De mier Crematogaster scutellaris als biologische bestrijders van Spodoptera littoralis en haar interactie met de gaasvlieg Chrysoperla carnea

Mathijs Hast
Persbericht

In de toekomst mieren in de plaats van pesticiden?

Mieren zijn overal terug te vinden. Veel mensen zien hen als de beestjes die rondkruipen op het terras en er nesten in bouwen, maar ze hebben het lang niet enkel op terrasvoegen gemunt.

Wat voor nuttigs doen mieren dan?

Andere organismen die in de nabijheid van mieren leven, krijgen het soms zwaar te verduren. Het zijn beruchte predatoren. Ze ontzien het niet om andere organismen vele malen groter dan henzelf aan te vallen. Zelfs de Afrikaanse olifant mijdt acaciabomen die bezet zijn met mieren. Ze verdedigen hun territorium tot de laatste mier en werken daarbij wonderwel samen. Het zijn slecht enkele interessante troefkaarten die van hen een interessant alternatief maken voor de pesticiden die vandaag de dag grootschalig ingezet worden in de landbouw.

Het concept achter het beschermen van gewassen met levende organismen noemt biologische bestrijding. Dat houdt in dat, net zoals dat in de natuur gebeurd, de schadelijke beestjes die onze gewassen aanvallen met nuttige organismen bestreden kunnen worden. De eerste ‘biologische bestrijders’ waren mieren. Stel dat je in Zuidoost-Azië op vakantie gaat. Dan bestaat de kans dat er een specifieke soort mieren ("weverwiermen") over het fruit dat je daar in de winkel vindt, heeft gelopen. Door de wevermieren in te zetten kunnen de lokale boeren minder pesticiden gebruiken.

Mieren voor Belgische landbouwers

Vandaag de dag worden ook in onze streken al diverse organismen ingezet om onze teelten te beschermen, maar nog nooit werd dit met mieren gedaan. In ons Belgische klimaat is het niet vanzelfsprekend om zuiderse planten, zoals tomaten, te kweken. Daarom worden bij ons verschillende groente- en siergewassen in kassen gekweekt: lekker warm en makkelijk om gecontroleerd water te geven. Dit onderzoek was gericht op de Mediterrane mierensoort Crematogaster scutellaris om in die kassen rupsen op de planten te bestrijden. Het is een mierensoort die bij ons niet in de natuur voorkomt, maar is aangepast aan de warmte en de droogte van het Middellandse Zeegebied. Net daarom zijn ze interessant voor gebruik in onze kassen. Ze zijn daarnaast bijzonder agressief tegenover ander organismen en dus interessant om te bestuderen als biologische bestrijders van plaagsoorten.

De mierenkolonies worden in het labo gekweekt om ze in te zetten in de serre.

Rupsen vormen een hardnekkig probleem in kasteelten voor landbouwers. Door de verhoogde temperatuur in serres groeien ze bijzonder snel en zijn ze daardoor moeilijk tijdig te bestrijden. Er zijn tot op vandaag weinig andere middelen dan pesticiden om ze mee te lijf te gaan.

Testen in het labo en in het veld

In dit onderzoek is eerst onderzocht of de mieren in een afgesloten container bij constante temperatuur en relatieve vochtigheid in labo staat waren om de rupsen te bestrijden op een bonenplant. In die beperkte ruimte bleek de predatie een succes te zijn. Hoe meer mieren, hoe sneller het aantal rupsen afnam. Er kon zelfs aangetoond worden dat hoe meer mieren ingezet worden, hoe minder de rupsen van de bladeren eten.

Daarna is in een serre bekeken of onze mierensoort Crematogaster scutellaris bij sterke fluctuaties van de temperatuur en de relatieve vochtigheid nog steeds goed presteert. De resultaten zijn vergeleken met de bestrijding door een gevestigde waarde onder de biologische bestrijders, de groene gaasvlieg. De larven van de groene gaasvlieg eten zowat alles op hun pad dat beweegt, en worden soms ook ingezet tegen rupsen. Gedurende veertien dagen werden de mieren losgelaten op de rupsen.

Twee mieren vallen een rups aan in de serre.

Uit dat serre-experiment werd duidelijk dat het relatief eenvoudig is om de mierensoort in een serre uit te zetten. Na veertien dagen bleek dat de predatie door de mieren middelmatig tot zeer goed te slagen. De mieren scoorden op dat vlak slechter dan de gaasvlieglarven, die er steevast perfect in slaagden om de rupsenplaag in toom te houden. Uit de klimaatdata van de serre bleek dat de nachtelijke temperatuur in de serre wellicht te laag lag om onze mierensoort optimaal te laten aanvallen. De gaasvlieglarven hadden wellicht minder last van de nachtelijke kou.

