Een slaatje vol bacteriën; mogelijks een goede zaak!

Mathis
Vermeersch

Een zakje vers versneden sla uit de supermarkt bevat gemiddeld zo’n één miljoen bacteriën per gram sla. Hoe geraak je dan van al deze bacteriën af vooraleer je de sla opeet? Simpelweg niet, onmogelijk zelfs… en meer nog, onnodig. In deze masterproef* werd namelijk onderzocht of de vele bacteriën op Romeinse sla, welke voornamelijk goede bacteriën zijn, een hindernis kunnen vormen voor de groei van uitzonderlijk aanwezige ziekmakende bacteriën zoals Listeria monocytogenes.

Listeria mono…?
Listeria monocytogenes is net zoals Salmonella spp. een ziekteverwekkende bacterie die op voeding kan voorkomen. Bij de mens veroorzaakt Listeria monocytogenes de infectieziekte listeriose na consumptie van besmet voedsel. De gevolgen van listeriose kunnen gaan van griepachtige symptomen tot hersenvliesontsteking en bloedvergiftiging. Listeria monocytogenes wordt hierdoor gelinkt aan een hoog sterftecijfer, voornamelijk bij risicogroepen zoals jonge kinderen, ouderen, zwangere vrouwen of mensen met een verminderde weerstand. Bij ziekteverwekkende bacteriën in voeding wordt vaak gedacht aan dierlijke producten, bijvoorbeeld vis of kaas. Dat is terecht, maar bijkomend kan Listeria monocytogenes ook aanwezig zijn op bladgroenten zoals sla.

Minimale verwerking van sla.
Verpakte vers versneden sla die in de supermarkt verkocht wordt, heeft enkel minimale verwerking ondergaan. Tijdens deze verwerking wordt de geoogste sla versneden, gewassen, verpakt en daarna gekoeld opgeslagen voor transport en verkoop. Dit verwerkingsproces bevat geen hittestap die de eventueel aanwezige ziekteverwekkende bacteriën zou kunnen afdoden. Bovendien wordt sla gewoonlijk niet verhit voor consumptie. Dit zorgt ervoor dat als Listeria monocytogenes tijdens het teelt- of verwerkingsproces op de sla terechtkomt, consumptie kan leiden tot infectie.

Stroomschema met de belangrijkste processtappen voor minimaal verwerkte bladgroenten.

De sla wordt toch gewassen?
Zowel tijdens de minimale verwerking als doorgaans ook bij de consument wordt de vers versneden sla gewassen. Het wassen is echter niet voldoende om alle ziekteverwekkende bacteriën met zekerheid te verwijderen. Onderzoek heeft namelijk aangetoond dat bacteriën zich kunnen vasthechten op het slablad waardoor het wassen slechts een beperkt deel van alle bacteriën verwijdert. Bovendien kunnen overblijvende bacteriën na het wassen opnieuw uitgroeien tot hogere aantallen.

Goede bacteriën, de overgrote meerderheid.
Alle aanwezige bacteriën op sla, ook wel het microbiota van sla genoemd, kunnen grofweg ingedeeld worden in 3 categorieën, naar analogie met de film “The Good, the Bad & the Ugly”. The bad, of de slechte bacteriën, zoals Listeria monocytogenes, kunnen infectie en ziekte veroorzaken. The Ugly, of bederfbacteriën veroorzaken bederf van de sla, met eerst een verminderde, maar aanvaardbare kwaliteit tot uiteindelijk voedselverspilling doordat de sla niet langer geconsumeerd kan worden. Ten slotte the good, de goede bacteriën die de overgrote meerderheid vormen op het slablad. Als slechte bacteriën uitzonderlijk aanwezig zijn op de sla, is hun aanwezigheid dus minimaal in aantallen ten opzichte van de altijd hoog aanwezige goede bacteriën. Deze goede bacteriën vormen een complex netwerk en zouden slechte bacteriën kunnen onderdrukken. Onderdrukking kan verlopen door competitie voor een plaats op het blad, competitie voor nutriënten of door de productie van antimicrobiële componenten die negatief inwerken op de slechte bacteriën.

Een modelsysteem voor Romeinse sla op laboschaal.
Om onderdrukking en competitieve interacties tussen enerzijds Listeria monocytogenes en anderzijds enkele goede bacteriën vanop sla te onderzoeken, werd een modelsysteem ontwikkeld in het labo, namelijk sla-agar. Sla-agar is een groeimedium voor bacteriën dat gemaakt wordt van onder andere vers slasap. Deze sla-agar werd specifiek ontwikkeld als model voor de snijvlakken van vers versneden Romeinse sla. Het modelsysteem is bovendien steriel, wat betekent dat er geen bacteriën op aanwezig zijn. Hierdoor kunnen specifieke interacties tussen gekende bacteriën onderzocht worden, zonder enige invloed van de vele andere bacteriën die normaalgezien op sla aanwezig zijn.

Experimenteel onderzoek met het modelsysteem.
Enkele geselecteerde goede bacteriën werden aangebracht op het modelsysteem om hun groeipotentieel na te gaan. Vervolgens werden deze bacteriën ook samen met Listeria monocytogenes op het modelsysteem gezet. Hierbij werd de groei van beiden opgevolgd via plaattellingen gedurende een periode van 7 dagen. De opslagcondities streefden de commerciële omstandigheden van verpakte vers versneden sla na, namelijk opslag in de koeling onder gelijkaardige verpakkingscondities.

Resultaten.
Een nauw verwante biologische oorsprong van de geselecteerde goede bacteriën, namelijk specifiek afkomstig van sla of (blad)groenten, werd aangeduid als belangrijke factor om te kunnen groeien op het modelsysteem. Met betrekking tot competitie, werd voor twee natuurlijk voorkomende bacteriën vanop sla een stabiel onderdrukkend effect waargenomen tegen Listeria monocytogenes. Dit onderdrukkend effect kwam steeds tot uiting wanneer de bacteriën hun maximale populatiedichtheid bereikten, in overeenstemming met het Jameson-effect.

Het Jameson-effect.
Het Jameson-effect verwijst naar de niet-specifieke groeionderdrukking door een dominante bacterie wanneer deze zijn maximale populatiedichtheid, de stationaire fase, bereikt. Het mechanisme achter het Jameson-effect wordt verklaard door dominantie in aantallen, namelijk competitie voor plaats, in combinatie met verzuring of uitputting van nutriënten.

Bevindingen.
Voor enkele bacteriën vanop Romeinse sla is aangetoond dat ze een onderdrukkend effect uitoefenen op Listeria monocytogenes wanneer deze samen groeien op het modelsysteem. Er moet echter opgemerkt worden dat deze bevindingen onvoldoende zijn om te besluiten dat er altijd een stabiele onderdrukking zal optreden van de goede bacteriën tegen Listeria monocytogenes op Romeinse sla. De reden hiervoor is de hoge variabiliteit in samenstelling van alle bacteriën op het slablad. Omdat er voor sla echter niet veel conserveringsopties (toevoeging van additieven, verhitting, …) beschikbaar zijn, zouden deze goede bacteriën toch gebruikt kunnen worden in het kader van biologische controle. Hierbij worden de bacteriën op de sla aangebracht als versterking voor de van nature aanwezige bacteriën. Daarnaast zouden deze bacteriën ook samengevoegd kunnen worden tot een beschermende gemeenschap, waarbij ze in groep kunnen functioneren als een diverse en preventieve voedselveiligheidstool.

Aanrijking van het van nature aanwezige microbiota met één of meerdere biocontrole bacteriën.

*Masterproeftitel: Onderzoek naar de interactie tussen natuurlijk voorkomende microbiota en Listeria monocytogenes op vers versneden Romeinse sla, verpakt onder gemodificeerde atmosfeer: een modelsysteembenadering (origineel ENG: Assessment of the interaction between indigenous microbiota and Listeria monocytogenes on modified atmosphere packaged fresh-cut Romaine lettuce: a model system approach)

Bibliografie

 ADDIN EN.REFLIST Abd-Elhafeez, E., AlKhazindar, M., & Sayed, E. (2018). Isolation and characterization of Enterobacter strains causing potato soft rot disease in Egypt. Minia Science Bulletin, 29, 1-13.

Achmit, M., Machkor, M., Nawdali, M., Sbai, G., Karim, S., Aouniti, A., & Loukili, M. (2018). Study of the Influence of the Operating Parameters on the Fractions in HOCl and OCl-During the Disinfection Phase. Journal of Chemical and Pharmaceutical Research, 10(4), 122-127.

Agler, M. T., Ruhe, J., Kroll, S., Morhenn, C., Kim, S.-T., Weigel, D., & Kemen, E. M. (2016). Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS biology, 14(1), e1002352.

