Mijn ontbijt tegen mijn vaginale schimmelinfectie?

Mart
Sillen

Mijn ontbijt tegen mijn vaginale schimmelinfectie?

 

We eten het elke ochtend, een boterhammetje met kaas of een kommetje yoghurt met wat vers fruit. Maar naast het vullen van onze buik blijken de ingrediënten, meer specifiek de het gist in ons brood en de melkzuurbacteriën in onze yoghurt, aanwezig in dit standaard ontbijt, in staat te zijn vaginale schimmelinfecties te genezen.  

Zij, jij en ik hebben er last van



Vaginale schimmelinfecties hebben een perceptie niet veel voor te komen. Toch kampt 75% van de vrouwen met minstens één vaginale schimmelinfectie in haar leven. De helft van de initieel geïnfecteerde vrouwen krijgt een tweede infectie, terwijl 5 tot 10% van hen vier of meer vaginale schimmelinfecties per jaar heeft, wat dan de recidiverende variant wordt genoemd. Wereldwijd wordt deze recidiverende variant vastgesteld bij ongeveer 128 miljoen vrouwen per jaar en dat aantal zal naar schatting toenemen tot een astronomisch aantal van 150 miljoen in 2030. Vaginale schimmelinfecties worden voornamelijk veroorzaakt door de schimmel Candida. Candida is een schimmel die kan voorkomen in het vaginale microbioom in lage aantallen en daardoor geen infectie veroorzaakt. Maar, wanneer Candida de kans krijgt om te groeien tot grote aantallen, veroorzaakt het vervelende symptomen zoals jeuk, pijn, ongemak tijdens de geslachtsgemeenschap, abnormale vaginale afscheiding, roodheid en zwelling van de vaginawand. Additioneel belemmert het taboe random intieme gezondheid vrouwen om openlijk te durven praten over hun vaginale schimmelinfectie omdat ze zich vaak onhygiënisch voelen, en leidt dit tot mentale problemen. Het is echter belangrijk om op te merken dat een vaginale schimmelinfectie in het grootste aantal van patiënten niet te wijten is aan slechte vaginale hygiëne maar voornamelijk te wijten is aan het gebruik van antibiotica, seksuele activiteit, inname van contraceptiva of genetische predispositie.

Het gezonde vaginale microbioom, de risico factoren voor het ontwikkelen van een vaginale schimmelinfectie en de bijhorende symptomen.

 

De genderkloof in gezondheidszorg anno 2021

Maar dan rijst de vraag: Hoe is het mogelijk dat vaginale schimmelinfecties zo frequent blijven voorkomen en waarom is de ernst van deze infectie niet algemener geweten? Wel, dit is te wijten aan verschillende factoren. Net zoals genderdiscriminatie vrouwen treft in hun werkomgeving, salaris en relaties, heeft het ook ernstige gevolgen voor de vrouwelijke gezondheidszorg. Vele vrouwspecifieke ziekten worden onvoldoende onderzocht; oorzaken zijn vaak onbekend en correcte behandelingen ontbreken. Wereldwijd wordt minder dan 2,5% van het door de overheid gefinancierde onderzoek gewijd aan de reproductieve gezondheid van vrouwen. Dit, samen met de taboe rondom intieme gezondheid zorgt dat vele vrouwen niet geholpen worden en hun ongemak niet durven uiten.

 

Zijn probiotica de toekomst voor de  vaginale gezondheid?

Momenteel zijn er enkele behandelingen te vinden tegen vaginale schimmelinfecties maar helaas missen ze volledige effectiviteit, wat maakt dat vele vrouwen onbeholpen achterblijven. Daarom is de behoefte aan alternatieve, effectievere behandelingen noodzakelijk geworden. De populairste alternatieve therapie is het gebruik van probiotica. Probiotica zijn levende micro-organismen die, wanneer ze in voldoende hoeveelheden worden toegediend, een gezondheidsvoordeel opleveren voor de consument. Probiotica zijn wel gekend en sociaal geaccepteerd  met betrekking tot het darm- en huid microbioom. Zo zijn ze reeds geïmplementeerd in het dagelijkse dieet van velen onder ons onder de vorm van supplementen, yoghurt, kefir, crèmes etc. Vergelijkbaar met microbioom van de darmen, dat een belangrijke rol speelt in de gezondheid van de mens, speelt het vaginale microbioom een belangrijke rol in de vaginale gezondheid. Zo toonde voorgaand onderzoek al aan dat probiotica om vaginale infecties te behandelen of te voorkomen, effectief kunnen zijn terwijl ze het o zo belangrijke vaginale microbioom in tact houden.

 

Het gist uit je brood kan je helpen

Deze thesis, die deel uitmaakt van het ScerViCs-project van de KU Leuven, onderzocht de probiotische eigenschappen van een op bakkersgist (Saccharomyces cerevisiae), gekend voor het gebruik in brood en gebak, gebaseerde behandeling van vaginale schimmelinfecties veroorzaakt door de schimmel Candida. Tijdens dit onderzoek werden 70 verschillende bakkergisten geëvalueerd voor hun Candida inhiberende eigenschappen. Meer specifiek werd er gefocust op één van deze probiotsiche eigenschappen, namelijk de inhibitie van Candida groei door bakkersgist door de secretie van metabolieten. De resultaten toonden aan dat verschillende stammen van bakkersgisten de groei van Candida te remmen door de afscheiding van azijnzuur. Rekening houdend met alle probiotische eigenschappen van de verschillende bakkersgist stammen die werden geëvalueerd, konden er verscheidene stammen geselecteerd worden die verschillende probiotische eigenschappen vertoonden tegen (R)VVC. Uiteraard is het wat kort door de bocht om te zeggen dat je bakkersgist kan aanbrengen wanneer je een vaginale schimmelinfectie hebt aangezien de stammen die getest werden niet exact deze bakkersgisten zijn die gebruikt worden in je brood.

 

De melkzuurbacteriën uit jouw yoghurt kunnen je ook helpen

De meeste van de probiotica tegen vaginale schimmelinfecties die momenteel beschikbaar zijn, zijn gebaseerd op lactobacillen, een groep van melkzuurbacteriën, aanwezig in de meeste yoghurts. Dit is logisch aangezien het Isala project van de UAntwerpen eerder dit jaar aantoonde dat de aanwezigheid van lactobacillen correleert met een gezond vaginaal microbioom in 80% van de Vlaamse vrouwen. Helaas is ook deze therapie niet in staat om alle vrouwen te helpen. Het tweede deel van deze thesis richtte zich dan ook op het onderzoek van een behandeling van vaginale schimmelinfecties gebaseerd op lactobacillen in combinatie met bakkersgist. Gelijkend op het eerste deel werden er verscheidene probiotische eigenschappen van de combinatietherapie (89 combinaties bestaande uit verschillende bakkergist en lactobacillen soorten) geëvalueerd. De resultaten tonen aan dat de combinatietherapie van bakkergist en lactobacilli in staat is om de effectiviteit van de lactobacilli therapie te verbeteren.

 

Deze veelbelovende resultaten indiceren dat een probiotische behandeling op basis van zowel bakkersgist als lactobacillen tegen vaginale schimmelinfecties de voorkeur krijgt boven probiotica die op maar één soort gebaseerd zijn. Bovendien hebben de resultaten van deze thesis hebben een hoge applicatie voor menselijk gebruik en de validatie in vaginale modelsystemen en ontwikkeling van een probiotische therapie in samenwerking met een Vlaams probiotica bedrijf zijn dan ook realistische en logische volgende stappen. Op deze manier hopen wij niet alleen het groot aantal vrouwen die lijden aan vaginale schimmelinfecties te helpen, maar ook om de genderkloof in gezondheidszorg te verminderen.  

Bibliografie

 

1.         Council, M.R., UK Health Research Analysis 2014. 2015, UK Clinical Research Collaboration 2015.

2.         Amon, P. and I. Sanderson, What is the microbiome? Arch Dis Child Educ Pract Ed, 2017. 102(5): p. 257-260.

3.         Berg, G., et al., Microbiome definition re-visited: old concepts and new challenges. Microbiome, 2020. 8(1): p. 103.

4.         Köhler, J.R., et al., Fungi that Infect Humans. Microbiol Spectr, 2017. 5(3).

5.         Brown, G.D., D.W. Denning, and S.M. Levitz, Tackling human fungal infections. Science, 2012. 336(6082): p. 647.

6.         Hawksworth, D.L. and R. Lücking, Fungal Diversity Revisited: 2.2 to 3.8 Million Species, in The Fungal Kingdom. 2017, American Society of Microbiology.