Maar na veertien dagen was gemiddeld 85% procent van de mieren nog in leven ten opzichte van 8,5% van de gaasvlieglarven. De mieren bleken beter in staat te zijn in de serre te overleven dan de gaasvlieglarven. Dat schept de mogelijkheid om hen langdurig in de serre te houden om teelten preventief te beschermen.

Deze mierensoort blijkt dus een potentieel te hebben als biologische bestrijder van rupsen. De toekomst kan er ene zijn waarin mieren niet enkel onze terrasvoegen terroriseren, maar ook het eten in onze winkelrekken op een duurzame manier verzekeren.

Bibliografie

Literatuur Abo-el-Ghar, M. R., Nassar, M. E., Riskalla, M. R. en Abd-El-Ghafar, S. F. (1986). Rate of development of resistance and pattern of cross-resistance in fenvalerate and decamethrin resistant strains of S. littoralis. Agricultural Research Review, 61, 141-145. Adham, F. K., Rashad, E. M., Shoukry, I. F. en Nasr, E. E. (2009). Host plants shifting affects the biology and biochemistry of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Egyptian Academic Journal of Biological Sciences, 2, 63-71. Ant Flights. (2021). Worldwide ant nuptial flights data. Verkregen van https://antflights .com/stats/flights/Crematogaster/scutellaris Arnan, X. en Blüthgen, N. (2015). Using ecophysiological traits to predict climatic and activity niches: lethal temperature and water loss in Mediterranean ants. Global Ecology and Biogeography, 24, 1454-1464. Atlihan, R., Kaydan, B. en Özgökçe, M. S. (2004). Feeding activity and life history characteristics of generalist predator, Chrysoperla carnea (Neuroptera: Chrysopidae) at different prey densities. Journal of Pest Science, 77, 17-21. doi: 10.1007/s10340-003-0021 Aydin, H. en Gürkan, M. O. (2006). The efficacy of spinosad on different strains of Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). Turkish Journal of Biology, 30, 5-9. Baker, B., Green, T. en Loker, A. (2020). Biological control and integrated pest management in organic and conventional systems. Biological Control, 140, 207-239. doi: 10.1016/ j.biocontrol.2019.104095 Baker, C. en Miller, G. (1974). Some effects of temperature and larval food on the development of Spodoptera littoralis (Boisd.) (Lep., Noctuidae). Bulletin of Entomological Research, 63, 495-511. Baker, K. F. en Cook, R. J. (1974). Biological control of plant pathogens. Balasubramani, V. en Swamiappan, M. (1994). Development and feeding potential of the green lacewing Chrysoperla carnea Steph. (Neur. Chrysopidae) on different insect pests of cotton. Anzeiger für Schädlingskunde, Pflanzenschutz, Umweltschutz, 67, 165-167. Bale, J., van Lenteren, J. C. en Bigler, F. (2008). Biological control and sustainable food production. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 363, 761-776. doi: 10.1098/rstb.2007.2182 Bar, D. en Gerling, D. (1985). Cannibalism in Chrysoperla carnea (Stephens) (Neuroptera, Chrysopidae). Israel Journal of Entomology, 19, 13-22. Barratt, B., Howarth, F., Withers, T., Kean, J. en Ridley, G. (2010). Progress in risk assessment for classical biological control. Biological Control, 52, 245-254. (Australia and New Zealand Biocontrol Conference) doi: 10.1016/j.biocontrol.2009.02.012 Batool, A., Abdullah, K., Mamoon-ur-Rashid, M., Khan Khattak, M. en Abbas, S. (2014). Effect of prey density on biology and functional response of Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). Pakistan Journal of Zoology, 46, 129-137. Bay, T., Hommes, M. en Plate, H.