Aiyedun, S. O., Onarinde, B. A., Swainson, M., & Dixon, R. A. (2021). Foodborne outbreaks of microbial infection from fresh produce in Europe and North America: a systematic review of data from this millennium. International Journal of Food Science & Technology, 56(5), 2215-2223.

Akbas, M., & Ölmez, H. (2007). Inactivation of Escherichia coli and Listeria monocytogenes on iceberg lettuce by dip wash treatments with organic acids. Letters in applied microbiology, 44(6), 619-624.

Al-Kharousi, Z. S., Guizani, N., Al-Sadi, A. M., Al-Bulushi, I. M., & Shaharoona, B. (2016). Hiding in fresh fruits and vegetables: opportunistic pathogens may cross geographical barriers. International journal of microbiology, 2016.

Alegbeleye, O., & Sant’Ana, A. S. (2022). Survival and growth behaviour of Listeria monocytogenes in ready-to-eat vegetable salads. Food Control, 138, 109023.

Allard, S. M., Walsh, C. S., Wallis, A. E., Ottesen, A. R., Brown, E. W., & Micallef, S. A. (2016). Solanum lycopersicum (tomato) hosts robust phyllosphere and rhizosphere bacterial communities when grown in soil amended with various organic and synthetic fertilizers. Science of the Total Environment, 573, 555-563.

Allison, S. D., & Martiny, J. B. (2008). Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences, 105(Supplement 1), 11512-11519.

Arumugam, K., Nadzri, S. M., Singh, H. L., & Velayuthan, R. (2020). MALDI-TOF mass spectrometry, an emerging technology for filamentous fungi identification in comparison with conventional method in UMMC. International Journal of Infectious Diseases, 101, 194.

Astudillo‐García, C., Bell, J. J., Webster, N. S., Glasl, B., Jompa, J., Montoya, J. M., & Taylor, M. W. (2017). Evaluating the core microbiota in complex communities: a systematic investigation. Environmental Microbiology, 19(4), 1450-1462.

Bae, D., Seo, K. S., Zhang, T., & Wang, C. (2013). Characterization of a potential Listeria monocytogenes virulence factor associated with attachment to fresh produce. Applied and Environmental Microbiology, 79(22), 6855-6861.

Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of pharmaceutical analysis, 6(2), 71-79.

Banach, J. L., Sampers, I., Van Haute, S., & der Fels-Klerx, V. (2015). Effect of disinfectants on preventing the cross-contamination of pathogens in fresh produce washing water. International journal of environmental research and public health, 12(8), 8658-8677.

Barak, J. D., Kramer, L. C., & Hao, L.-y. (2010). Plant cultivar alters Salmonella enterica colonization of tomato and Type 1 trichomes are preferential colonization sites. Applied and Environmental Microbiology.

BCCM. (2022a). LMG 958. Retrieved from https://bccm.belspo.be/catalogues/lmg-catalogue-search

BCCM. (2022b). LMG 984. Retrieved from https://bccm.belspo.be/catalogues/lmg-catalogue-search

BCCM. (2022c). LMG 1794. Retrieved from https://bccm.belspo.be/catalogues/lmg-catalogue-search

BCCM. (2022d). LMG 2783. Retrieved from https://bccm.belspo.be/catalogues/lmg-catalogue-search

BCCM. (2022e). LMG 17699. Retrieved from https://bccm.belspo.be/catalogues/lmg-catalogue-search

Berg, G., Erlacher, A., & Grube, M. (2015). The edible plant microbiome: importance and health issues. In Principles of plant-microbe interactions (pp. 419-426): Springer.

Besser, J., Carleton, H. A., Gerner-Smidt, P., Lindsey, R. L., & Trees, E. (2018). Next-generation sequencing technologies and their application to the study and control of bacterial infections. Clinical Microbiology and Infection, 24(4), 335-341.

Beuchat, L. R., Adler, B. B., & Lang, M. M. (2004). Efficacy of chlorine and a peroxyacetic acid sanitizer in killing Listeria monocytogenes on iceberg and romaine lettuce using simulated commercial processing conditions. Journal of Food Protection, 67(6), 1238-1242.

Brandl, M., & Lindow, S. (1998). Contribution of indole-3-acetic acid production to the epiphytic fitness of Erwinia herbicola. Applied and Environmental Microbiology, 64(9), 3256-3263.

Brennan, F. P., Alsanius, B. W., Allende, A., Burgess, C. M., Moreira, H., Johannessen, G. S., Castro, P. M., Uyttendaele, M., Truchado, P., & Holden, N. J. (2022). Harnessing agricultural microbiomes for human pathogen control. ISME Communications, 2(1), 1-6.

Bunster, L., Fokkema, N. J., & Schippers, B. (1989). Effect of surface-active Pseudomonas spp. on leaf wettability. Applied and Environmental Microbiology, 55(6), 1340-1345.

Caleb, O. J., Mahajan, P. V., Al-Said, F. A.-J., & Opara, U. L. (2013). Modified atmosphere packaging technology of fresh and fresh-cut produce and the microbial consequences—a review. Food and bioprocess technology, 6(2), 303-329.

Cañamás, T., Viñas, I., Abadias, M., Usall, J., Torres, R., & Teixidó, N. (2009). Acid tolerance response induced in the biocontrol agent Pantoea agglomerans CPA-2 and effect on its survival ability in acidic environments. Microbiological Research, 164(4), 438-450.

Carrasco, E., Pérez-Rodríguez, F., Valero, A., Garcı, R., & Zurera, G. (2008). Growth of Listeria monocytogenes on shredded, ready-to-eat iceberg lettuce. Food Control, 19(5), 487-494.

CDC. (2016). Salmonella Fact Sheet. Retrieved from https://www.cdc.gov/salmonella/pdf/cdc-salmonella-factsheet.pdf

Cernava, T., Erlacher, A., Soh, J., Sensen, C. W., Grube, M., & Berg, G. (2019). Enterobacteriaceae dominate the core microbiome and contribute to the resistome of arugula (Eruca sativa Mill.). Microbiome, 7(1), 1-12.

Cook, N., Bertrand, I., Gantzer, C., Pinto, R., & Bosch, A. (2018). Persistence of hepatitis A virus in fresh produce and production environments, and the effect of disinfection procedures: a review. Food and Environmental Virology, 10(3), 253-262.

Cooley, M. B., Chao, D., & Mandrell, R. E. (2006). Escherichia coli O157: H7 survival and growth on lettuce is altered by the presence of epiphytic bacteria. Journal of Food Protection, 69(10), 2329-2335.

Copeland, J. K., Yuan, L., Layeghifard, M., Wang, P. W., & Guttman, D. S. (2015). Seasonal community succession of the phyllosphere microbiome. Molecular Plant-Microbe Interactions, 28(3), 274-285.

Couillerot, O., Prigent‐Combaret, C., Caballero‐Mellado, J., & Moënne‐Loccoz, Y. (2009). Pseudomonas fluorescens and closely‐related fluorescent pseudomonads as biocontrol agents of soil‐borne phytopathogens. Letters in applied microbiology, 48(5), 505-512.

Cuggino, S. G., Bascon-Villegas, I., Rincón, F., Pérez, M. A., Posada-Izquierdo, G., Marugán, J., Carro, C. P., & Pérez-Rodríguez, F. (2020). Modelling the combined effect of chlorine, benzyl isothiocyanate, exposure time and cut size on the reduction of Salmonella in fresh-cut lettuce during washing process. Food Microbiology, 86, 103346.

Culliney, P., & Schmalenberger, A. (2020). Growth potential of Listeria monocytogenes on refrigerated spinach and rocket leaves in modified atmosphere packaging. Foods, 9(9), 1211.

D'aes, J., De Maeyer, K., Pauwelyn, E., & Höfte, M. (2010). Biosurfactants in plant–Pseudomonas interactions and their importance to biocontrol. Environmental Microbiology Reports, 2(3), 359-372.

Damerum, A., Arnold, E. C., Bernad, V., Smith, H. K., & Taylor, G. (2021). Good and bad lettuce leaf microbes? Unravelling the genetic architecture of the microbiome to inform plant breeding for enhanced food safety and reduced food waste. bioRxiv.

Dastogeer, K. M., Tumpa, F. H., Sultana, A., Akter, M. A., & Chakraborty, A. (2020). Plant microbiome–an account of the factors that shape community composition and diversity. Current Plant Biology, 23, 100161.

De Bock, T. (2022). [Personal Communication: microbiota composition of Romaine lettuce].

