Investigating the interaction between the malaria circumsporozoite protein and host importin-α proteins

  • Chaymae

Malaria is one of the ‘Big Four’ deadliest human-infectious disease and is transmitted by the female

Anopheles mosquito. This disease is caused by parasites from the Plasmodium genus. The lifecycle starts

with the presence of sporozoites (SPZs) in the bloodstream of the human host as a result of a bite from

an infected mosquito. These SPZs can then reach and enter the liver cells through the interaction

between one of their major surface proteins, the circumsporozoite protein (CSP), and the highly sulfated

heparan sulfate proteoglycans on the liver cells. It is speculated that, once inside the liver cell, CSP can

enter the cytoplasm and possibly prevent the transport of some transcription factors to the nucleus of the

liver cell. This may result in the dampening of the inflammatory responses and thus promote the survival

of the parasite. Once the parasite reaches the blood phase, symptoms such as the characteristic fever

attacks can occur. It is important that malaria is treated properly and on time to prevent further

complications. Chloroquine- and artemisin-based therapies can be used as treatment. However, the

increasing resistance against these treatments is a motive to find new ways to combat or treat malaria.

The aim of this thesis was to investigate whether there is an interaction between the importin-α proteins

and the CSP of both P. falciparum and P. berghei. To achieve this, PfaCSPFL and PbeCSPFL were

recombinantly produced using E. coli cells and purified using chromatographic techniques. To obtain

both human and murine importin-α proteins, respectively HepG2 and Hepa1-6 cells were cultivated.

Finally, pull-down assays were performed to investigate whether there is a possible interaction between

CSP and importin-α proteins.


1. Chen D-S, Locarnini S, Wallace J. From the big three to the big four. The Lancet Infectious

Diseases. 2015;15(6):626-7.

2. Treating malaria: World Health Organization; 2020 [cited 2020 6 dec.]. Available from:

3. Global Health DoPDaM. Malaria: Disease: Centers for Disease Control and Prevention;

[updated January 4, 2019. Available from:

4. Ploemen IHJ. Development and Demise of

Plasmodium Liver Stage Parasites: Radboud Universiteit Nijmegen; 2013.

5. Singh AP, Buscaglia CA, Wang Q, Levay A, Nussenzweig DR, Walker JR, et al. Plasmodium

Circumsporozoite Protein Promotes the Development of the Liver Stages of the Parasite. Cell.


6. Duffy PE, Patrick Gorres J. Malaria vaccines since 2000: progress, priorities, products. npj

Vaccines. 2020;5(1):48.

7. Piperaki ET, Daikos GL. Malaria in Europe: emerging threat or minor nuisance? Clinical

microbiology and infection : the official publication of the European Society of Clinical Microbiology

and Infectious Diseases. 2016;22(6):487-93.

8. Roy LD. Meisje sterft aan malaria in Italië vrt nws: vrt nws; 2017 [Available from:….

9. Schepens W. Onderzoek bevestigt: koppel uit Kampenhout stierf aan malaria na steek van

meegereisde mug vrt nws: Belga; 2020 [Available from:…-




10. Beck T. Will malaria soon be a thing of the past? the potential of recombinant protein vaccines

to control one of the world's most deadly diseases. 2016 june 26. In: Dean L, McEntyre J, editors Coffee

Break: Tutorials for NCBI Tools [Internet].

: Bethesda (MD): National Center for Biotechnology Information (US); 1999-; [Figure 1, [The malaria

parasite life cycle...]]. Available from:

11. Miller LH, Ackerman HC, Su XZ, Wellems TE. Malaria biology and disease pathogenesis:

insights for new treatments. Nature medicine. 2013;19(2):156-67.

12. Cowman AF, Healer J, Marapana D, Marsh K. Malaria: Biology and Disease. Cell.


13. the editors of Salem P. Magill's medical guide : health and illness: Pasadena, Calif. : Salem

Press, c1995-c1996.; 1995.