-P. (1993). Die florfliege Chrysoperla carnea (Stephens): Überblick über systematik, verbreitung, biologie, zucht und anwendung. Berlin: Parey. doi: 10.5073/20210629-131801 Bayoumi, A. E., Balana-Fouce, R., Sobeiha, A. K. en Hussein, M. K. (1998). The biological 49 activity of some chitin synthesis inhibitors against the cotton leafworm Spodoptera littoralis (Boisduval), (Lepidoptera: Noctuidae). Boletín de Sanidad Vegetal Plagas, 24, 499-506. Beilhe, L. B., Piou, C., Tadu, Z. en Babin, R. (2018). Identifying ant-mirid spatial interactions to improve biological control in cacao-based agroforestry system. Environmental Entomology, 47, 551-558. doi: 10.1093/ee/nvy018 Benfarhat-Touzri, D., Amira, A. B., Khedher, S. B., Givaudan, A., Jaoua, S. en Tounsi, S. (2014). Combinatorial effect of Bacillus thuringiensis kurstaki and Photorhabdus luminescens against Spodoptera littoralis (Lepidoptera: Noctuidae). Journal of Basic Microbiology, 54, 1160-1165. Bernard, F. (1968). Les fourmis (Hymenoptera Formicidae) d’Europe occidentale et septentrionale (Faune de l’Europe et du bassin Méditerranéen, 3). Masson, Paris. Bielza, P. (2008). Insecticide resistance management strategies against the western flower thrips, Frankliniella occidentalis. Pest Management Science, 64, 1131-1138. doi: 10 .1002/ps.1620 Billen, J. en Morgan, D. (1997). Pheromone communication in social insects: Sources and secretions. In R. K. Vander Meer, M. D. Breed, M. L. Winston en K. E. Espelie (red.), Pheromone communication in social insects: Ants, wasps, bees, and termites (p. 3- 33). Boulder, CO, USA: Westview Press. Blaimer, B. B. (2012). Acrobat ants go global – origin, evolution and systematics of the genus Crematogaster (Hymenoptera: Formicidae). Molecular Phylogenetics and Evolution, 65, 421-436. doi: 10.1016/j.ympev.2012.06.028 Blaise, C., Mazzia, C., Bischoff, A., Millon, A., Ponel, P. en Blight, O. (2021). The key role of inter-row vegetation and ants on predation in Mediterranean organic vineyards. Agriculture Ecosystems & Environment, 311, 107327. doi: 10.1016/j.agee.2021.107327 Blomquist, G. en Bagnères, A. (2010). Insect hydrocarbons: Biology, biochemistry, and chemical ecology. Cambridge University Press. doi: 10.1017/CBO9780511711909 Boer, P. en Vierbergen, B. (2008). Exotic ants in the Netherlands (Hymenoptera: Formicidae). Entomologische Berichten, 68, 121-129. Bonavita-Cougourdan, A., Clément, J. L. en Lange, C. (1987). Nestmate recognition: the role of cuticular hydrocarbons in the ant Camponotus vagus Scop. Journal of Entomological Science, 22, 1-10. Bortolotti, L., Sbrenna, A. M. en Sbrenna, G. (2005). Action of fenoxycarb on metamorphosis and cocoon spinning in Chrysoperla carnea (Neuroptera: Chrysopidae): identification of the JHA-sensitive period. European Journal of Endocrinology, 102, 27-32. Brownbridge, M., Saito, T. en Cote, P. (2012). Developing a biologically-based IPM program for western flower thrips (Frankliniella occidentalis) in greenhouse floriculture. IOBC/WPRS Bulletin, 68, 21-24. Bueno, V. en van Lenteren, J. (2010). Biological control of pests in protected cultivation: implementation in Latin America and successes in Europe. XXXVII Congreso Sociedad Colombiana de entomologia, 2-7 July 2010, Bogotá, Colombia, 261-269. CABI. (2020). Spodoptera littoralis (cotton leafworm). Verkregen van https://www.cabi .org/isc/datasheet/51070 Calabuig, A. G., Tena, A., Wäckers, F. L., Fernández-Arrojo, L., Plou, F. J., García-marí, F. en Pekas, A. (2015). Ants impact the energy reserves of natural enemies through the 50 shared honeydew exploitation. Ecological Entomology, 40, 687-695. doi: 10.1111/ een.12237 Calvo, F. J., Bolckmans, K. J. F. en Belda, J. E. (2012). Biological control-based IPM in sweet pepper greenhouses using Amblyseius swirskii (Acari: Phytoseiidae). Biocontrol Science and Technology, 22, 1398-1416. doi: 10.1080/09583157.2012.731494 Camacho, L. F. en Avilés, L. (2019). Decreasing predator density and activity explains declining predation of insect prey along elevational gradients. The American Naturalist, 194, 334-343. Campion, D. en Hosny, M. (1987). Biological, cultural and selective methods for control of cotton pests in Egypt. International Journal of Tropical Insect Science, 8, 803-805. Carroll, C. R. en Risch, S. J. (1984). The dynamics of seed harvesting in early successional communities by a tropical ant, Solenopsis geminata. Oecologia, 61, 388-392. Casevitz-Weulersse, J. (1972). Habitats et comportement nidificateur de Crematogaster scutellaris Olivier [Hym. Formicidae]. Bulletin de la Société entomologique de France, 77, 12-19. Casevitz-Weulersse, J. (1979). Fondations indépendantes des colonies et parasitisme social chez les fourmis [Hym.]