De Corato, U. (2020). Improving the shelf-life and quality of fresh and minimally-processed fruits and vegetables for a modern food industry: A comprehensive critical review from the traditional technologies into the most promising advancements. Critical reviews in food science and nutrition, 60(6), 940-975.

de Knegt, L. V., Pires, S. M., Löfström, C., Sørensen, G., Pedersen, K., Torpdahl, M., Nielsen, E. M., & Hald, T. (2016). Application of Molecular Typing Results in Source Attribution Models: The Case of Multiple Locus Variable Number Tandem Repeat Analysis (MLVA) of Salmonella Isolates Obtained from Integrated Surveillance in Denmark. Risk Analysis, 36(3), 571-588.

de St, F., & van der Riet, J. (1997). Diseases of plants transmissible between plants and man (phytonoses) exist. Medical Hypotheses, 49(4), 359-361.

Delaquis, P., Stewart, S., Cazaux, S., & Toivonen, P. (2002). Survival and growth of Listeria monocytogenes and Escherichia coli O157: H7 in ready-to-eat iceberg lettuce washed in warm chlorinated water. Journal of Food Protection, 65(3), 459-464.

Devlieghere, F., Debevere, J., Jacxsens, L., Rajkovic, A., Uyttendaele, M., & Vermeulen, A. (2016). Levensmiddelenmicrobiologie en -conservering.

Devlieghere, F., & Ragaert, P. (2018). Fruit and Vegetable Processing: Minimally processed vegetables. In.

Deza-Durand, K. M., & Petersen, M. A. (2011). The effect of cutting direction on aroma compounds and respiration rate of fresh-cut iceberg lettuce (Lactuca sativa L.). Postharvest Biology and Technology, 61(1), 83-90.

Dimkić, I., Janakiev, T., Petrović, M., Degrassi, G., & Fira, D. (2022). Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms-A review. Physiological and Molecular Plant Pathology, 117, 101754.

Doan, H. K., & Leveau, J. H. (2015). Artificial surfaces in phyllosphere microbiology. Phytopathology, 105(8), 1036-1042.

Doering, H. J. (2009). A systems approach to determine the fate of Escherichia coli O157: H7 on fresh and fresh-cut iceberg lettuce and spinach. University of Georgia,

Duca, D., Lorv, J., Patten, C. L., Rose, D., & Glick, B. R. (2014). Indole-3-acetic acid in plant–microbe interactions. Antonie Van Leeuwenhoek, 106(1), 85-125.

Dutkiewicz, J., Mackiewicz, B., Lemieszek, M. K., Golec, M., & Milanowski, J. (2016). Pantoea agglomerans: a mysterious bacterium of evil and good. Part IV. Beneficial effects. Annals of Agricultural and Environmental Medicine, 23(2).

EFSA. (2022). Qualified presumption of safety (QPS). Retrieved from https://www.efsa.europa.eu/en/topics/topic/qualified-presumption-safety-qps

EFSA, Koutsoumanis, K., Allende, A., Alvarez-Ordóñez, A., Bolton, D., Bover-Cid, S., Chemaly, M., Davies, R., De Cesare, A., Hilbert, F., Lindqvist, R., Nauta, M., Peixe, L., Ru, G., Simmons, M., Skandamis, P., Suffredini, E., Jenkins, C., Malorny, B., Ribeiro Duarte, A. S., Torpdahl, M., da Silva Felício, M. T., Guerra, B., Rossi, M., & Herman, L. (2019). Whole genome sequencing and metagenomics for outbreak investigation, source attribution and risk assessment of food-borne microorganisms. EFSA Journal, 17(12), e05898.

Ellis, R., Timms‐Wilson, T., Beringer, J., Rhodes, D., Renwick, A., Stevenson, L., & Bailey, M. (1999). Ecological basis for biocontrol of damping‐off disease by Pseudomonas fluorescens 54/96. Journal of applied microbiology, 87(3), 454-463.

Ells, T. C., & Hansen, L. T. (2006). Strain and growth temperature influence Listeria spp. attachment to intact and cut cabbage. International Journal of Food Microbiology, 111(1), 34-42.

Elmahdy, E. M., Shaheen, M. N., Mahmoud, L. H., Hammad, I. A., & Soliman, E. R. (2022). Detection of Norovirus and Hepatitis A Virus in Strawberry and Green Leafy Vegetables by Using RT-qPCR in Egypt. Food and Environmental Virology, 1-12.

Verordening (EG) nr. 2073/2005 van de Commissie van  15 november 2005  inzake microbiologische criteria voor levensmiddelen,  (2005).

FAO, & WHO. (2020). CXC 1-1969 - General Principles of Food Hygiene. Retrieved from http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXC%2B1-1969%252FCXC_001e.pdf

Flandres Institute for Healthy Living. (2021). Food Triangle, Vegetables. Retrieved from https://www.gezondleven.be/themas/voeding/voedingsdriehoek/groenten

Fletcher, J., Leach, J. E., Eversole, K., & Tauxe, R. (2013). Human pathogens on plants: designing a multidisciplinary strategy for research. Phytopathology, 103(4), 306-315.

Francis, G., & O'beirne, D. (2001). Effects of vegetable type, package atmosphere and storage temperature on growth and survival of Escherichia coli O157: H7 and Listeria monocytogenes. Journal of Industrial Microbiology and Biotechnology, 27(2), 111-116.

Francis, G. A., & O'Beirne, D. (1998). Effects of storage atmosphere on Listeria monocytogenes and competing microflora using a surface model system. International Journal of Food Science & Technology, 33(5), 465-476.

Francis, G. A., & O'Beirne, D. (2002). Effects of vegetable type and antimicrobial dipping on survival and growth of Listeria innocua and E. coli. International Journal of Food Science & Technology, 37(6), 711-718.

Freilich, S., Zarecki, R., Eilam, O., Segal, E. S., Henry, C. S., Kupiec, M., Gophna, U., Sharan, R., & Ruppin, E. (2011). Competitive and cooperative metabolic interactions in bacterial communities. Nature communications, 2(1), 589.

Freimoser, F. M., Pelludat, C., & Remus-Emsermann, M. N. (2016). Tritagonist as a new term for uncharacterised microorganisms in environmental systems. The ISME journal, 10(1), 1-3.

FSI, & Ortega, Y. (2021). Romaine Lettuce. Retrieved from https://fsi.colostate.edu/romaine-lettuce-2/

Fu, T.-J., Li, Y., Awad, D., Zhou, T.-Y., & Liu, L. (2018). Factors affecting the performance and monitoring of a chlorine wash in preventing Escherichia coli O157: H7 cross-contamination during postharvest washing of cut lettuce. Food Control, 94, 212-221.

Fujihara, S., Kasuga, A., & Aoyagi, Y. (2001). Nitrogen‐to‐protein conversion factors for common vegetables in Japan. Journal of Food Science, 66(3), 412-415.

Garrett, E. H. (2002). Fresh-cut produce: tracks and trends. Fresh-cut Fruits and Vegetables: Science, Technology, and Market, Boca Raton, FL, ABD: Ed. Laminkara, O, 1-10.

Ghuneim, L.-A. J., Jones, D. L., Golyshin, P. N., & Golyshina, O. V. (2018). Nano-sized and filterable bacteria and archaea: biodiversity and function. Frontiers in Microbiology, 9, 1971.

Giddens, S. R., & Bean, D. C. (2007). Investigations into the in vitro antimicrobial activity and mode of action of the phenazine antibiotic D-alanylgriseoluteic acid. International journal of antimicrobial agents, 29(1), 93-97.

Gil, M. I., Selma, M. V., López-Gálvez, F., & Allende, A. (2009). Fresh-cut product sanitation and wash water disinfection: problems and solutions. International Journal of Food Microbiology, 134(1-2), 37-45.

Gill, A. (2017). The importance of bacterial culture to food microbiology in the age of genomics. Frontiers in Microbiology, 8, 777.

Gopal, A., Coventry, J., Wan, J., Roginski, H., & Ajlouni, S. (2010). Alternative disinfection techniques to extend the shelf life of minimally processed iceberg lettuce. Food Microbiology, 27(2), 210-219.

Government of Canada. (2021). Canadian Nutrient File (CNF). Retrieved from https://food-nutrition.canada.ca/cnf-fce/index-eng.jsp

Griep, E. R., Cheng, Y., & Moraru, C. I. (2018). Efficient removal of spores from skim milk using cold microfiltration: Spore size and surface property considerations. Journal of dairy science, 101(11), 9703-9713.

Griffin, J., & Silliman, B. (2011). Resource partitioning and why it matters. Nature Education Knowledge, 3(10), 49.

Gu, G., Kroft, B., Lichtenwald, M., Luo, Y., Millner, P., Patel, J., & Nou, X. (2022). Dynamics of Listeria monocytogenes and the microbiome on fresh-cut cantaloupe and romaine lettuce during storage at refrigerated and abusive temperatures. International Journal of Food Microbiology, 109531.