7.         Bongomin, F., et al., Global and Multi-National Prevalence of Fungal Diseases-Estimate Precision. J Fungi (Basel), 2017. 3(4).

8.         Beck-Sagué, C.M., W.R. Jarvis, and N.N.I.S. System, Secular trends in the epidemiology of nosocomial fungal infections in the United States, 1980-1990. The Journal of infectious diseases, 1993: p. 1247-1251.

9.         Parfrey, L.W., W.A. Walters, and R. Knight, Microbial eukaryotes in the human microbiome: ecology, evolution, and future directions. Front Microbiol, 2011. 2: p. 153.

10.       Berman, J., Candida albicans. Current biology, 2012. 22(16): p. R620-R622.

11.       Alby, K. and R.J. Bennett, Sexual reproduction in the Candida clade: cryptic cycles, diverse mechanisms, and alternative functions. Cellular and molecular life sciences : CMLS, 2010. 67(19): p. 3275-3285.

12.       Medrano, D.J.A., et al., Candidemia in a Brazilian hospital: the importance of Candida parapsilosis. Revista do instituto de medicina tropical de são paulo, 2006. 48(1): p. 17-20.

13.       Gonçalves, B., et al., Vulvovaginal candidiasis: Epidemiology, microbiology and risk factors. Critical Reviews in Microbiology, 2016. 42(6): p. 905-927.

14.       Ascioglu, S., et al., Defining opportunistic invasive fungal infections in immunocompromised patients with cancer and hematopoietic stem cell transplants: an international consensus. Clin Infect Dis, 2002. 34(1): p. 7-14.

15.       Leroy, O., et al., Epidemiology, management, and risk factors for death of invasive Candida infections in critical care: a multicenter, prospective, observational study in France (2005–2006). Critical care medicine, 2009. 37(5): p. 1612-1618.

16.       Pittet, D., et al., Candida colonization and subsequent infections in critically ill surgical patients. Annals of surgery, 1994. 220(6): p. 751-758.

17.       Douglas, L.J., Candida biofilms and their role in infection. Trends in microbiology, 2003. 11(1): p. 30-36.

18.       Mandal, B., AIDS and fungal infections. J Infect, 1989. 19(3): p. 199-205.

19.       Vazquez, J.A. and J.D. Sobel, Candidiasis, in Essentials of Clinical Mycology, C.A. Kauffman, et al., Editors. 2011, Springer New York: New York, NY. p. 167-206.

20.       Rhodes, J. and M.C. Fisher, Global epidemiology of emerging Candida auris. Current opinion in microbiology, 2019. 52: p. 84-89.

21.       Marangoni, A., et al., In vitro activity of Spirulina platensis water extract against different Candida species isolated from vulvo-vaginal candidiasis cases. PLoS One, 2017. 12(11): p. e0188567.

22.       Sobel, J.D., Vulvovaginal candidosis. Lancet, 2007. 369(9577): p. 1961-71.

23.       Denning, D., et al., Global burden of recurrent vulvovaginal candidiasis: a systematic review. The Lancet Infectious Diseases, 2018. 18.

24.       Perlroth, J., B. Choi, and B. Spellberg, Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med Mycol, 2007. 45(4): p. 321-46.

25.       Priest, S.J. and M.C. Lorenz, Characterization of Virulence-Related Phenotypes in Candida Species of the CUG Clade.Eukaryotic cell, 2015. 14(9): p. 931-940.

26.       Roetzer, A., T. Gabaldón, and C. Schüller, From Saccharomyces cerevisiae to Candida glabratain a few easy steps: important adaptations for an opportunistic pathogen. FEMS Microbiol Lett, 2011. 314(1): p. 1-9.

27.       Dujon, B., et al., Genome evolution in yeasts. Nature, 2004. 430(6995): p. 35-44.

28.       Kaur, R., et al., A yeast by any other name: Candida glabrata and its interaction with the host. Curr Opin Microbiol, 2005. 8(4): p. 378-84.

29.       Cole, G.T., A.A. Halawa, and E.J. Anaissie, The role of the gastrointestinal tract in hematogenous candidiasis: from the laboratory to the bedside. Clinical Infectious Diseases, 1996. 22(Supplement_2): p. S73-S88.

30.       Fidel, P.L., J.A. Vazquez, and J.D. Sobel, Candida glabrata: review of epidemiology, pathogenesis, and clinical disease with comparison toC. albicans. Clinical microbiology reviews, 1999. 12(1): p. 80-96.

31.       Farage, M. and H. Maibach, Lifetime changes in the vulva and vagina. Arch Gynecol Obstet, 2006. 273(4): p. 195-202.

32.       Sosinska, G.J., et al., Hypoxic conditions and iron restriction affect the cell-wall proteome of Candida albicans grown under vagina-simulative conditions. Microbiology, 2008. 154(2): p. 510-520.

33.       Owen, D.H. and D.F. Katz, A vaginal fluid simulant. Contraception, 1999. 59(2): p. 91-95.

34.       Ma, B., L.J. Forney, and J. Ravel, Vaginal microbiome: rethinking health and disease. Annu Rev Microbiol, 2012. 66: p. 371-89.

35.       Morrison, D.J. and T. Preston, Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism.Gut microbes, 2016. 7(3): p. 189-200.

36.       Paavonen, J., Physiology and ecology of the vagina. Scand J Infect Dis Suppl, 1983. 40: p. 31-5.

37.       Anderson, D.J., J. Marathe, and J. Pudney, The structure of the human vaginal stratum corneum and its role in immune defense.American journal of reproductive immunology, 2014. 71(6): p. 618-623.

38.       Levin, R.J., Sexual arousal—Its physiological roles in human reproduction. Annual Review of Sex Research, 2005. 16(1): p. 154-189.

39.       Mayer, F.L., D. Wilson, and B. Hube, Candida albicans pathogenicity mechanisms. Virulence, 2013. 4(2): p. 119-128.

40.       Verstrepen, K.J. and F.M. Klis, Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol, 2006. 60(1): p. 5-15.

41.       Cheng, G., et al., Comparison between Candida albicans agglutinin-like sequence gene expression patterns in human clinical specimens and models of vaginal candidiasis. Infection and immunity, 2005. 73(3): p. 1656-1663.

42.       Sundstrom, P., E. Balish, and C.M. Allen, Essential role of the Candida albicans transglutaminase substrate, hyphal wall protein 1, in lethal oroesophageal candidiasis in immunodeficient mice. J Infect Dis, 2002. 185(4): p. 521-30.

43.       Naglik, J.R., et al., Candida albicans HWP1 gene expression and host antibody responses in colonization and disease. Journal of medical microbiology, 2006. 55(Pt 10): p. 1323-1327.

44.       Persi, M.A., J.C. Burnham, and J.L. Duhring, Effects of carbon dioxide and pH on adhesion of Candida albicans to vaginal epithelial cells. Infect Immun, 1985. 50(1): p. 82-90.

45.       de Groot, P.W., et al., The cell wall of the human pathogen Candida glabrata: differential incorporation of novel adhesin-like wall proteins. Eukaryot Cell, 2008. 7(11): p. 1951-64.

46.       Rousseau, V., et al., Prebiotic effects of oligosaccharides on selected vaginal lactobacilli and pathogenic microorganisms.Anaerobe, 2005. 11(3): p. 145-53.

47.       Castaño, I., et al., Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida glabrata. Mol Microbiol, 2005. 55(4): p. 1246-58.

48.       Jayatilake, J.A., et al., Quantitative evaluation of tissue invasion by wild type, hyphal and SAP mutants of Candida albicans, and non-albicans Candida species in reconstituted human oral epithelium. J Oral Pathol Med, 2006. 35(8): p. 484-91.

49.       Berman, J. and P.E. Sudbery, Candida Albicans: a molecular revolution built on lessons from budding yeast. Nat Rev Genet, 2002. 3(12): p. 918-30.

50.       Brunke, S. and B. Hube, Two unlike cousins: C andida albicans and C. glabrata infection strategies. Cellular microbiology, 2013. 15(5): p. 701-708.

51.       Kumamoto, C.A. and M.D. Vinces, Alternative Candida albicans lifestyles: growth on surfaces. Annu Rev Microbiol, 2005. 59: p. 113-33.

52.       Konno, N., et al., Mechanism of Candida albicans transformation in response to changes of pH. Biological and Pharmaceutical Bulletin, 2006. 29(5): p. 923-926.

53.       Lu, Y., et al., Synergistic regulation of hyphal elongation by hypoxia, CO(2), and nutrient conditions controls the virulence of Candida albicans. Cell host & microbe, 2013. 14(5): p. 499-509.