. Bulletin de la Société entomologique de France, 84, 218-232. Casevitz-Weulersse, J. (1983). Les larves de Crematogaster (Acrocoelia) scutellaris (Olivier) [Hym. Formicidae]. Bulletin de la Société entomologique de France, 88, 258-267. Castracani, C., Bulgarini, G., Giannetti, D., Spotti, F. A., Maistrello, L., Mori, A. en Grasso, D. A. (2017). Predatory ability of the ant Crematogaster scutellaris on the brown marmorated stink bug Halyomorpha halys. Journal of Pest Science, 90, 1181-1190. Chen, B., Teh, B. S., Sun, C., Hu, S., Lu, X., Boland, W. en Shao, Y. (2016). Biodiversity and activity of the gut microbiota across the life history of the insect herbivore Spodoptera littoralis. Scientific reports, 6, 29505. doi: 10.1038/srep29505 Choate, B. en Drummond, F. (2011, 06). Ants as biological control agents in agricultural cropping systems. Terrestrial Arthropod Reviews, 4, 157-180. doi: 10.1163/ 187498311X571979 Costanza, R., d’Arge, R. en de Groot, R. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387, 253–260. Daloze, D., Braekman, J. C., Vanhecke, P., Boevé, J.-L. en Pasteels, J. M. (1987). Long chain electrophilic contact poisons from the dufour’s gland of the ant Crematogaster scutellaris (Hymenoptera, Myrmicinae). Canadian Journal of Chemistry, 65, 432-436. Daloze, D., Kaisin, M., Detrain, C. en Pasteels, J. M. (1991). Chemical defense in the three european species of Crematogaster ants. Experientia, 47, 1082–1089. doi: 10.1007/ BF01923348 Darwin, E. (1800). Phytologia, or the philosophy of agriculture and gardening; with the theory of draining morasses and with an improved construction of the drill plough. Daughtrey, M. en Buitenhuis, R. (2020). Integrated pest and disease management in greenhouse ornamentals. In M. L. Gullino, R. Albajes en P. C. Nicot (red.), Integrated pest and disease management in greenhouse crops (p. 625-681). doi: 10.1007/ 978-3-030-22304-5_22 DeBach, P. (1964). Biological control of insect pests and weeds. London, Chapman & Hall Ltd. De Clercq, P., Mason, P. G. en Babenreier, D. (2011). Benefits and risks of exotic biological 51 control agents. Biocontrol, 56, 681–698. De Courcy Williams, M. E. (2001). Biological control of thrips on ornamental crops: Interactions between the predatory mite Neoseiulus cucumeris (Acari: Phytoseiidae) and western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae), on cyclamen. Biocontrol Science and Technology, 11, 41-55. doi: 10.1080/09583150020029736 Dejean, A., Djiéto-Lordon, C. en Orivel, J. (2008). The plant ant Tetraponera aethiops (Pseudomyrmecinae) protects its host myrmecophyte Barteria fistulosa (Passifloraceae) through aggressiveness and predation. Biological Journal of the Linnean Society, 93, 63-69. doi: 10.1111/j.1095-8312.2007.00927.x Delvare, G. en Rasplus, J.-Y. (1994). Spodophagus, a new genus of Pteromalidae (Hymenoptera), for an important parasite of Spodoptera littoralis (Lepidoptera: Noctuidae) in Madagascar. Bulletin of Entomological Research, 84, 191-197. doi: 10.1017/ S0007485300039687 de Moraes, G. J. en Tamai, M. A. (1999). Biological control of Tetranychus spp. on ornamental plants. Acta Horticulturae, 247-252. de Reaumur, R. A. (1734). Mémoires pour servir à l’histoire des insectes. Paris. De Souza, K. R., McVeigh, L. J. en Wright, D. J. (1992). Selection of insecticides for lure and kill studies against Spodoptera littoralis (Lepidoptera: Noctuidae). Journal of Economic Entomology, 85, 2100-2106. Diamé, L., Rey, J.