Gu, G., Ottesen, A., Bolten, S., Luo, Y., Rideout, S., & Nou, X. (2020). Microbiome convergence following sanitizer treatment and identification of sanitizer resistant species from spinach and lettuce rinse water. International Journal of Food Microbiology, 318, 108458.

Gu, G., Yin, H. B., Ottesen, A., Bolten, S., Patel, J., Rideout, S., & Nou, X. (2019). Microbiomes in ground water and alternative irrigation water, and spinach microbiomes impacted by irrigation with different types of water. Phytobiomes Journal, 3(2), 137-147.

Guo, W., He, R., Ma, L., Jia, W., Li, D., & Chen, S. (2014). Construction of a constitutively expressed homo-fermentative pathway in Lactobacillus brevis. Applied Microbiology and Biotechnology, 98(15), 6641-6650.

Guzel, M., Moreira, R. G., Omac, B., & Castell-Perez, M. E. (2017). Quantifying the effectiveness of washing treatments on the microbial quality of fresh-cut romaine lettuce and cantaloupe. LWT, 86, 270-276.

Hadjok, C., Mittal, G., & Warriner, K. (2008). Inactivation of human pathogens and spoilage bacteria on the surface and internalized within fresh produce by using a combination of ultraviolet light and hydrogen peroxide. Journal of applied microbiology, 104(4), 1014-1024.

Harris, L., Daeschel, M., Stiles, M., & Klaenhammer, T. (1989). Antimicrobial Activity of Lactic Acid Bacteria Against Listeria monocytogene s. Journal of Food Protection, 52(6), 384-387.

Hawkes, C. V., & Connor, E. W. (2017). Translating phytobiomes from theory to practice: ecological and evolutionary considerations. Phytobiomes, 1(2), 57-69.

Hellström, S., Kervinen, R., Lyly, M., Ahvenainen-Rantala, R., & Korkeala, H. (2006). Efficacy of disinfectants to reduce Listeria monocytogenes on precut iceberg lettuce. Journal of Food Protection, 69(7), 1565-1570.

Hoberg, E., Marschner, P., & Lieberei, R. (2005). Organic acid exudation and pH changes by Gordonia sp. and Pseudomonas fluorescens grown with P adsorbed to goethite. Microbiological Research, 160(2), 177-187.

Höfte, M., & Vos, P. D. (2007). Plant pathogenic Pseudomonas species. In Plant-associated bacteria (pp. 507-533): Springer.

Holvoet, K., Jacxsens, L., Sampers, I., & Uyttendaele, M. (2012). Insight into the prevalence and distribution of microbial contamination to evaluate water management in the fresh produce processing industry. Journal of Food Protection, 75(4), 671-681.

Hsu, C.-K., & Micallef, S. A. (2017). Plant-mediated restriction of Salmonella enterica on tomato and spinach leaves colonized with Pseudomonas plant growth-promoting rhizobacteria. International Journal of Food Microbiology, 259, 1-6.

Huang, R., & Chen, H. (2018). Evaluation of inactivating Salmonella on iceberg lettuce shreds with washing process in combination with pulsed light, ultrasound and chlorine. International Journal of Food Microbiology, 285, 144-151.

Hultberg, M., Alsberg, T., Khalil, S., & Alsanius, B. (2010). Suppression of disease in tomato infected by Pythium ultimum with a biosurfactant produced by Pseudomonas koreensis. BioControl, 55(3), 435-444.

IDT. (2020). Amplicon sequencing. Retrieved from https://eu.idtdna.com/pages/technology/next-generation-sequencing/dna-sequencing/targeted-sequencing/amplicon-sequencing

IFPA. (2021). The Packer 2021 Fresh Trends. Retrieved from https://www.freshproduce.com/resources/consumer-trends/top-20/

Igo, M. J., Strawn, L. K., & Schaffner, D. W. (2022). Initial and Final Cell Concentrations Significantly Influence the Maximum Growth Rate of Listeria monocytogenes in Published Literature Data for Whole Intact Fresh Produce. Journal of Food Protection, 85(6), 987-992.

Jaaffar, A. K. M., Parejko, J. A., Paulitz, T. C., Weller, D. M., & Thomashow, L. S. (2017). Sensitivity of Rhizoctonia isolates to phenazine-1-carboxylic acid and biological control by phenazine-producing Pseudomonas spp. Phytopathology, 107(6), 692-703.

Jackson, C. R., Randolph, K. C., Osborn, S. L., & Tyler, H. L. (2013). Culture dependent and independent analysis of bacterial communities associated with commercial salad leaf vegetables. BMC microbiology, 13(1), 1-12.

Jackson, C. R., Stone, B. W., & Tyler, H. L. (2015). Emerging perspectives on the natural microbiome of fresh produce vegetables. Agriculture, 5(2), 170-187.

Jacxsens, L., Devlieghere, F., Falcato, P., & Debevere, J. (1999). Behavior of Listeria monocytogenes and Aeromonas spp. on fresh-cut produce packaged under equilibrium-modified atmosphere. Journal of Food Protection, 62(10), 1128-1135.

Jacxsens, L., Devlieghere, F., Ragaert, P., Vanneste, E., & Debevere, J. (2003). Relation between microbiological quality, metabolite production and sensory quality of equilibrium modified atmosphere packaged fresh-cut produce. International Journal of Food Microbiology, 83(3), 263-280.

Jameson, J. (1962). A discussion of the dynamics of Salmonella enrichment. Epidemiology & Infection, 60(2), 193-207.

Johnson, K., & Stockwell, V. (1998). Management of fire blight: a case study in microbial ecology. Annual review of phytopathology, 36(1), 227-248.

Kala, A., & Prakash, J. (2004). Nutrient composition and sensory profile of differently cooked green leafy vegetables. International Journal of Food Properties, 7(3), 659-669.

Kamilova, F., Validov, S., Azarova, T., Mulders, I., & Lugtenberg, B. (2005). Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environmental Microbiology, 7(11), 1809-1817.

Keskinen, L. A., Burke, A., & Annous, B. A. (2009). Efficacy of chlorine, acidic electrolyzed water and aqueous chlorine dioxide solutions to decontaminate Escherichia coli O157: H7 from lettuce leaves. International Journal of Food Microbiology, 132(2-3), 134-140.

Kim, I.-Y., Pusey, P. L., Zhao, Y., Korban, S. S., Choi, H., & Kim, K. K. (2012). Controlled release of Pantoea agglomerans E325 for biocontrol of fire blight disease of apple. Journal of controlled release, 161(1), 109-115.

Klerks, M., van Gent-Pelzer, M., Franz, E., Zijlstra, C., & Van Bruggen, A. (2007). Physiological and molecular responses of Lactuca sativa to colonization by Salmonella enterica serovar Dublin. Applied and Environmental Microbiology, 73(15), 4905-4914.

Kondo, N., Murata, M., & Isshiki, K. (2006). Efficiency of sodium hypochlorite, fumaric acid, and mild heat in killing native microflora and Escherichia coli O157: H7, Salmonella Typhimurium DT104, and Staphylococcus aureus attached to fresh-cut lettuce. Journal of Food Protection, 69(2), 323-329.

Kyere, E. O., Palmer, J., Wargent, J. J., Fletcher, G. C., & Flint, S. (2019). Colonisation of lettuce by Listeria Monocytogenes. International Journal of Food Science & Technology, 54(1), 14-24.

Laudadio, I., Fulci, V., Stronati, L., & Carissimi, C. (2019). Next-Generation Metagenomics: Methodological Challenges and Opportunities. Omics-a Journal of Integrative Biology, 23(7), 327-333.

Lee, S.-Y., & Baek, S.-Y. (2008). Effect of chemical sanitizer combined with modified atmosphere packaging on inhibiting Escherichia coli O157: H7 in commercial spinach. Food Microbiology, 25(4), 582-587.

Leff, J. W., & Fierer, N. (2013). Bacterial communities associated with the surfaces of fresh fruits and vegetables. PloS one, 8(3), e59310.

Leonard, S. R., Simko, I., Mammel, M. K., Richter, T. K., & Brandl, M. T. (2021). Seasonality, shelf life and storage atmosphere are main drivers of the microbiome and E. coli O157: H7 colonization of post-harvest lettuce cultivated in a major production area in California. Environmental Microbiome, 16(1), 1-23.

Li, Y., Brackett, R. E., Chen, J., & Beuchat, L. R. (2001). Survival and growth of Escherichia coli O157: H7 inoculated onto cut lettuce before or after heating in chlorinated water, followed by storage at 5 or 15 C. Journal of Food Protection, 64(3), 305-309.