14. Gazzinelli RT, Kalantari P, Fitzgerald KA, Golenbock DT. Innate sensing of malaria parasites.

Nature reviews Immunology. 2014;14(11):744-57.

15. Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria

control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526(7572):207-11.

16. Pryce J, Richardson M, Lengeler C. Insecticide-treated nets for preventing malaria. The

Cochrane database of systematic reviews. 2018;11(11):Cd000363.

17. Protopopoff N, Wright A, West PA, Tigererwa R, Mosha FW, Kisinza W, et al. Combination

of Insecticide Treated Nets and Indoor Residual Spraying in Northern Tanzania Provides Additional

Reduction in Vector Population Density and Malaria Transmission Rates Compared to Insecticide

Treated Nets Alone: A Randomised Control Trial. PloS one. 2015;10(11):e0142671.


18. Paton DG, Childs LM, Itoe MA, Holmdahl IE, Buckee CO, Catteruccia F. Exposing Anopheles

mosquitoes to antimalarials blocks Plasmodium parasite transmission. Nature. 2019;567(7747):239-43.

19. Paton DG, Probst AS, Ma E, Adams KL, Shaw WR, Singh N, et al. Antimalarials in mosquitoes

overcome Anopheles and Plasmodium resistance to malaria control strategies. bioRxiv.


20. Loomans L, Conesa Botella A, D'Hondt A, Verschueren J, Van den Bossche D, Van Esbroeck

M, et al. Accuracy of malaria diagnosis by clinical laboratories in Belgium. Malar J. 2019;18(1):104-.

21. White NJ, Pukrittayakamee S, Hien TT, Faiz MA, Mokuolu OA, Dondorp AM. Malaria. The

Lancet. 2014;383(9918):723-35.

22. van der Pluijm RW, Amaratunga C, Dhorda M, Dondorp AM. Triple Artemisinin-Based

Combination Therapies for Malaria – A New Paradigm? Trends in Parasitology. 2021;37(1):15-24.

23. Uwimana A, Umulisa N, Venkatesan M, Svigel SS, Zhou Z, Munyaneza T, et al. Association

of Plasmodium falciparum kelch13 R561H genotypes with delayed parasite clearance in Rwanda: an

open-label, single-arm, multicentre, therapeutic efficacy study. The Lancet Infectious diseases. 2021.

24. Coelho C, Doritchamou J, Zaidi I, Duffy P. Advances in Malaria Vaccine Development: Report

from the 2017 Malaria Vaccine Symposium. npj Vaccines. 2017;2.

25. Draper S, Sack B, King C, Nielsen C, Rayner J, Higgins M, et al. Malaria Vaccines: Recent

Advances and New Horizons. Cell Host and Microbe. 2018;24:43-56.

26. Zenklusen I, Jongo S, Abdulla S, Ramadhani K, Lee Sim BK, Cardamone H, et al. Immunization

of Malaria-Preexposed Volunteers With PfSPZ Vaccine Elicits Long-Lived IgM Invasion-Inhibitory

and Complement-Fixing Antibodies. The Journal of infectious diseases. 2018;217(10):1569-78.

27. Ishizuka AS, Lyke KE, DeZure A, Berry AA, Richie TL, Mendoza FH, et al. Protection against

malaria at 1 year and immune correlates following PfSPZ vaccination. Nature medicine.


28. Mordmüller B, Surat G, Lagler H, Chakravarty S, Ishizuka AS, Lalremruata A, et al. Sterile

protection against human malaria by chemoattenuated PfSPZ vaccine. Nature. 2017;542(7642):445-9.

29. Sinnis P, Coppi A. A long and winding road: the Plasmodium sporozoite's journey in the

mammalian host. Parasitology international. 2007;56(3):171-8.

30. De Niz M, Burda PC, Kaiser G, Del Portillo HA, Spielmann T, Frischknecht F, et al. Progress

in imaging methods: insights gained into Plasmodium biology. Nature reviews Microbiology.


31. Dundas K, Shears MJ, Sun Y, Hopp CS, Crosnier C, Metcalf T, et al. Alpha-v–containing

integrins are host receptors for the Plasmodium falciparum sporozoite surface protein, TRAP.