54.       Sun, J.N., et al., Host cell invasion and virulence mediated by Candida albicans Ssa1. PLoS Pathog, 2010. 6(11): p. e1001181.

55.       Ying, G., et al., The role of ALS3 and SSA1 gene expression of Candida albicans in the immune mechanism of vaginal candidiasis. Chinese Journal of Mycology, 2019. 14(2): p. 65.

56.       Wächtler, B., et al., From attachment to damage: defined genes of Candida albicans mediate adhesion, invasion and damage during interaction with oral epithelial cells. PloS one, 2011. 6(2): p. e17046.

57.       Dalle, F., et al., Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cellular microbiology, 2010. 12(2): p. 248-271.

58.       Jacobsen, I.D., et al., Pathogenesis of Candida albicans infections in the alternative chorio-allantoic membrane chicken embryo model resembles systemic murine infections. PloS one, 2011. 6(5): p. e19741.

59.       Csank, C. and K. Haynes, Candida glabrata displays pseudohyphal growth. FEMS Microbiol Lett, 2000. 189(1): p. 115-20.

60.       Li, L., H. Kashleva, and A. Dongari-Bagtzoglou, Cytotoxic and cytokine-inducing properties of Candida glabrata in single and mixed oral infection models. Microb Pathog, 2007. 42(4): p. 138-47.

61.       Tati, S., et al., Candida glabrata Binding to Candida albicans Hyphae Enables Its Development in Oropharyngeal Candidiasis.PLOS Pathogens, 2016. 12(3): p. e1005522.

62.       Wächtler, B., et al., Candida albicans-epithelial interactions: dissecting the roles of active penetration, induced endocytosis and host factors on the infection process. PloS one, 2012. 7(5): p. e36952.

63.       Naglik, J.R., S.J. Challacombe, and B. Hube, Candida albicans secreted aspartyl proteinases in virulence and pathogenesis.Microbiol Mol Biol Rev, 2003. 67(3): p. 400-28, table of contents.

64.       Hube, B., et al., Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infect Immun, 1997. 65(9): p. 3529-38.

65.       Brown, A.J., F.C. Odds, and N.A. Gow, Infection-related gene expression in Candida albicans. Curr Opin Microbiol, 2007. 10(4): p. 307-13.

66.       Mavor, A.L., S. Thewes, and B. Hube, Systemic fungal infections caused by Candida species: epidemiology, infection process and virulence attributes. Curr Drug Targets, 2005. 6(8): p. 863-74.

67.       Marcos-Arias, C., et al., Phospholipase and proteinase activities of Candida isolates from denture wearers. Mycoses, 2011. 54(4): p. e10-6.

68.       Gácser, A., et al., Lipase 8 affects the pathogenesis of Candida albicans. Infection and immunity, 2007. 75(10): p. 4710-4718.

69.       Moyes, D.L., et al., Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature, 2016. 532(7597): p. 64-68.

70.       Sikora, M., et al., Differences in proteolytic activity and gene profiles of fungal strains isolated from the total parenteral nutrition patients. Folia Microbiol (Praha), 2011. 56(2): p. 143-8.

71.       Donlan, R.M. and J.W. Costerton, Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev, 2002. 15(2): p. 167-93.

72.       Baillie, G.S. and L.J. Douglas, Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J Antimicrob Chemother, 2000. 46(3): p. 397-403.

73.       Silva, S., et al., Biofilms of non-Candida albicans Candida species: quantification, structure and matrix composition. Med Mycol, 2009. 47(7): p. 681-9.

74.       Finkel, J.S. and A.P. Mitchell, Genetic control of Candida albicans biofilm development. Nat Rev Microbiol, 2011. 9(2): p. 109-18.

75.       Crump, J. and P. Collignon, Intravascular catheter-associated infections. European Journal of Clinical Microbiology and Infectious Diseases, 2000. 19(1): p. 1-8.

76.       Ramage, G., J.P. Martínez, and J.L. López-Ribot, Candida biofilms on implanted biomaterials: a clinically significant problem.FEMS yeast research, 2006. 6(7): p. 979-986.

77.       Dietrich, L.A. and T.S. Friedmann, Candida albicans: Symptoms, Causes and Treatment Options. 2013: Nova Science Publishers, Incorporated.

78.       Nobile, C.J. and A.D. Johnson, Candida albicans biofilms and human disease. Annual review of microbiology, 2015. 69: p. 71-92.

79.       Nobile, C.J., et al., A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell, 2012. 148(1-2): p. 126-138.

80.       Fox, E.P. and C.J. Nobile, A sticky situation: untangling the transcriptional network controlling biofilm development in Candida albicans. Transcription, 2012. 3(6): p. 315-322.

81.       Bonhomme, J. and C. d’Enfert, Candida albicans biofilms: building a heterogeneous, drug-tolerant environment. Current opinion in microbiology, 2013. 16(4): p. 398-403.

82.       Rodrigues, C.F., et al., Candida glabrata Biofilms: How Far Have We Come? J Fungi (Basel), 2017. 3(1).

83.       Silva, S., et al., Adherence and biofilm formation of non-Candida albicans Candida species. Trends Microbiol, 2011. 19(5): p. 241-7.

84.       Cormack, B.P., N. Ghori, and S. Falkow, An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science, 1999. 285(5427): p. 578-582.

85.       Gutierrez-Escribano, P., et al., The NDR/LATS kinase Cbk1 controls the activity of the transcriptional regulator Bcr1 during biofilm formation in Candida albicans. PLoS pathog, 2012. 8(5): p. e1002683.

86.       Davis, D.A., How human pathogenic fungi sense and adapt to pH: the link to virulence. Curr Opin Microbiol, 2009. 12(4): p. 365-70.

87.       Fonzi, W.A., PHR1 and PHR2 of Candida albicans encode putative glycosidases required for proper cross-linking of beta-1,3- and beta-1,6-glucans. J Bacteriol, 1999. 181(22): p. 7070-9.

88.       De Bernardis, F., et al., The pH of the host niche controls gene expression in and virulence of Candida albicans. Infection and immunity, 1998. 66(7): p. 3317-3325.

89.       Wu, J., et al., Transcription factors Asg1p and Hal9p regulate pH homeostasis in Candida glabrata. Frontiers in Microbiology, 2015. 6(843).

90.       Ernst, J.F., Transcription factors in Candida albicans - environmental control of morphogenesis. Microbiology (Reading), 2000. 146 ( Pt 8): p. 1763-1774.

91.       Roetzer, A., et al., Candida glabrata environmental stress response involves Saccharomyces cerevisiae Msn2/4 orthologous transcription factors. Molecular microbiology, 2008. 69(3): p. 603-620.

92.       Brock, M., Fungal metabolism in host niches. Current opinion in microbiology, 2009. 12(4): p. 371-376.

93.       Brown, A.J., et al., Stress responses in Candida. Candida and Candidiasis, 2011: p. 225-242.

94.       Fleck, C.B., F. Schöbel, and M. Brock, Nutrient acquisition by pathogenic fungi: nutrient availability, pathway regulation, and differences in substrate utilization. International Journal of Medical Microbiology, 2011. 301(5): p. 400-407.

95.       Lorenz, M.C., J.A. Bender, and G.R. Fink, Transcriptional response of Candida albicans upon internalization by macrophages.Eukaryotic cell, 2004. 3(5): p. 1076-1087.

96.       Hwang, C.-S., et al., Copper-and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence. Microbiology, 2002. 148(11): p. 3705-3713.

97.       Martchenko, M., et al., Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene. Molecular biology of the cell, 2004. 15(2): p. 456-467.

98.       Monge, R.A., et al., The MAP kinase signal transduction network in Candida albicans. Microbiology, 2006. 152(4): p. 905-912.

99.       Ehrlich, S.D. and M. Consortium, MetaHIT: The European Union Project on metagenomics of the human intestinal tract, in Metagenomics of the human body. 2011, Springer. p. 307-316.

100.      NIH HMP Working Group, P., J, The NIH human microbiome project. Genome Res, 2009. 19(12): p. 2317-2323.

101.      Falony, G., et al., Population-level analysis of gut microbiome variation. Science, 2016. 352(6285): p. 560-564.

102.      Cui, L., A. Morris, and E. Ghedin, The human mycobiome in health and disease. Genome Med, 2013. 5(7): p. 63.

103.      Cribby, S., M. Taylor, and G. Reid, Vaginal microbiota and the use of probiotics. Interdiscip Perspect Infect Dis, 2008. 2008: p. 256490.