Liao, C.-H., & Fett, W. F. (2001). Analysis of native microflora and selection of strains antagonistic to human pathogens on fresh produce. Journal of Food Protection, 64(8), 1110-1115.

Liao, C., & Wang, L. (2021). Evaluation of the bacterial populations present in Spring Mix salad and their impact on the behavior of Escherichia coli O157: H7. Food Control, 124, 107865.

Lim, J.-A., Lee, D. H., Kim, B.-Y., & Heu, S. (2014). Draft genome sequence of Pantoea agglomerans R190, a producer of antibiotics against phytopathogens and foodborne pathogens. Journal of Biotechnology, 188, 7-8.

Lindow, S. E., & Brandl, M. T. (2003). Microbiology of the phyllosphere. Applied and Environmental Microbiology, 69(4), 1875-1883.

Liu, S., Tang, Y., Wang, D., Lin, N., & Zhou, J. (2016). Identification and characterization of a new Enterobacter onion bulb decay caused by Lelliottia amnigena in China. Appl Microbiol Open Access, 2(2).

Lopez-Velasco, G. (2010). Molecular characterization of spinach (Spinacia oleracea) microbial community structure and its interaction with Escherichia coli O157: H7 in modified atmosphere conditions. Virginia Tech,

Lopez-Velasco, G., Carder, P. A., Welbaum, G. E., & Ponder, M. A. (2013). Diversity of the spinach (Spinacia oleracea) spermosphere and phyllosphere bacterial communities. FEMS microbiology letters, 346(2), 146-154.

Lopez-Velasco, G., Tydings, H. A., Boyer, R. R., Falkinham III, J. O., & Ponder, M. A. (2012). Characterization of interactions between Escherichia coli O157: H7 with epiphytic bacteria in vitro and on spinach leaf surfaces. International Journal of Food Microbiology, 153(3), 351-357.

Lopez-Velasco, G., Welbaum, G. E., Falkinham III, J. O., & Ponder, M. A. (2011). Phyllopshere bacterial community structure of spinach (Spinacia oleracea) as affected by cultivar and environmental conditions at time of harvest. Diversity, 3(4), 721-738.

Lopez‐Velasco, G., Welbaum, G., Boyer, R., Mane, S., & Ponder, M. (2011). Changes in spinach phylloepiphytic bacteria communities following minimal processing and refrigerated storage described using pyrosequencing of 16S rRNA amplicons. Journal of applied microbiology, 110(5), 1203-1214.

Luziatelli, F., Ficca, A. G., Colla, G., Baldassarre Švecová, E., & Ruzzi, M. (2019). Foliar application of vegetal-derived bioactive compounds stimulates the growth of beneficial bacteria and enhances microbiome biodiversity in lettuce. Frontiers in plant science, 10, 60.

Lymperopoulou, D. S., Adams, R. I., & Lindow, S. E. (2016). Contribution of vegetation to the microbial composition of nearby outdoor air. Applied and Environmental Microbiology, 82(13), 3822-3833.

Manini, F., Casiraghi, M., Poutanen, K., Brasca, M., Erba, D., & Plumed-Ferrer, C. (2016). Characterization of lactic acid bacteria isolated from wheat bran sourdough. Lwt-Food Science and Technology, 66, 275-283.

Markland, S. M., Ferelli, A. M., Craighead, S. A., Bais, H., & Kniel, K. E. (2015). Application of Bacillus subtilis to the roots of leafy greens, in the presence of Listeria innocua and Salmonella Newport, induces closure of stomata. Foodborne Pathogens and Disease, 12(10), 828-835.

Martín, I., Rodríguez, A., Delgado, J., & Córdoba, J. J. (2022). Strategies for biocontrol of Listeria monocytogenes using lactic acid bacteria and their metabolites in ready-to-eat meat-and dairy-ripened products. Foods, 11(4), 542.

McManamon, O., Kaupper, T., Scollard, J., & Schmalenberger, A. (2019). Nisin application delays growth of Listeria monocytogenes on fresh-cut iceberg lettuce in modified atmosphere packaging, while the bacterial community structure changes within one week of storage. Postharvest Biology and Technology, 147, 185-195.

Medina-Martínez, M. S., Allende, A., Barberá, G. G., & Gil, M. I. (2015). Climatic variations influence the dynamic of epiphyte bacteria of baby lettuce. Food Research International, 68, 54-61.

Mellefont, L. A., McMeekin, T. A., & Ross, T. (2008). Effect of relative inoculum concentration on Listeria monocytogenes growth in co-culture. International Journal of Food Microbiology, 121(2), 157-168. doi:10.1016/j.ijfoodmicro.2007.10.010

Meltzer, T. H., & Jornitz, M. W. (2003). The sterilizing filter and its pore size rating. American Pharmaceutical Review, 6, 44-53.

Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 37(5), 634-663.

Mitra, R., Cuesta-Alonso, E., Wayadande, A., Talley, J., Gilliland, S., & Fletcher, J. (2009). Effect of route of introduction and host cultivar on the colonization, internalization, and movement of the human pathogen Escherichia coli O157: H7 in spinach. Journal of Food Protection, 72(7), 1521-1530.

Mohite, B. V., Koli, S. H., & Patil, S. V. (2018). Heavy metal stress and its consequences on exopolysaccharide (EPS)-producing Pantoea agglomerans. Applied biochemistry and biotechnology, 186(1), 199-216.

Monier, J.-M., & Lindow, S. (2003). Pseudomonas syringae responds to the environment on leaves by cell size reduction. Phytopathology, 93(10), 1209-1216.

Monier, J.-M., & Lindow, S. (2004). Frequency, size, and localization of bacterial aggregates on bean leaf surfaces. Applied and Environmental Microbiology, 70(1), 346-355.

Monier, J.-M., & Lindow, S. (2005). Spatial organization of dual-species bacterial aggregates on leaf surfaces. Applied and Environmental Microbiology, 71(9), 5484-5493.

Morris, C. E., Monier, J.-M., & Jacques, M.-A. (1998). A technique to quantify the population size and composition of the biofilm component in communities of bacteria in the phyllosphere. Applied and Environmental Microbiology, 64(12), 4789-4795.

Mossel, D. A. A., Corry, J. E. L., Struijk, C. B., & Baird, R. M. (1995). Essentials of the Microbiology of Foods: a textbook for advanced studies.

Nathan, P., Rathinam, X., Kasi, M., Rahman, Z. A., & Subramaniam, S. (2011). A pilot study on the isolation and biochemical characterization of Pseudomonas from chemical intensive rice ecosystem. African Journal of Biotechnology, 10(59), 12653-12656.

Nei, D., Choi, J.-W., Bari, M. L., Kawasaki, S., Kawamoto, S., & Inatsu, Y. (2009). Efficacy of chlorine and acidified sodium chlorite on microbial population and quality changes of spinach leaves. Foodborne Pathogens and Disease, 6(5), 541-546.

Neto, N. J. G., Pessoa, R. M. L., Queiroga, I. M. B. N., Magnani, M., de Sousa Freitas, F. I., de Souza, E. L., & Maciel, J. F. (2012). Bacterial counts and the occurrence of parasites in lettuce (Lactuca sativa) from different cropping systems in Brazil. Food Control, 28(1), 47-51.

Nguyen‐the, C., & Carlin, F. (1994). The microbiology of minimally processed fresh fruits and vegetables. Critical Reviews in Food Science & Nutrition, 34(4), 371-401.

NicAogáin, K., & O’Byrne, C. P. (2016). The role of stress and stress adaptations in determining the fate of the bacterial pathogen Listeria monocytogenes in the food chain. Frontiers in Microbiology, 7, 1865.

Niemira, B. (2008). Irradiation compared with chlorination for elimination of Escherichia coli O157: H7 internalized in lettuce leaves: influence of lettuce variety. Journal of Food Science, 73(5), M208-M213.

Nilsson, L., Gram, L., & Huss, H. H. (1999). Growth control of Listeria monocytogenes on cold-smoked salmon using a competitive lactic acid bacteria flora. Journal of Food Protection, 62(4), 336-342.

Noirot-Gros, M.-F., Forrester, S., Malato, G., Larsen, P. E., & Noirot, P. (2019). CRISPR interference to interrogate genes that control biofilm formation in Pseudomonas fluorescens. Scientific Reports, 9(1), 1-14.

Nunes, M. C., & Emond, J. P. (2002). Storage temperature. In. Retrieved from https://irrec.ifas.ufl.edu/postharvest/HOS_5085C/Reading%20Assignments/BartzBrecht-8-Temperature.pdf

Ogunbanwo, S., Sanni, A., & Onilude, A. (2003). Influence of cultural conditions on the production of bacteriocin by Lactobacillus brevis OG1. African Journal of Biotechnology, 2(7), 179-184.