Proceedings of the National Academy of Sciences. 2018;115(17):4477.

32. Kori LD, Valecha N, Anvikar AR. Insights into the early liver stage biology of Plasmodium.

Journal of vector borne diseases. 2018;55(1):9-13.

33. Ménard R, Tavares J, Cockburn I, Markus M, Zavala F, Amino R. Looking under the skin: the

first steps in malarial infection and immunity. Nature reviews Microbiology. 2013;11(10):701-12.

34. Prudêncio M, Rodriguez A, Mota MM. The silent path to thousands of merozoites: the

Plasmodium liver stage. Nature reviews Microbiology. 2006;4(11):849-56.

35. Coppi A, Natarajan R, Pradel G, Bennett BL, James ER, Roggero MA, et al. The malaria

circumsporozoite protein has two functional domains, each with distinct roles as sporozoites journey

from mosquito to mammalian host. The Journal of experimental medicine. 2011;208(2):341-56.

36. Bowman NM, Congdon S, Mvalo T, Patel JC, Escamilla V, Emch M, et al. Comparative

population structure of Plasmodium falciparum circumsporozoite protein NANP repeat lengths in

Lilongwe, Malawi. Scientific reports. 2013;3:1990.

37. Ghasparian A, Moehle K, Linden A, Robinson JA. Crystal structure of an NPNA-repeat motif

from the circumsporozoite protein of the malaria parasite Plasmodium falciparum. Chemical

Communications. 2006(2):174-6.

38. Plassmeyer ML, Reiter K, Shimp RL, Jr., Kotova S, Smith PD, Hurt DE, et al. Structure of the

Plasmodium falciparum circumsporozoite protein, a leading malaria vaccine candidate. J Biol Chem.


39. Doud MB, Koksal AC, Mi LZ, Song G, Lu C, Springer TA. Unexpected fold in the

circumsporozoite protein target of malaria vaccines. Proceedings of the National Academy of Sciences

of the United States of America. 2012;109(20):7817-22.


40. Guy AJ, Irani V, MacRaild CA, Anders RF, Norton RS, Beeson JG, et al. Insights into the

Immunological Properties of Intrinsically Disordered Malaria Proteins Using Proteome Scale

Predictions. PloS one. 2015;10(10):e0141729.

41. Chaudhury S, MacGill RS, Early AM, Bolton JS, King CR, Locke E, et al. Breadth of humoral

immune responses to the C-terminus of the circumsporozoite protein is associated with protective

efficacy induced by the RTS,S malaria vaccine. 2020:2020.11.15.20232033.

42. Ainavarapu SRK, Patra A, Sharma S. Force Spectroscopy of the Plasmodium falciparum

Vaccine Candidate Circumsporozoite Protein Suggests a Mechanically Pliable Repeat Region. Journal

of Biological Chemistry. 2016;292.

43. Espinosa DA, Gutierrez GM, Rojas-López M, Noe AR, Shi L, Tse S-W, et al. Proteolytic

Cleavage of the Plasmodium falciparum Circumsporozoite Protein Is a Target of Protective Antibodies.

The Journal of infectious diseases. 2015;212(7):1111-9.

44. Aly AS, Vaughan AM, Kappe SH. Malaria parasite development in the mosquito and infection

of the mammalian host. Annual review of microbiology. 2009;63:195-221.

45. Aliprandini E, Tavares J, Panatieri RH, Thiberge S, Yamamoto MM, Silvie O, et al. Cytotoxic

anti-circumsporozoite antibodies target malaria sporozoites in the host skin. Nature microbiology.


46. Julien J-P, Wardemann H. Antibodies against Plasmodium falciparum malaria at the molecular

level. Nature Reviews Immunology. 2019;19(12):761-75.

47. Coppi A, Tewari R, Bishop JR, Bennett BL, Lawrence R, Esko JD, et al. Heparan sulfate

proteoglycans provide a signal to Plasmodium sporozoites to stop migrating and productively invade

host cells. Cell host & microbe. 2007;2(5):316-27.

