infestation by the rice striped stem borer Chilo suppressalis’, Physiologia Plantarum. John Wiley & Sons, Ltd, 143(1), pp. 21–40. doi: 10.1111/j.1399-3054.2011.01483.x.
Zhou, J. et al. (2018) ‘Heat shock factor HsfA1a is essential for R gene-mediated nematode resistance and triggers H2O2 production’, Plant Physiology. American Society of Plant Biologists, 176(3), pp. 2456–2471. doi: 10.1104/pp.17.01281.
Zhu, L. et al. (2021) ‘Pseudomonas fluorescens DN16 Enhances Cucumber Defense Responses Against the Necrotrophic Pathogen Botrytis cinerea by Regulating Thermospermine Catabolism’, Frontiers in Plant Science. Frontiers Media S.A., 12, p. 645338. doi: 10.3389/fpls.2021.645338.