104.      Oakley, B.B., et al., Diversity of human vaginal bacterial communities and associations with clinically defined bacterial vaginosis.Appl Environ Microbiol, 2008. 74(15): p. 4898-909.

105.      Chen, C., et al., The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases.Nature communications, 2017. 8(1): p. 1-11.

106.      Mitchell, C.M., et al., Colonization of the upper genital tract by vaginal bacterial species in nonpregnant women. American journal of obstetrics and gynecology, 2015. 212(5): p. 611. e1-611. e9.

107.      Redondo-Lopez, V., R.L. Cook, and J.D. Sobel, Emerging role of lactobacilli in the control and maintenance of the vaginal bacterial microflora. Rev Infect Dis, 1990. 12(5): p. 856-72.

108.      Drell, T., et al., Characterization of the Vaginal Micro- and Mycobiome in Asymptomatic Reproductive-Age Estonian Women.PLOS ONE, 2013. 8(1): p. e54379.

109.      Ravel, J., et al., Vaginal microbiome of reproductive-age women. Proceedings of the National Academy of Sciences, 2011. 108(Supplement 1): p. 4680-4687.

110.      Bradford, L.L. and J. Ravel, The vaginal mycobiome: A contemporary perspective on fungi in women's health and diseases.Virulence, 2017. 8(3): p. 342-351.

111.      Goldacre, M.J., et al., Prevalence of Yeast and fungi other than Candida albicans in the vagina of normal young women. Br J Obstet Gynaecol, 1981. 88(6): p. 596-600.

112.      Underhill, D.M. and I.D. Iliev, The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol, 2014. 14(6): p. 405-16.

113.      Linhares, I.M., et al., Contemporary perspectives on vaginal pH and lactobacilli. American journal of obstetrics and gynecology, 2011. 204(2): p. 120. e1-120. e5.

114.      O’Hanlon, D.E., T.R. Moench, and R.A. Cone, Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota.PloS one, 2013. 8(11): p. e80074.

115.      Frey-Klett, P., et al., Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev, 2011. 75(4): p. 583-609.

116.      De Sordi, L. and F.A. Mühlschlegel, Quorum sensing and fungal–bacterial interactions in Candida albicans: a communicative network regulating microbial coexistence and virulence. FEMS Yeast Research, 2009. 9(7): p. 990-999.

117.      Krüger, W., et al., Fungal-Bacterial Interactions in Health and Disease. Pathogens, 2019. 8(2).

118.      Schwebke, J.R., New concepts in the etiology of bacterial vaginosis. Current Infectious Disease Reports, 2009. 11(2): p. 143-147.

119.      Gold, J.M. and I. Shrimanker, Physiology, vaginal. StatPearls [Internet], 2020.

120.      DiGiulio, D.B., et al., Temporal and spatial variation of the human microbiota during pregnancy. Proceedings of the National Academy of Sciences, 2015. 112(35): p. 11060-11065.

121.      Cauci, S., et al., Prevalence of bacterial vaginosis and vaginal flora changes in peri-and postmenopausal women. Journal of clinical microbiology, 2002. 40(6): p. 2147-2152.

122.      Gupta, S., et al., Vaginal microflora in postmenopausal women on hormone replacement therapy. Indian journal of pathology & microbiology, 2006. 49(3): p. 457-461.

123.      Gajer, P., et al., Temporal dynamics of the human vaginal microbiota. Sci Transl Med, 2012. 4(132): p. 132ra52.

124.      Sjöberg, I., S. Cajander, and E. Rylander, Morphometric characteristics of the vaginal epithelium during the menstrual cycle.Gynecologic and obstetric investigation, 1988. 26(2): p. 136-144.

125.      Nunn, K.L. and L.J. Forney, Unraveling the Dynamics of the Human Vaginal Microbiome. Yale J Biol Med, 2016. 89(3): p. 331-337.

126.      Sebastian, F., G.R. Monif, and D.A. Baker, Infectious diseases in obstetrics and gynecology. 2008: CRC Press.

127.      Kim, T.K., et al., Heterogeneity of vaginal microbial communities within individuals. Journal of clinical microbiology, 2009. 47(4): p. 1181-1189.

128.      Amabebe, E. and D.O.C. Anumba, Female Gut and Genital Tract Microbiota-Induced Crosstalk and Differential Effects of Short-Chain Fatty Acids on Immune Sequelae. Frontiers in Immunology, 2020. 11(2184).

129.      Aldunate, M., et al., Antimicrobial and immune modulatory effects of lactic acid and short chain fatty acids produced by vaginal microbiota associated with eubiosis and bacterial vaginosis. Frontiers in Physiology, 2015. 6(164).

130.      Vitali, B., et al., Vaginal microbiome and metabolome highlight specific signatures of bacterial vaginosis. European Journal of Clinical Microbiology & Infectious Diseases, 2015. 34(12): p. 2367-2376.

131.      Papagianni, M., Metabolic engineering of lactic acid bacteria for the production of industrially important compounds.Computational and Structural Biotechnology Journal, 2012. 3(4): p. e201210003.

132.      Witkin, S.S., et al., Influence of vaginal bacteria and D- and L-lactic acid isomers on vaginal extracellular matrix metalloproteinase inducer: implications for protection against upper genital tract infections. mBio, 2013. 4(4).

133.      Franke, T. and U. Deppenmeier, Physiology and central carbon metabolism of the gut bacterium Prevotella copri. Molecular Microbiology, 2018. 109(4): p. 528-540.

134.      Luu, M., et al., The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nature Communications, 2019. 10(1): p. 760.

135.      Lambert, M. and A. Armfield, Differentiation of Peptococcus and Peptostreptococcus by gas-liquid chromatography of cellular fatty acids and metabolic products. Journal of clinical microbiology, 1979. 10(4): p. 464-476.

136.      Lanigan, G., Peptococcus heliotrinreducans, sp. nov., a cytochrome-producing anaerobe which metabolizes pyrrolizidine alkaloids. Microbiology, 1976. 94(1): p. 1-10.

137.      EZAKI, T., et al., Transfer of Peptococcus indolicus, Peptococcus asaccharolyticus, Peptococcus prevotii, and Peptococcus magnus to the Genus Peptostreptococcus and Proposal of Peptostreptococcus tetradius sp. nov. International Journal of Systematic and Evolutionary Microbiology, 1983. 33(4): p. 683-698.

138.      Al-Mushrif, S., A. Eley, and B.M. Jones, Inhibition of chemotaxis by organic acids from anaerobes may prevent a purulent response in bacterial vaginosis. Journal of Medical Microbiology, 2000. 49(11): p. 1023-1030.

139.      Usta-Gorgun, B. and L. Yilmaz-Ersan, Short-chain fatty acids production by Bifidobacterium species in the presence of salep.Electronic Journal of Biotechnology, 2020. 47: p. 29-35.

140.      Sela, D., N. Price, and D. Mills, Carbohydrate metabolism of the bifidobacteria. Bifidobacteria: Genomics and Molecular Aspects, 2010: p. 46-48.

141.      Tachedjian, G., et al., The role of lactic acid production by probiotic Lactobacillus species in vaginal health. Res Microbiol, 2017. 168(9-10): p. 782-792.

142.      Gross, M., Biochemical changes in the reproductive cycle. Fertil Steril, 1961. 12: p. 245-62.

143.      Weinstein, L., et al., A survey of the vaginal flora at various ages, with special reference to the Döderlein bacillus. American Journal of Obstetrics and Gynecology, 1936. 32(2): p. 211-218.

144.      Weinstein, L. and J.H. Howard, The effect of estrogenic hormone on the H-ion concentration and the bacterial content of the human vagina, with special reference to the Döderlein bacillus. American Journal of Obstetrics and Gynecology, 1939. 37(4): p. 698-703.

145.      Galask, R.P., Vaginal colonization by bacteria and yeast. Am J Obstet Gynecol, 1988. 158(4): p. 993-5.

146.      Mulu, W., et al., Common causes of vaginal infections and antibiotic susceptibility of aerobic bacterial isolates in women of reproductive age attending at Felegehiwot referral Hospital, Ethiopia: a cross sectional study. BMC women's health, 2015. 15(1): p. 1-9.

147.      Kalia, N., et al., Prevalence of vulvovaginal infections and species specific distribution of vulvovaginal candidiasis in married women of north india. Int J Curr Microbiol App Sci, 2015. 4(8): p. 253-266.

148.      Sobel, J.D., et al., Mixed vaginitis—more than coinfection and with therapeutic implications. Current infectious disease reports, 2013. 15(2): p. 104-108.