Ohgiwari, M., Matsushita, M., & Matsuyama, T. (1992). Morphological changes in growth phenomena of bacterial colony patterns. Journal of the Physical Society of Japan, 61(3), 816-822.

Oliveira, M., Usall, J., Vinas, I., Anguera, M., Gatius, F., & Abadias, M. (2010). Microbiological quality of fresh lettuce from organic and conventional production. Food Microbiology, 27(5), 679-684.

Ongeng, D., Ryckeboer, J., Vermeulen, A., & Devlieghere, F. (2007). The effect of micro-architectural structure of cabbage substratum and or background bacterial flora on the growth of Listeria monocytogenes. International Journal of Food Microbiology, 119(3), 291-299.

Osei, R., Yang, C., Cui, L., Ma, T., Li, Z., & Boamah, S. (2022). Isolation, identification, and pathogenicity of Lelliottia amnigena causing soft rot of potato tuber in China. Microbial Pathogenesis, 164, 105441.

Ottesen, A. R., Gorham, S., Pettengill, J. B., Rideout, S., Evans, P., & Brown, E. (2015). The impact of systemic and copper pesticide applications on the phyllosphere microflora of tomatoes. Journal of the Science of Food and Agriculture, 95(5), 1116-1125.

Ottesen, A. R., Gorham, S., Reed, E., Newell, M. J., Ramachandran, P., Canida, T., Allard, M., Evans, P., Brown, E., & White, J. R. (2016). Using a control to better understand phyllosphere microbiota. PloS one, 11(9), e0163482.

Ottesen, A. R., Telias, A., White, J. R., Newell, M. J., Pahl, D., Brown, E. W., Musser, S., & Walsh, C. (2016). Bacteria of tomatoes managed with well water and pond water: Impact of agricultural water sources on carposphere microbiota. Int J Environ Agric Res, 2, 2454-1850.

Ottesen, A. R., White, J. R., Skaltsas, D. N., Newell, M. J., & Walsh, C. S. (2009). Impact of organic and conventional management on the phyllosphere microbial ecology of an apple crop. Journal of Food Protection, 72(11), 2321-2325.

Ouwehand, A. C., & Vesterlund, S. (2004). Antimicrobial components from lactic acid bacteria. FOOD SCIENCE AND TECHNOLOGY-NEW YORK-MARCEL DEKKER-, 139, 375-396.

Pandey, A., Jain, R., Sharma, A., Dhakar, K., Kaira, G. S., Rahi, P., Dhyani, A., Pandey, N., Adhikari, P., & Shouche, Y. S. (2019). 16S rRNA gene sequencing and MALDI-TOF mass spectrometry based comparative assessment and bioprospection of psychrotolerant bacteria isolated from high altitudes under mountain ecosystem. SN Applied Sciences, 1(3), 1-12.

Pérez-Velázquez, J., Schlicht, R., Dulla, G., Hense, B., Kuttler, C., & Lindow, S. (2012). Stochastic modeling of Pseudomonas syringae growth in the phyllosphere. Mathematical Biosciences, 239(1), 106-116.

Poppe, L., Vanhoutte, S., & Höfte, M. (2003). Modes of action of Pantoea agglomerans CPA-2, an antagonist of postharvest pathogens on fruits. European Journal of Plant Pathology, 109(9), 963-973.

Posada-Izquierdo, G. D., Pérez-Rodríguez, F., López-Gálvez, F., Allende, A., Selma, M. V., Gil, M. I., & Zurera, G. (2013). Modelling growth of Escherichia coli O157: H7 in fresh-cut lettuce submitted to commercial process conditions: chlorine washing and modified atmosphere packaging. Food Microbiology, 33(2), 131-138.

Pothakos, V., Taminiau, B., Huys, G., Nezer, C., Daube, G., & Devlieghere, F. (2014). Psychrotrophic lactic acid bacteria associated with production batch recalls and sporadic cases of early spoilage in Belgium between 2010 and 2014. International Journal of Food Microbiology, 191, 157-163.

Poza-Carrion, C., Suslow, T., & Lindow, S. (2013). Resident bacteria on leaves enhance survival of immigrant cells of Salmonella enterica. Phytopathology, 103(4), 341-351.

Preston, G. M. (2004). Plant perceptions of plant growth-promoting Pseudomonas. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 359(1446), 907-918.

Profel. (2020). Hygiene guidelines for the control of Listeria monocytogenes in the production of quick-frozen vegetables. Retrieved from https://profel-europe.eu/news/profel-announces-new-sector-hygiene-guidelines-in-control-of-listeria-monocytogenes-for-frozen-vegetables/

Pujol, M., Badosa, E., Cabrefiga, J., & Montesinos, E. (2005). Development of a strain-specific quantitative method for monitoring Pseudomonas fluorescens EPS62e, a novel biocontrol agent of fire blight. FEMS microbiology letters, 249(2), 343-352.

Pusey, P., Stockwell, V., Reardon, C., Smits, T., & Duffy, B. (2011). Antibiosis activity of Pantoea agglomerans biocontrol strain E325 against Erwinia amylovora on apple flower stigmas. Phytopathology, 101(10), 1234-1241.

Quince, C., Walker, A. W., Simpson, J. T., Loman, N. J., & Segata, N. (2017). Shotgun metagenomics, from sampling to analysis. Nature biotechnology, 35(9), 833-844.

Raaijmakers, J. M., Vlami, M., & De Souza, J. T. (2002). Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek, 81(1), 537-547.

Ragaert, P. (2005). Significance of microbiological degradation processes on sensory quality of packaged strawberries and minimally processed mixed lettuce during storage. Ghent University,

Ragaert, P., Devlieghere, F., Devuyst, E., Dewulf, J., Van Langenhove, H., & Debevere, J. (2006). Volatile metabolite production of spoilage micro-organisms on a mixed-lettuce agar during storage at 7 C in air and low oxygen atmosphere. International Journal of Food Microbiology, 112(2), 162-170.

Ragaert, P., Devlieghere, F., Loos, S., Dewulf, J., Van Langenhove, H., & Debevere, J. (2006). Metabolite production of yeasts on a strawberry-agar during storage at 7 C in air and low oxygen atmosphere. Food Microbiology, 23(2), 154-161.

Ragaert, P., Verbeke, W., Devlieghere, F., & Debevere, J. (2004). Consumer perception and choice of minimally processed vegetables and packaged fruits. Food quality and preference, 15(3), 259-270.

RASFF. (2020a). Detection of Listeria Monocytogenes in organic salad leaves. Retrieved from https://webgate.ec.europa.eu/rasff-window/screen/notification/433648

RASFF. (2020b). E Coli Outbreak. Retrieved from https://webgate.ec.europa.eu/rasff-window/screen/notification/439164

RASFF. (2020c). Listeria in fresh salad. Retrieved from https://webgate.ec.europa.eu/rasff-window/screen/notification/437742

RASFF. (2020d). Listeria monocytogenes in Cavolo nero. Retrieved from https://webgate.ec.europa.eu/rasff-window/screen/notification/419960

RASFF. (2020e). Listeria spp (present/25g) in arugula lettuce. Retrieved from https://webgate.ec.europa.eu/rasff-window/screen/notification/419305

RASFF. (2020f). Salmonella detected in rucola packed in Poland, with raw material from Italy. Retrieved from https://webgate.ec.europa.eu/rasff-window/screen/notification/440616

RASFF. (2020g). Salmonella in fresh spinach. Retrieved from https://webgate.ec.europa.eu/rasff-window/screen/notification/430786

RASFF. (2021a). Salmonella enterica ser. Typhimurium in chilled waterleaves (Talinum triangulare) and Salmonella enterica ser. Redlands in chilled wild spinach (Gnetum africanum) from Cameroon. Retrieved from https://webgate.ec.europa.eu/rasff-window/screen/notification/522451

RASFF. (2021b). Shigatoxin-producing Escherichia coli (stx1 +, stx2 + /25g) in romaine lettuce from The Netherlands. Retrieved from https://webgate.ec.europa.eu/rasff-window/screen/notification/512147

Rastogi, G., Coaker, G. L., & Leveau, J. H. (2013). New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. FEMS microbiology letters, 348(1), 1-10.

Rastogi, G., Sbodio, A., Tech, J. J., Suslow, T. V., Coaker, G. L., & Leveau, J. H. (2012). Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce. The ISME journal, 6(10), 1812-1822.

Rezzonico, F., Smits, T. H., Montesinos, E., Frey, J. E., & Duffy, B. (2009). Genotypic comparison of Pantoea agglomerans plant and clinical strains. BMC microbiology, 9(1), 1-18.