48. Pinzon-Ortiz C, Friedman J, Esko J, Sinnis P. The binding of the circumsporozoite protein to

cell surface heparan sulfate proteoglycans is required for plasmodium sporozoite attachment to target

cells. The Journal of biological chemistry. 2001;276(29):26784-91.

49. Wardemann H, Murugan R. From human antibody structure and function towards the design of

a novel Plasmodium falciparum circumsporozoite protein malaria vaccine. Current opinion in

immunology. 2018;53:119-23.

50. Hügel FU, Pradel G, Frevert U. Release of malaria circumsporozoite protein into the host cell

cytoplasm and interaction with ribosomes. Molecular and biochemical parasitology. 1996;81(2):151-


51. van de Sand C, Horstmann S, Schmidt A, Sturm A, Bolte S, Krueger A, et al. The liver stage of

Plasmodium berghei inhibits host cell apoptosis. Molecular microbiology. 2005;58(3):731-42.

52. Maier AG, Cooke BM, Cowman AF, Tilley L. Malaria parasite proteins that remodel the host

erythrocyte. Nature reviews Microbiology. 2009;7(5):341-54.

53. Marti M, Good RT, Rug M, Knuepfer E, Cowman AF. Targeting malaria virulence and

remodeling proteins to the host erythrocyte. Science (New York, NY). 2004;306(5703):1930-3.

54. Hiller NL, Bhattacharjee S, van Ooij C, Liolios K, Harrison T, Lopez-Estraño C, et al. A hosttargeting

signal in virulence proteins reveals a secretome in malarial infection. Science (New York, NY).


55. de Koning-Ward TF, Gilson PR, Boddey JA, Rug M, Smith BJ, Papenfuss AT, et al. A newly

discovered protein export machine in malaria parasites. Nature. 2009;459(7249):945-9.

56. Elsworth B, Matthews K, Nie CQ, Kalanon M, Charnaud SC, Sanders PR, et al. PTEX is an

essential nexus for protein export in malaria parasites. Nature. 2014;511(7511):587-91.

57. Beck JR, Muralidharan V, Oksman A, Goldberg DE. PTEX component HSP101 mediates

export of diverse malaria effectors into host erythrocytes. Nature. 2014;511(7511):592-5.

58. Deng XF, Zhou D, Liu QX, Zheng H, Ding Y, Xu WY, et al. Plasmodium circumsporozoite

protein suppresses the growth of A549 cells via inhibiting nuclear transcription factor κB. Oncology

letters. 2018;15(5):6585-91.

59. Oyen D, Torres JL, Wille-Reece U, Ockenhouse CF, Emerling D, Glanville J, et al. Structural

basis for antibody recognition of the NANP repeats in Plasmodium falciparum circumsporozoite

protein. Proceedings of the National Academy of Sciences of the United States of America.


60. Diesbach P, N'Kuli F, Delmée M, Courtoy PJ. Infection by Mycoplasma hyorhinis strongly

enhances uptake of antisense oligonucleotides: a reassessment of receptor-mediated endocytosis in the

HepG2 cell line. Nucleic acids research. 2003;31:886-92.

61. Tompa P. Intrinsically unstructured proteins. Trends in biochemical sciences. 2002;27(10):527-


62. Noe AR, Espinosa D, Li X, Coelho-Dos-Reis JGA, Funakoshi R, Giardina S, et al. A full-length

Plasmodium falciparum recombinant circumsporozoite protein expressed by Pseudomonas fluorescens

platform as a malaria vaccine candidate. PloS one. 2014;9(9):e107764-e.

63. Thermo Fisher Scientific. Overview of Protein–Protein Interaction AnalysisOverview of

Protein–Protein Interaction Analysis: Thermo Fisher Scientific; [cited 2021 05 june]. Available from:…



Download scriptie (13.8 MB)
Universiteit of Hogeschool
Universiteit Antwerpen
Thesis jaar
Yann Sterckx