149.      Ferrer, J., Vaginal candidosis: epidemiological and etiological factors. Int J Gynaecol Obstet, 2000. 71 Suppl 1: p. S21-7.

150.      Anderson, M.R., K. Klink, and A. Cohrssen, Evaluation of vaginal complaints. Jama, 2004. 291(11): p. 1368-79.

151.      Fidel, P.L. and J.D. Sobel, Immunopathogenesis of recurrent vulvovaginal candidiasis. Clinical microbiology reviews, 1996. 9(3): p. 335-348.

152.      Amouri, I., et al., Epidemiological survey of vulvovaginal candidosis in Sfax, Tunisia. Mycoses, 2011. 54(5): p. e499-505.

153.      Sobel, J.D., et al., Vulvovaginal candidiasis: Epidemiologic, diagnostic, and therapeutic considerations. American Journal of Obstetrics and Gynecology, 1998. 178(2): p. 203-211.

154.      Achkar, J.M. and B.C. Fries, Candida infections of the genitourinary tract. Clinical microbiology reviews, 2010. 23(2): p. 253-273.

155.      Corsello, S., et al., An epidemiological survey of vulvovaginal candidiasis in Italy. Eur J Obstet Gynecol Reprod Biol, 2003. 110(1): p. 66-72.

156.      Schaaf, V.M., E.J. Perez-Stable, and K. Borchardt, The limited value of symptoms and signs in the diagnosis of vaginal infections. Archives of Internal Medicine, 1990. 150(9): p. 1929-1933.

157.      Bullarbo, M., et al., Self-diagnosis of vulvovaginal candidiasis is poor—a comparison of diagnostic methods introducing β-glucan as a complement. Reprod Syst Sex Disord, 2017. 6(202): p. 2.

158.      Kalia, N., J. Singh, and M. Kaur, Immunopathology of Recurrent Vulvovaginal Infections: New Aspects and Research Directions.Frontiers in Immunology, 2019. 10(2034).

159.      Gabrielli, E., et al., In vivo induction of neutrophil chemotaxis by secretory aspartyl proteinases of Candida albicans. Virulence, 2016. 7(7): p. 819-825.

160.      Moyes, D.L., et al., Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature, 2016. 532(7597): p. 64-68.

161.      Richardson, J.P., et al., Candidalysin drives epithelial signaling, neutrophil recruitment, and immunopathology at the vaginal mucosa. Infection and immunity, 2018. 86(2).

162.      Weindl, G., et al., Human epithelial cells establish direct antifungal defense through TLR4-mediated signaling. The Journal of clinical investigation, 2007. 117(12): p. 3664-3672.

163.      Kenno, S., et al., Autophagy and reactive oxygen species are involved in neutrophil extracellular traps release induced by C. albicans morphotypes. Frontiers in microbiology, 2016. 7: p. 879.

164.      Kenny, E.F., et al., Diverse stimuli engage different neutrophil extracellular trap pathways. Elife, 2017. 6: p. e24437.

165.      Urban, C.F., et al., Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cellular microbiology, 2006. 8(4): p. 668-676.

166.      van de Veerdonk, F.L., et al., The inflammasome drives protective Th1 and Th17 cellular responses in disseminated candidiasis.European journal of immunology, 2011. 41(8): p. 2260-2268.

167.      Nawrot, U., et al., The study of cell-mediated immune response in recurrent vulvovaginal candidiasis. FEMS Immunology & Medical Microbiology, 2000. 29(2): p. 89-94.

168.      Pietrella, D., et al., Th17 cells and IL-17 in protective immunity to vaginal candidiasis. PloS one, 2011. 6(7): p. e22770.

169.      Talaei, Z., et al., Recurrent vulvovaginal candidiasis: could it be related to cell-mediated immunity defect in response to Candida antigen? International journal of fertility & sterility, 2017. 11(3): p. 134.

170.      Seneviratne, C.J. and E.A. Rosa, Editorial: Antifungal Drug Discovery: New Theories and New Therapies. Front Microbiol, 2016. 7: p. 728.

171.      Mazu, T.K., et al., The Mechanistic Targets of Antifungal Agents: An Overview. Mini Rev Med Chem, 2016. 16(7): p. 555-78.

172.      Wong, S.S.W., L.P. Samaranayake, and C.J. Seneviratne, In pursuit of the ideal antifungal agent for Candida infections: high-throughput screening of small molecules. Drug Discov Today, 2014. 19(11): p. 1721-1730.

173.      Pappas, P.G., et al., Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis, 2016. 62(4): p. e1-50.

174.      Achkar, J.M. and B.C. Fries, Candida infections of the genitourinary tract. Clin Microbiol Rev, 2010. 23(2): p. 253-73.

175.      Phillips, A.J., Treatment of non-albicans Candida vaginitis with amphotericin B vaginal suppositories. Am J Obstet Gynecol, 2005. 192(6): p. 2009-12; discussion 2012-3.

176.      Sherrard, J., et al., European (IUSTI/WHO) guideline on the management of vaginal discharge, 2011. Int J STD AIDS, 2011. 22(8): p. 421-9.

177.      Donders, G.G.G. and P. Viera Baptista, The ReCiDiF method to treat recurrent vulvovaginal candidosis: A friend with benefits.Aust N Z J Obstet Gynaecol, 2018. 58(3): p. E5.

178.      Sobel, J.D., et al., Treatment of complicated Candida vaginitis: comparison of single and sequential doses of fluconazole. Am J Obstet Gynecol, 2001. 185(2): p. 363-9.

179.      Sobel, J.D., et al., Maintenance fluconazole therapy for recurrent vulvovaginal candidiasis. N Engl J Med, 2004. 351(9): p. 876-83.

180.      Sobel, J.D., Recurrent vulvovaginal candidiasis. American journal of obstetrics and gynecology, 2016. 214(1): p. 15-21.

181.      Fan, S., et al., Vaginal nystatin versus oral fluconazole for the treatment for recurrent vulvovaginal candidiasis. Mycopathologia, 2015. 179(1-2): p. 95-101.

182.      Scynexis. SCYNEXIS Announces FDA Approval of BREXAFEMME® (ibrexafungerp tablets) as the First and Only Oral Non-Azole Treatment for Vaginal Yeast Infections. 2021  [cited 2021 02-06-2021]; Available from: https://www.globenewswire.com/news-release/2021/06/02/2240294/0/en/SCYNEXIS-Announces-FDA-Approval-of-BREXAFEMME-ibrexafungerp-tablets-as-the-First-and-Only-Oral-Non-Azole-Treatment-for-Vaginal-Yeast-Infections.html.

183.      Campoy, S. and J.L. Adrio, Antifungals. Biochemical Pharmacology, 2017. 133: p. 86-96.

184.      Carolus, H., et al., Amphotericin B and Other Polyenes—Discovery, Clinical Use, Mode of Action and Drug Resistance. Journal of Fungi, 2020. 6(4): p. 321.

185.      Kamiński, D.M., Recent progress in the study of the interactions of amphotericin B with cholesterol and ergosterol in lipid environments. European biophysics journal, 2014. 43(10-11): p. 453-467.

186.      Gray, K.C., et al., Amphotericin primarily kills yeast by simply binding ergosterol. Proc Natl Acad Sci U S A, 2012. 109(7): p. 2234-9.

187.      Moen, M.D., K.A. Lyseng-Williamson, and L.J. Scott, Liposomal amphotericin B: a review of its use as empirical therapy in febrile neutropenia and in the treatment of invasive fungal infections. Drugs, 2009. 69(3): p. 361-92.

188.      Adler-Moore, J. and R.T. Proffitt, AmBisome: liposomal formulation, structure, mechanism of action and pre-clinical experience.J Antimicrob Chemother, 2002. 49 Suppl 1: p. 21-30.

189.      Lakhani, P., A. Patil, and S. Majumdar, Challenges in the Polyene- and Azole-Based Pharmacotherapy of Ocular Fungal Infections. J Ocul Pharmacol Ther, 2019. 35(1): p. 6-22.

190.      Dick, J.D., W.G. Merz, and R. Saral, Incidence of polyene-resistant yeasts recovered from clinical specimens. Antimicrob Agents Chemother, 1980. 18(1): p. 158-63.

191.      Seo, K., H. Akiyoshi, and Y. Ohnishi, Alteration of cell wall composition leads to amphotericin B resistance in Aspergillus flavus.Microbiology and immunology, 1999. 43(11): p. 1017-1025.