Rodgers, S. L., Cash, J. N., Siddiq, M., & Ryser, E. T. (2004). A comparison of different chemical sanitizers for inactivating Escherichia coli O157: H7 and Listeria monocytogenes in solution and on apples, lettuce, strawberries, and cantaloupe. Journal of Food Protection, 67(4), 721-731.

Roller, S. (2012). Essential microbiology and hygiene for food professionals: Hodder Arnold.

Rosberg, A. K., Darlison, J., Mogren, L., & Alsanius, B. W. (2021). Commercial wash of leafy vegetables do not significantly decrease bacterial load but leads to shifts in bacterial species composition. Food Microbiology, 94, 103667.

Saier Jr, M. H., Ye, J.-J., Klinke, S., & Nino, E. (1996). Identification of an anaerobically induced phosphoenolpyruvate-dependent fructose-specific phosphotransferase system and evidence for the Embden-Meyerhof glycolytic pathway in the heterofermentative bacterium Lactobacillus brevis. Journal of bacteriology, 178(1), 314-316.

Saldaña, Z., Sánchez, E., Xicohtencatl-Cortes, J., Puente, J. L., & Girón, J. A. (2011). Surface structures involved in plant stomata and leaf colonization by Shiga-toxigenic Escherichia coli O157: H7. Frontiers in Microbiology, 2, 119.

Sanchez, S., Chávez, A., Forero, A., García-Huante, Y., Romero, A., Sánchez, M., Rocha, D., Sánchez, B., Avalos, M., & Guzmán-Trampe, S. (2010). Carbon source regulation of antibiotic production. The Journal of antibiotics, 63(8), 442-459.

Sanchez, S., & Demain, A. L. (2008). Metabolic regulation and overproduction of primary metabolites. Microbial biotechnology, 1(4), 283-319.

Sarniguet, A., Kraus, J., Henkels, M. D., Muehlchen, A. M., & Loper, J. E. (1995). The sigma factor sigma s affects antibiotic production and biological control activity of Pseudomonas fluorescens Pf-5. Proceedings of the National Academy of Sciences, 92(26), 12255-12259.

Scatassa, M. L., Gaglio, R., Cardamone, C., Macaluso, G., Arcuri, L., Todaro, M., & Mancuso, I. (2017). Anti-Listeria activity of lactic acid bacteria in two traditional Sicilian cheeses. Italian Journal of Food Safety, 6(1).

Schlechter, R. O., Miebach, M., & Remus-Emsermann, M. N. (2019). Driving factors of epiphytic bacterial communities: a review. Journal of advanced research, 19, 57-65.

Schuenzel, K. M., & Harrison, M. A. (2002). Microbial antagonists of foodborne pathogens on fresh, minimally processed vegetables. Journal of Food Protection, 65(12), 1909-1915.

Scientific Institute of Public Health. (2016). Belgian National Food Consumption Survey.

Seo, K., & Frank, J. (1999). Attachment of Escherichia coli O157: H7 to lettuce leaf surface and bacterial viability in response to chlorine treatment as demonstrated by using confocal scanning laser microscopy. Journal of Food Protection, 62(1), 3-9.

Shenoy, A. G., Oliver, H. F., & Deering, A. J. (2017). Listeria monocytogenes internalizes in romaine lettuce grown in greenhouse conditions. Journal of Food Protection, 80(4), 573-581.

Silby, M. W., Winstanley, C., Godfrey, S. A., Levy, S. B., & Jackson, R. W. (2011). Pseudomonas genomes: diverse and adaptable. FEMS Microbiology Reviews, 35(4), 652-680.

Sip, A., Więckowicz, M., Olejnik-Schmidt, A., & Grajek, W. (2012). Anti-Listeria activity of lactic acid bacteria isolated from golka, a regional cheese produced in Poland. Food Control, 26(1), 117-124.

Solano, C., Echeverz, M., & Lasa, I. (2014). Biofilm dispersion and quorum sensing. Current opinion in microbiology, 18, 96-104.

Stopforth, J., Mai, T., Kottapalli, B., & Samadpour, M. (2008). Effect of acidified sodium chlorite, chlorine, and acidic electrolyzed water on Escherichia coli O157: H7, Salmonella, and Listeria monocytogenes inoculated onto leafy greens. Journal of Food Protection, 71(3), 625-628.

Sun, Y., Snow, D., Walia, H., & Li, X. (2021). Transmission routes of the microbiome and resistome from manure to soil and lettuce. Environmental Science & Technology, 55(16), 11102-11112.

Superior Heath Council. (2019). Dietary Guidelines for the Belgian Adult Population. Retrieved from https://www.health.belgium.be/en/advisory-report-9284-fbdg-2019

Takeuchi, K., Matute, C. M., Hassan, A. N., & Frank, J. F. (2000). Comparison of the attachment of Escherichia coli O157: H7, Listeria monocytogenes, Salmonella Typhimurium, and Pseudomonas fluorescens to lettuce leaves. Journal of Food Protection, 63(10), 1433-1437.

Tatsika, S., Karamanoli, K., Karayanni, H., & Genitsaris, S. (2019). Metagenomic characterization of bacterial communities on ready-to-eat vegetables and effects of household washing on their diversity and composition. Pathogens, 8(1), 37.

Tenzin, S., Ogunniyi, A. D., Ferro, S., Deo, P., & Trott, D. J. (2020). Effects of an Eco-Friendly Sanitizing Wash on Spinach Leaf Bacterial Community Structure and Diversity. Applied Sciences, 10(8), 2986.

Teplitski, M., Barak, J. D., & Schneider, K. R. (2009). Human enteric pathogens in produce: un-answered ecological questions with direct implications for food safety. Current Opinion in Biotechnology, 20(2), 166-171.

Tho, K., Wiriyajitsomboon, P., & Hausbeck, M. (2015). First report of Pantoea agglomerans causing onion leaf blight and bulb rot in Michigan. Plant Disease, 99(7), 1034-1034.

Toivonen, P. M., Brandenburg, J. S., & Luo, Y. (2009). Modified atmosphere packaging for fresh-cut produce. Modified and controlled atmospheres for the storage, transportation, and packaging of horticultural commodities, 463-489.

Torres-Cortés, G., Bonneau, S., Bouchez, O., Genthon, C., Briand, M., Jacques, M.-A., & Barret, M. (2018). Functional microbial features driving community assembly during seed germination and emergence. Frontiers in plant science, 9, 902.

Tournas, V. (2005). Spoilage of vegetable crops by bacteria and fungi and related health hazards. Critical Reviews in Microbiology, 31(1), 33-44.

Trivedi, P., Mattupalli, C., Eversole, K., & Leach, J. E. (2021). Enabling sustainable agriculture through understanding and enhancement of microbiomes. New Phytologist, 230(6), 2129-2147.

Truchado, P., Elsser-Gravesen, A., Gil, M. I., & Allende, A. (2020). Post-process treatments are effective strategies to reduce Listeria monocytogenes on the surface of leafy greens: A pilot study. International Journal of Food Microbiology, 313, 108390.

Truchado, P., Gil, M. I., Reboleiro, P., Rodelas, B., & Allende, A. (2017). Impact of solar radiation exposure on phyllosphere bacterial community of red-pigmented baby leaf lettuce. Food Microbiology, 66, 77-85.

Truchado, P., Gil, M. I., Suslow, T., & Allende, A. (2018). Impact of chlorine dioxide disinfection of irrigation water on the epiphytic bacterial community of baby spinach and underlying soil. PloS one, 13(7), e0199291.

Truong, H. N., Garmyn, D., Gal, L., Fournier, C., Sevellec, Y., Jeandroz, S., & Piveteau, P. (2021). Plants as a realized niche for Listeria monocytogenes. MicrobiologyOpen, 10(6), e1255.

Tudela, J. A., Marín, A., Garrido, Y., Cantwell, M., Medina-Martínez, M. S., & Gil, M. I. (2013). Off-odour development in modified atmosphere packaged baby spinach is an unresolved problem. Postharvest Biology and Technology, 75, 75-85.

Tusnio, A., Taciak, M., Barszcz, M., Paradziej-Lukowicz, J., Oledzka, I., Wiczkowski, W., Szumska, M., Patusuzewska, B., & Skomial, J. (2014). Thermal sterilization affects the content of selected compounds in diets for laboratory animals. J Anim Feed Sci, 23, 351-360.

Uhlig, E., Kjellström, A., Nurminen, N., Olsson, C., Oscarsson, E., Canaviri-Paz, P., Mogren, L., Alsanius, B., Molin, G., & Håkansson, Å. (2021). Use of bacterial strains antagonistic to Escherichia coli for biocontrol of spinach: A field trial. Innovative Food Science & Emerging Technologies, 74, 102862.