192.      Bodey, G.P., Azole antifungal agents. Clin Infect Dis, 1992. 14 Suppl 1: p. S161-9.

193.      Georgopapadakou, N.H., et al., Effect of antifungal agents on lipid biosynthesis and membrane integrity in Candida albicans.Antimicrob Agents Chemother, 1987. 31(1): p. 46-51.

194.      Campoy, S. and J.L. Adrio, Antifungals. Biochem Pharmacol, 2017. 133: p. 86-96.

195.      Scorzoni, L., et al., Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis. Front Microbiol, 2017. 8: p. 36.

196.      Safdar, A., et al., Candida glabrata and Candida krusei fungemia after high-risk allogeneic marrow transplantation: no adverse effect of low-dose fluconazole prophylaxis on incidence and outcome. Bone Marrow Transplantation, 2001. 28(9): p. 873-878.

197.      Cannon, R.D., et al., Efflux-mediated antifungal drug resistance. Clin Microbiol Rev, 2009. 22(2): p. 291-321, Table of Contents.

198.      Sakagami, T., et al., Antifungal susceptibility trend and analysis of resistance mechanism for Candida species isolated from bloodstream at a Japanese university hospital. Journal of Infection and Chemotherapy, 2019. 25(1): p. 34-40.

199.      Spampinato, C. and D. Leonardi, <i>Candida</i> Infections, Causes, Targets, and Resistance Mechanisms: Traditional and Alternative Antifungal Agents. BioMed Research International, 2013. 2013: p. 204237.

200.      Ferrari, S., et al., Gain of function mutations in CgPDR1 of Candida glabrata not only mediate antifungal resistance but also enhance virulence. PLoS Pathog, 2009. 5(1): p. e1000268.

201.      Vermitsky, J.-P. and T.D. Edlind, Azole resistance in Candida glabrata: coordinate upregulation of multidrug transporters and evidence for a Pdr1-like transcription factor. Antimicrobial Agents and Chemotherapy, 2004. 48(10): p. 3773-3781.

202.      Kanafani, Z.A. and J.R. Perfect, Antimicrobial resistance: resistance to antifungal agents: mechanisms and clinical impact. Clin Infect Dis, 2008. 46(1): p. 120-8.

203.      Liu, J. and M.K. Balasubramanian, 1,3-beta-Glucan synthase: a useful target for antifungal drugs. Curr Drug Targets Infect Disord, 2001. 1(2): p. 159-69.

204.      Petranyi, G., N.S. Ryder, and A. Stütz, Allylamine derivatives: new class of synthetic antifungal agents inhibiting fungal squalene epoxidase. Science, 1984. 224(4654): p. 1239-41.

205.      Siberry, G.K., et al., Guidelines for the prevention and treatment of opportunistic infections in HIV-exposed and HIV-infected children: recommendations from the National Institutes of Health, Centers for Disease Control and Prevention, the HIV Medicine Association of the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the American Academy of Pediatrics. Pediatr Infect Dis J, 2013. 32 Suppl 2(0 2): p. i-KK4.

206.      Vermes, A., H.-J. Guchelaar, and J. Dankert, Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. Journal of Antimicrobial Chemotherapy, 2000. 46(2): p. 171-179.

207.      Watson, C.J., M. Pirotta, and P. Myers, Use of complementary and alternative medicine in recurrent vulvovaginal candidiasis—Results of a practitioner survey. Complementary Therapies in Medicine, 2012. 20(4): p. 218-221.

208.      Probiotics Market Size to Exceed USD 64 Billion by 2023: Global Market Insights Inc. 2016  [cited 2021 January 31]; Available from: https://mdanderson.libanswers.com/faq/26219

209.      Joint, F., WHO working group report on drafting guidelines for the evaluation of probiotics in food. London, Ontario, Canada, 2002. 30.

210.      Kligler, B. and A. Cohrssen, Probiotics. American family physician, 2008. 78(9): p. 1073-1078.

211.      Snydman, D.R., The Safety of Probiotics. Clinical Infectious Diseases, 2008. 46(Supplement_2): p. S104-S111.

212.      Sazawal, S., et al., Efficacy of probiotics in prevention of acute diarrhoea: a meta-analysis of masked, randomised, placebo-controlled trials. Lancet Infect Dis, 2006. 6(6): p. 374-82.

213.      Borges, S., J. Silva, and P. Teixeira, The role of lactobacilli and probiotics in maintaining vaginal health. Archives of Gynecology and Obstetrics, 2014. 289(3): p. 479-489.

214.      CZERUCKA, D., T. PICHE, and P. RAMPAL, Review article: yeast as probiotics –Saccharomyces boulardii. Alimentary Pharmacology & Therapeutics, 2007. 26(6): p. 767-778.

215.      Falagas, M.E., G.I. Betsi, and S. Athanasiou, Probiotics for prevention of recurrent vulvovaginal candidiasis: a review. Journal of Antimicrobial Chemotherapy, 2006. 58(2): p. 266-272.

216.      De Seta, F., et al., Lactobacillus plantarum P17630 for preventing Candida vaginitis recurrence: a retrospective comparative study. European Journal of Obstetrics & Gynecology and Reproductive Biology, 2014. 182: p. 136-139.

217.      Williams, A.B., et al., Evaluation of two self-care treatments for prevention of vaginal candidiasis in women with HIV. Journal of the Association of Nurses in AIDS Care, 2001. 12(4): p. 51-57.

218.      Oerlemans, E.F.M., et al., Impact of a lactobacilli-containing gel on vulvovaginal candidosis and the vaginal microbiome.Scientific Reports, 2020. 10(1): p. 7976.

219.      Tachedjian, G., et al., The role of lactic acid production by probiotic Lactobacillus species in vaginal health. Research in microbiology, 2017. 168(9-10): p. 782-792.

220.      Morales, D.K. and D.A. Hogan, Candida albicans Interactions with Bacteria in the Context of Human Health and Disease. PLOS Pathogens, 2010. 6(4): p. e1000886.

221.      Young, G., R. Krasner, and P. Yudkofsky, Interactions of oral strains of Candida albicans and lactobacilli. Journal of bacteriology, 1956. 72(4): p. 525.

222.      Han, T.-L., R.D. Cannon, and S.G. Villas-Bôas, The metabolic basis of Candida albicans morphogenesis and quorum sensing.Fungal Genetics and Biology, 2011. 48(8): p. 747-763.

223.      Lee, K., H.R. Buckley, and C.C. Campbell, An amino acid liquid synthetic medium for the development of mycellal and yeast forms of Candida albicans. Sabouraudia: Journal of Medical and Veterinary Mycology, 1975. 13(2): p. 148-153.

224.      Sobel, J.D., Factors involved in patient choice of oral or vaginal treatment for vulvovaginal candidiasis. Patient preference and adherence, 2014. 8: p. 31.

225.      Chee, W.J.Y., S.Y. Chew, and L.T.L. Than, Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health. Microb Cell Fact, 2020. 19(1): p. 203.

226.      Macfarlane, S. and G.T. Macfarlane, Regulation of short-chain fatty acid production. Proceedings of the Nutrition Society, 2003. 62(1): p. 67-72.

227.      Foschi, C., et al., Novel approaches for the taxonomic and metabolic characterization of lactobacilli: Integration of 16S rRNA gene sequencing with MALDI-TOF MS and 1H-NMR. PLOS ONE, 2017. 12(2): p. e0172483.

228.      Ceccarani, C., et al., Diversity of vaginal microbiome and metabolome during genital infections. Scientific Reports, 2019. 9(1): p. 14095.

229.      Verstraelen, H., et al., Longitudinal analysis of the vaginal microflora in pregnancy suggests that L. crispatus promotes the stability of the normal vaginal microflora and that L. gasseri and/or L. iners are more conducive to the occurrence of abnormal vaginal microflora. BMC Microbiol, 2009. 9: p. 116.

230.      Mitra, A., et al., The vaginal microbiota, human papillomavirus infection and cervical intraepithelial neoplasia: what do we know and where are we going next? Microbiome, 2016. 4(1): p. 1-15.

231.      Enache-Angoulvant, A. and C. Hennequin, Invasive Saccharomyces infection: a comprehensive review. Clinical Infectious Diseases, 2005. 41(11): p. 1559-1568.

232.      Czerucka, D. and P. Rampal, Diversity of Saccharomyces boulardii CNCM I-745 mechanisms of action against intestinal infections. World journal of gastroenterology, 2019. 25(18): p. 2188.

233.      Sen, S. and T.J. Mansell, Yeasts as probiotics: Mechanisms, outcomes, and future potential. Fungal Genetics and Biology, 2020. 137: p. 103333.

234.      Kunyeit, L., A.A. K, and R.P. Rao, Application of Probiotic Yeasts on Candida Species Associated Infection. J Fungi (Basel), 2020. 6(4).

235.      Guo, R., et al., Increased diversity of fungal flora in the vagina of patients with recurrent vaginal candidiasis and allergic rhinitis.Microb Ecol, 2012. 64(4): p. 918-27.

236.      Pericolini, E., et al., Therapeutic activity of a Saccharomyces cerevisiae-based probiotic and inactivated whole yeast on vaginal candidiasis. Virulence, 2017. 8(1): p. 74-90.

237.      Gabrielli, E., et al., Induction of caspase-11 by aspartyl proteinases of Candida albicans and implication in promoting inflammatory response. Infection and immunity, 2015. 83(5): p. 1940-1948.

238.      Roselletti, E., et al., NLRP3 inflammasome is a key player in human vulvovaginal disease caused by Candida albicans.Scientific reports, 2017. 7(1): p. 1-10.

239.      Gabrielli, E., et al., Saccharomyces cerevisiae-based probiotic as novel anti-fungal and anti-inflammatory agent for therapy of vaginal candidiasis. Beneficial microbes, 2018. 9(2): p. 219-230.

240.      Jawhara, S., et al., Modulation of intestinal inflammation by yeasts and cell wall extracts: strain dependence and unexpected anti-inflammatory role of glucan fractions. PloS one, 2012. 7(7): p. e40648.

241.      Kunyeit, L., et al., Probiotic yeasts inhibit virulence of non-albicans Candida species. MBio, 2019. 10(5).

242.      Motlhanka, K., N. Zhou, and K. Lebani, Microbial and Chemical Diversity of Traditional Non-Cereal Based Alcoholic Beverages of Sub-Saharan Africa. Beverages, 2018. 4: p. 36.

243.      Krasowska, A., et al., The antagonistic effect of Saccharomyces boulardii on Candida albicans filamentation, adhesion and biofilm formation. FEMS Yeast Research, 2009. 9(8): p. 1312-1321.

244.      Moens, F., et al., Lactobacillus rhamnosus GG and Saccharomyces cerevisiae boulardii exert synergistic antipathogenic activity in vitro against enterotoxigenic Escherichia coli. Benef Microbes, 2019. 10(8): p. 923-935.

245.      Vizoso Pinto, M.G., et al., Adhesive and chemokine stimulatory properties of potentially probiotic Lactobacillus strains. J Food Prot, 2007. 70(1): p. 125-34.

246.      Lim, P.L., M. Toh, and S.Q. Liu, Saccharomyces cerevisiae EC-1118 enhances the survivability of probiotic Lactobacillus rhamnosus HN001 in an acidic environment. Applied Microbiology and Biotechnology, 2015. 99(16): p. 6803-6811.

247.      Teame, T., et al., Paraprobiotics and Postbiotics of Probiotic Lactobacilli, Their Positive Effects on the Host and Action Mechanisms: A Review. Front Nutr, 2020. 7: p. 570344.

248.      Wegh, C.A.M., et al., Postbiotics and Their Potential Applications in Early Life Nutrition and Beyond. Int J Mol Sci, 2019. 20(19).

249.      Salminen, S., et al., The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nature Reviews Gastroenterology & Hepatology, 2021.

250.      Perez, R.H., T. Zendo, and K. Sonomoto, Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications.Microb Cell Fact, 2014. 13 Suppl 1: p. S3.

251.      Castro-Gonzalez, J.M., et al., Probiotic Lactobacilli Precautions. Front Microbiol, 2019. 10: p. 375.

252.      Fadhel, M., et al., Saccharomyces cerevisiae fungemia in a critically ill patient with acute cholangitis and long term probiotic use.Med Mycol Case Rep, 2019. 23: p. 23-25.

253.      Kara, I., et al., Saccharomyces cerevisiae fungemia after probiotic treatment in an intensive care unit patient. J Mycol Med, 2018. 28(1): p. 218-221.

254.      Zolkiewicz, J., et al., Postbiotics-A Step Beyond Pre- and Probiotics. Nutrients, 2020. 12(8).

255.      Pinu, F.R., et al., Metabolite secretion in microorganisms: the theory of metabolic overflow put to the test. Metabolomics, 2018. 14(4): p. 1-16.

256.      Noverr, M.C. and G.B. Huffnagle, Regulation of Candida albicans morphogenesis by fatty acid metabolites. Infection and immunity, 2004. 72(11): p. 6206-6210.

257.      Guinan, J., et al., Antibiotic-induced decreases in the levels of microbial-derived short-chain fatty acids correlate with increased gastrointestinal colonization of Candida albicans. Scientific Reports, 2019. 9(1): p. 8872.

258.      Uppuluri, P. and W.L. Chaffin, Defining Candida albicans stationary phase by cellular and DNA replication, gene expression and regulation. Molecular Microbiology, 2007. 64(6): p. 1572-1586.

259.      Aldunate, M., et al., Antimicrobial and immune modulatory effects of lactic acid and short chain fatty acids produced by vaginal microbiota associated with eubiosis and bacterial vaginosis. Front Physiol, 2015. 6: p. 164.

260.      Lai, S.K., et al., Human immunodeficiency virus type 1 is trapped by acidic but not by neutralized human cervicovaginal mucus.Journal of virology, 2009. 83(21): p. 11196–11200.

261.      Lourenço, A., et al., Effect of Acetic Acid and Lactic Acid at Low pH in Growth and Azole Resistance of Candida albicans and Candida glabrata. Front Microbiol, 2018. 9: p. 3265.

262.      Bahamondes, M.V., et al., Use of a lactic acid plus lactoserum intimate liquid soap for external hygiene in the prevention of bacterial vaginosis recurrence after metronidazole oral treatment. Rev Assoc Med Bras (1992), 2011. 57(4): p. 415-20.

263.      Rahmani, Z., et al., Effects of Acetic Acid Vaginal Gel on Vulvovaginal Candidiasis: A Double Blind Randomized Controlled Trial.J Mazandaran Univ Med Sci., 2020. 30(184).

264.      Lambert, R. and M. Stratford, Weakacid preservatives: modelling microbial inhibition and response. Journal of applied microbiology, 1999. 86(1): p. 157-164.

265.      Ratajczak, W., et al., Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochimica Polonica, 2019. 66(1): p. 1-12.

266.      Schneider, S.M., et al., Effects of Saccharomyces boulardii on fecal short-chain fatty acids and microflora in patients on long-term total enteral nutrition. World journal of gastroenterology: WJG, 2005. 11(39): p. 6165.

267.      Yano, J. and P.L. Fidel Jr, Protocols for vaginal inoculation and sample collection in the experimental mouse model of Candida vaginitis. Journal of visualized experiments: JoVE, 2011(58).

268.      Cormack, B.P. and S. Falkow, Efficient homologous and illegitimate recombination in the opportunistic yeast pathogen Candida glabrata. Genetics, 1999. 151(3): p. 979-987.

269.      Pericolini, E., et al., Therapeutic activity of a Saccharomyces cerevisiae-based probiotic and inactivated whole yeast on vaginal candidiasis. Virulence, 2017. 8(1): p. 74-90.

270.      Offei, B., et al., Unique genetic basis of the distinct antibiotic potency of high acetic acid production in the probiotic yeast Saccharomyces cerevisiae var. boulardii. Genome Res, 2019. 29(9): p. 1478-1494.

271.      Chan, R., et al., Competitive exclusion of uropathogens from human uroepithelial cells by Lactobacillus whole cells and cell wall fragments. Infection and immunity, 1985. 47(1): p. 84-89.

272.      Chan, R.C., A.W. Bruce, and G. Reid, Adherence of cervical, vaginal and distal urethral normal microbial flora to human uroepithelial cells and the inhibition of adherence of gram-negative uropathogens by competitive exclusion. The Journal of urology, 1984. 131(3): p. 596-601.

273.      Reid, G., The scientific basis for probiotic strains ofLactobacillus. Applied and environmental microbiology, 1999. 65(9): p. 3763-3766.

274.      Skovbjerg, S., et al., Spray bacteriotherapy decreases middle ear fluid in children with secretory otitis media. Archives of disease in childhood, 2009. 94(2): p. 92-98.

275.      Reid, G., et al., Oral use of Lactobacillus rhamnosus GR-1 and L. fermentum RC-14 significantly alters vaginal flora: randomized, placebo-controlled trial in 64 healthy women. FEMS Immunology & Medical Microbiology, 2003. 35(2): p. 131-134.