Uyttendaele, M., De Loy-Hendrickx, A., Vermeulen, A., Jacxsens, L., Debevere, J., & Devlieghere, F. (2018). Microbiological Guidelines, Support for Interpretation of Microbiological Test Results of Foods: die Keure.

Vacher, C., Hampe, A., Porté, A. J., Sauer, U., Compant, S., & Morris, C. E. (2016). The phyllosphere: microbial jungle at the plant–climate interface. Annual review of ecology, evolution, and systematics, 47, 1-24.

Van der Linden, I., Llano, K. R. A., Eriksson, M., De Vos, W. H., Van Damme, E. J., Uyttendaele, M., & Devlieghere, F. (2016). Minimal processing of iceberg lettuce has no substantial influence on the survival, attachment and internalization of E. coli O157 and Salmonella. International Journal of Food Microbiology, 238, 40-49.

Van Der Wal, A., Tecon, R., Kreft, J.-U., Mooij, W. M., & Leveau, J. H. (2013). Explaining bacterial dispersion on leaf surfaces with an individual-based model (PHYLLOSIM). PloS one, 8(10), e75633.

Vermeersch, M., Van Paepeghem, C., Van Reepingen, A., & Van Steenlandt, S. (2020). Slimme technieken voor snelle detectie van pathogenen in dranken. Ghent University,

Vorholt, J. A. (2012). Microbial life in the phyllosphere. Nature Reviews Microbiology, 10(12), 828-840.

Walterson, A. M., & Stavrinides, J. (2015). Pantoea: insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiology Reviews, 39(6), 968-984.

Wang, Y., Hammes, F., Boon, N., & Egli, T. (2007). Quantification of the filterability of freshwater bacteria through 0.45, 0.22, and 0.1 μm pore size filters and shape-dependent enrichment of filterable bacterial communities. Environmental Science & Technology, 41(20), 7080-7086.

Wei, H., Wolf, G., & Hammes, W. P. (2006). Indigenous microorganisms from iceberg lettuce with adherence and antagonistic potential for use as protective culture. Innovative Food Science & Emerging Technologies, 7(4), 294-301.

Weiss, A., Scheller, F., Oggenfuss, M., Walsh, F., Frey, J. E., Drissner, D., & Schmidt, H. (2016). Analysis of the bacterial epiphytic microbiota of oak leaf lettuce with 16S ribosomal RNA gene analysis. Journal of Microbiology, Biotechnology and Food Sciences, 5(3), 271-276.

Whittenbury, R. (1964). Hydrogen peroxide formation and catalase activity in the lactic acid bacteria. Microbiology, 35(1), 13-26.

WHO. (2018a). E. coli. Retrieved from https://www.who.int/news-room/fact-sheets/detail/e-coli

WHO. (2018b). Salmonella (non-typhoidal). Retrieved from https://www.who.int/news-room/fact-sheets/detail/salmonella-(non-typhoidal)

WHO. (2020). Healthy Diet. Retrieved from https://www.who.int/news-room/fact-sheets/detail/healthy-diet

Williams, T. R., & Marco, M. L. (2014). Phyllosphere microbiota composition and microbial community transplantation on lettuce plants grown indoors. MBio, 5(4), e01564-01514.

Wilson, M., & Lindow, S. (1993). Interactions between the biological control agent Pseudomonas fluorescens A506 and Erwinia amylovora in pear blossoms. Phytopathology, 83(1), 117-123.

Winand, R., Bogaerts, B., Hoffman, S., Lefevre, L., Delvoye, M., Van Braekel, J., Fu, Q., Roosens, N. H., De Keersmaecker, S. C., & Vanneste, K. (2020). Targeting the 16s rRNA gene for bacterial identification in complex mixed samples: Comparative evaluation of second (illumina) and third (oxford nanopore technologies) generation sequencing technologies. International journal of molecular sciences, 21(1), 298.

Workentine, M. L., Harrison, J. J., Weljie, A. M., Tran, V. A., Stenroos, P. U., Tremaroli, V., Vogel, H. J., Ceri, H., & Turner, R. J. (2010). Phenotypic and metabolic profiling of colony morphology variants evolved from Pseudomonas fluorescens biofilms. Environmental Microbiology, 12(6), 1565-1577.

Wulfkuehler, S., Kurfiss, L., Kammerer, D. R., Weiss, A., Schmidt, H., & Carle, R. (2013). Impact of different washing procedures on quality of fresh-cut iceberg lettuce (Lactuca sativa var. capitata L.) and endive (Cichorium endivia L.). European Food Research and Technology, 236(2), 229-241.

Xu, N., Zhao, Q., Zhang, Z., Zhang, Q., Wang, Y., Qin, G., Ke, M., Qiu, D., Peijnenburg, W., & Lu, T. (2022). Phyllosphere Microorganisms: Sources, Drivers, and Their Interactions with Plant Hosts. Journal of agricultural and food chemistry.

Yamada, K., Saijo, Y., Nakagami, H., & Takano, Y. (2016). Regulation of sugar transporter activity for antibacterial defense in Arabidopsis. Science, 354(6318), 1427-1430.

Yang, X., Noyes, N. R., Doster, E., Martin, J. N., Linke, L. M., Magnuson, R. J., Yang, H., Geornaras, I., Woerner, D. R., Jones, K. L., Ruiz, J., Boucher, C., Morley, P. S., & Belk, K. E. (2016). Use of Metagenomic Shotgun Sequencing Technology To Detect Foodborne Pathogens within the Microbiome of the Beef Production Chain. Applied and Environmental Microbiology, 82(8), 2433-2443.

Ye, J.-J., & Saier Jr, M. H. (1995). Allosteric regulation of the glucose: H+ symporter of Lactobacillus brevis: cooperative binding of glucose and HPr (ser-P). Journal of bacteriology, 177(7), 1900-1902.

Yi, L., Dang, J., Zhang, L., Wu, Y., Liu, B., & Lü, X. (2016). Purification, characterization and bactericidal mechanism of a broad spectrum bacteriocin with antimicrobial activity against multidrug-resistant strains produced by Lactobacillus coryniformis XN8. Food Control, 67, 53-62.

Yi, L., Li, X., Luo, L., Lu, Y., Yan, H., Qiao, Z., & Lü, X. (2018). A novel bacteriocin BMP11 and its antibacterial mechanism on cell envelope of Listeria monocytogenes and Cronobacter sakazakii. Food Control, 91, 160-169.

Yin, H. B., Gu, G.-V. T., Nou, X., & Patel, J. (2018). Impact of wastewater and roof-harvest water irrigation on microbial quality of spinach. International Association for Food Protection, 162.

Yin, H. B., Gu, G., Nou, X., & Patel, J. (2019). Comparative evaluation of irrigation waters on microbiological safety of spinach in field. Journal of applied microbiology, 127(6), 1889-1900.

Yu, Y.-C., Yum, S.-J., Jeon, D.-Y., & Jeong, H.-G. (2018). Analysis of the microbiota on lettuce (Lactuca sativa L.) cultivated in South Korea to identify foodborne pathogens. Journal of microbiology and biotechnology, 28(8), 1318-1331.

Zacharof, M., & Lovitt, R. (2012). Bacteriocins produced by lactic acid bacteria a review article. Apcbee Procedia, 2, 50-56.

Zaid, A. M., Bonasera, J. M., & Beer, S. V. (2012). OEM—A new medium for rapid isolation of onion-pathogenic and onion-associated bacteria. Journal of microbiological methods, 91(3), 520-526.

Zelezniak, A., Andrejev, S., Ponomarova, O., Mende, D. R., Bork, P., & Patil, K. R. (2015). Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proceedings of the National Academy of Sciences, 112(20), 6449-6454.

Zhang, G., Ma, L., Phelan, V. H., & Doyle, M. P. (2009). Efficacy of antimicrobial agents in lettuce leaf processing water for control of Escherichia coli O157: H7. Journal of Food Protection, 72(7), 1392-1397.

Zilelidou, E. A., & Skandamis, P. N. (2018). Growth, detection and virulence of Listeria monocytogenes in the presence of other microorganisms: microbial interactions from species to strain level. International Journal of Food Microbiology, 277, 10-25.

Zwietering, M. H., Garre, A., Wiedmann, M., & Buchanan, R. L. (2021). All food processes have a residual risk, some are small, some very small and some are extremely small: zero risk does not exist. Current Opinion in Food Science, 39, 83-92.

 

Genomineerde shortlist Scriptieprijs
Universiteit of Hogeschool
Universiteit Gent
Thesis jaar
2022
Promotor(en)
prof. dr. ir. Mieke Uyttendaele, prof. dr. ir. Frank Devlieghere, ir. Thomas De Bock