276.      Kankainen, M., et al., Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proceedings of the National Academy of Sciences, 2009. 106(40): p. 17193-17198.

277.      Kleerebezem, M., et al., Complete genome sequence of Lactobacillus plantarum WCFS1. Proceedings of the National Academy of Sciences, 2003. 100(4): p. 1990-1995.

278.      Anukam, K.C., et al., Genome sequence of Lactobacillus pentosus KCA1: vaginal isolate from a healthy premenopausal woman. PloS one, 2013. 8(3): p. e59239.

279.      Wuyts, S., et al., Large-scale phylogenomics of the Lactobacillus casei group highlights taxonomic inconsistencies and reveals novel clade-associated features. MSystems, 2017. 2(4).

280.      Dicks, L., et al., Reclassification of Lactobacillus casei subsp. casei ATCC 393 and Lactobacillus rhamnosus ATCC 15820 as Lactobacillus zeae nom. rev., designation of ATCC 334 as the neotype of L. casei subsp. casei, and rejection of the name Lactobacillus paracasei. International Journal of Systematic and Evolutionary Microbiology, 1996. 46(1): p. 337-340.

281.      Murad, A.M., et al., CIp10, an efficient and convenient integrating vector for Candida albicans. Yeast, 2000. 16(4): p. 325-7.

282.      Jouhten, P., et al., Saccharomyces cerevisiae metabolism in ecological context. FEMS Yeast Res, 2016. 16(7).

283.      Palmqvist, E. and B. Hahn-Hägerdal, Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresource technology, 2000. 74(1): p. 17-24.

284.      Russell, J., Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling. Journal of applied bacteriology, 1992. 73(5): p. 363-370.

285.      Peña, A., et al., Effects of high medium pH on growth, metabolism and transport in Saccharomyces cerevisiae. FEMS Yeast Research, 2015. 15(2).

286.      Lourenço, A., et al., Effect of Acetic Acid and Lactic Acid at Low pH in Growth and Azole Resistance of Candida albicans and Candida glabrata. Frontiers in Microbiology, 2019. 9(3265).

287.      Mira, N.P., M.C. Teixeira, and I. Sá-Correia, Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view. Omics: a journal of integrative biology, 2010. 14(5): p. 525-540.

288.      Lang, G.I. and A.W. Murray, Estimating the per-base-pair mutation rate in the yeast Saccharomyces cerevisiae. Genetics, 2008. 178(1): p. 67-82.

289.      Jandric, Z. and C. Schüller, Stress response in Candida glabrata: pieces of a fragmented picture. Future microbiology, 2011. 6(12): p. 1475-1484.

290.      Amabebe, E., et al., Microbial dysbiosis-induced obesity: role of gut microbiota in homoeostasis of energy metabolism. British Journal of Nutrition, 2020. 123(10): p. 1127-1137.

291.      Kaur, H., et al., Crosstalk between female gonadal hormones and vaginal microbiota across various phases of women’s gynecological lifecycle. Frontiers in microbiology, 2020. 11: p. 551.

292.      Guinan, J., et al., Antibiotic-induced decreases in the levels of microbial-derived short-chain fatty acids correlate with increased gastrointestinal colonization of Candida albicans. Scientific reports, 2019. 9(1): p. 1-11.

293.      Nguyen, L.N., et al., Sodium butyrate inhibits pathogenic yeast growth and enhances the functions of macrophages. Journal of antimicrobial chemotherapy, 2011. 66(11): p. 2573-2580.

294.      Yun, J. and D.G. Lee, A novel fungal killing mechanism of propionic acid. FEMS yeast research, 2016. 16(7).

295.      Allonsius, C.N., et al., Inhibition of Candida albicans morphogenesis by chitinase from Lactobacillus rhamnosus GG. Sci Rep, 2019. 9(1): p. 2900.

296.      Brandt, K. and R. Barrangou, Adaptive response to iterative passages of five Lactobacillus species in simulated vaginal fluid.BMC Microbiology, 2020. 20(1): p. 339.

297.      Pan, M., et al., Comparative Analysis of Lactobacillus gasseri and Lactobacillus crispatus Isolated From Human Urogenital and Gastrointestinal Tracts. Frontiers in Microbiology, 2020. 10(3146).

298.      Martín Rosique, R., et al., Characterization of indigenous vaginal lactobacilli from healthy women as probiotic candidates.International Microbiology, 2008.

299.      Spear, G.T., et al., Human α-amylase Present in Lower-Genital-Tract Mucosal Fluid Processes Glycogen to Support Vaginal Colonization by Lactobacillus. The Journal of Infectious Diseases, 2014. 210(7): p. 1019-1028.

300.      Martinez, R., et al., Improved treatment of vulvovaginal candidiasis with fluconazole plus probiotic Lactobacillus rhamnosus GR1 and Lactobacillus reuteri RC14. Letters in applied microbiology, 2009. 48(3): p. 269-274.

301.      Novak, S., V. Zechner-Krpan, and V. Marić, Regulation of maltose transport and metabolism in Saccharomyces cerevisiae. Food Technology and Biotechnology, 2004. 42(3): p. 213-218.

302.      Sieuwerts, S., P.A. Bron, and E.J. Smid, Mutually stimulating interactions between lactic acid bacteria and Saccharomyces cerevisiae in sourdough fermentation. LWT, 2018. 90: p. 201-206.

303.      Stevens, M.J., et al., Improvement of Lactobacillus plantarum aerobic growth as directed by comprehensive transcriptome analysis. Applied and environmental microbiology, 2008. 74(15): p. 4776-4778.

304.      Tsang, P.W.-K., H. Bandara, and W.-P. Fong, Purpurin suppresses Candida albicans biofilm formation and hyphal development.PLoS One, 2012. 7(11): p. e50866.

305.      Matsubara, V.H., et al., Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation. Applied microbiology and biotechnology, 2016. 100(14): p. 6415-6426.

306.      Wang, S., et al., Antimicrobial Compounds Produced by Vaginal Lactobacillus crispatus Are Able to Strongly Inhibit Candida albicans Growth, Hyphal Formation and Regulate Virulence-related Gene Expressions. Frontiers in Microbiology, 2017. 8(564).

307.      Shareck, J. and P. Belhumeur, Modulation of morphogenesis in Candida albicans by various small molecules. Eukaryotic cell, 2011. 10(8): p. 1004-1012.

308.      Albuquerque, P. and A. Casadevall, Quorum sensing in fungi–a review. Medical mycology, 2012. 50(4): p. 337-345.

309.      Bandara, H., et al., Secretory products of E scherichia coli biofilm modulate C andida biofilm formation and hyphal development.Journal of investigative and clinical dentistry, 2013. 4(3): p. 186-199.

310.      Chew, S., et al., Probiotic L actobacillus rhamnosus GR1 and L actobacillus reuteri RC14 exhibit strong antifungal effects against vulvovaginal candidiasiscausing C andida glabrata isolates. Journal of applied microbiology, 2015. 118(5): p. 1180-1190.

311.      De Keersmaecker, S.C., et al., Strong antimicrobial activity of Lactobacillus rhamnosus GG against Salmonella typhimurium is due to accumulation of lactic acid. FEMS microbiology letters, 2006. 259(1): p. 89-96.

312.      Jang, S.J., et al., Vaginal lactobacilli inhibit growth and hyphae formation of Candida albicans. Scientific Reports, 2019. 9(1): p. 8121.

313.      Pridmore, R.D., et al., Hydrogen peroxide production by Lactobacillus johnsonii NCC 533 and its role in anti-Salmonella activity.FEMS microbiology letters, 2008. 283(2): p. 210-215.

314.      Sonnenburg, J.L., C.T. Chen, and J.I. Gordon, Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host. PLoS Biol, 2006. 4(12): p. e413.

315.      Afzali, S., et al., Determination of the anti-yeast activity of Lactobacillus spp. isolated from traditional Iranian cheeses in vitro and in yogurt drink (Doogh). Scientific Reports, 2020. 10(1): p. 6291.

316.      Stiles, M.E., Biopreservation by lactic acid bacteria. Antonie van leeuwenhoek, 1996. 70(2): p. 331-345.

317.      Maurer, M., et al., A three-dimensional immunocompetent intestine-on-chip model as in vitro platform for functional and microbial interaction studies. Biomaterials, 2019. 220: p. 119396.

Download scriptie (4.37 MB)
Universiteit of Hogeschool
KU Leuven
Thesis jaar
2021
Promotor(en)
Dr. Liesbeth Demuyser, Prof. Patrick Van Dijck