-Y., Vayssières, J.-F., Grechi, I., Chailleux, A. en Diarra, K. (2018). Ants: Major functional elements in fruit agro-ecosystems and biological control agents. Sustainability, 10, 23. doi: 10.3390/su10010023 Donegan, K. en Lighthart, B. (1989). Effect of several stress factors on the susceptibility of the predatory insect, Chrysoperla carnea (Neuroptera: Chrysopidae), to the fungal pathogen Beauveria bassiana. Journal of Invertebrate Pathology, 54, 79-84. doi: 10 .1016/0022-2011(89)90143-2 Doutt, R. L. (1958). Vice, virtue, and the vedalia. Bulletin of the Entomological Society of America, 4, 119-123. doi: 10.1093/besa/4.4.119 Duelli, P. (1984). Dispersal and opposition strategies in Chrysoperla carnea. Progress in World’s Neuropterology, 133-145. Dussutour, A. en Simpson, S. J. (2009). Communal nutrition in ants. Current Biology, 19, 740-744. Dutton, A., Klein, H., Romeis, J. en Bigler, F. (2003). Prey-mediated effects of Bacillus thuringiensis spray on the predator Chrysoperla carnea in maize. Biological Control, 26, 209-215. doi: 10.1016/S1049-9644(02)00127-5 Dutton, A. C., Klein, H., Romeis, J. en Bigler, F. (2002). Uptake of bt-toxin by herbivores feeding on transgenic maize and consequences for the predator Chrysoperla carnea. Ecological Entomology, 27, 441-447. Ehlers, R.-U. (2001). Mass production of entomopathogenic nematodes for plant protection. Applied microbiology and biotechnology, 56, 623-633. doi: 10.1007/s002530100711 Eilenberg, J., Hajek, A. en Lomer, C. (2001). Suggestions for unifying the terminology in biological control. BioControl, 46, 387-400. doi: 10.1023/A:1014193329979 El Arnaouty, S., Eweis, E., Emara, S. en Tabouzada, E. (2010). Effect of two compounds (tracer and nomolt) on cotton leafworm and two predators, Chrysoperla carnea (Stephens) and Coccinella undecimpunctata (L.). Egyptian Journal of Biological Pest Control, 52 20, 167-170. El-Hawary, M. en Abd, E. (2009). Laboratory bioassay of some entomopathogenic fungi on Spodoptera littoralis (Boisd.) and Agrotis ipsilon (Hufn.) larvae (Lepidoptera: Noctuidae). Egyptian Academic Journal of Biological Sciences, F. Toxicology & Pest Control, 1, 1-4. doi: 10.21608/eajbsf.2009.17547 El-Zemaity, M., El-Deeb, W., Osman, Y. en Hussien, A. (2003). Development of resistance of Spodoptera littoralis to certain bioinsecticides. Journal of Environmental Sciences, 6, 793-810. EPPO. (2021). Spodoptera littoralis (SPODLI). European and Mediterranean Plant Protection Organization. Eubanks, M. D., Blackwell, S. A., Parrish, C. J., Delamar, Z. D. en Hull-Sanders, H. (2002). Intraguild predation of beneficial arthropods by red imported fire ants in cotton. Environmental Entomology, 31, 1168-1174. Everaert, B. (2021). Biologisch bestrijdingspotentieel van de mier Crematogaster scutellaris tegen plagen in kasteelten. (Masterthesis Universiteit Gent) Flint, H. M., Salter, S. S. en Walters, S. (1979). Caryophyllene: an attractant for the green lacewing. Environmental Entomology, 8, 1123-1125. doi: 10.1093/ee/8.6.1123 Folgarait, P. J., Gorosito, N. B., Poulsen, M. en Currie, C. R. (2011). Preliminary in vitro insights into the use of natural fungal pathogens of leaf-cutting ants as biocontrol agents. Current Microbiology, 63, 250-258. Frizzi, F., Ciofi, C., Dapporto, L., Natali, C., Chelazzi, G., Turillazzi, S. en Santini, G. (2015). The rules of aggression: How genetic, chemical and spatial factors affect intercolony fights in a dominant species, the Mediterranean acrobat ant Crematogaster scutellaris. PLoS ONE, 10, 1-15. doi: 10.1371/journal.pone.0137919 Frizzi, F., Masoni, A., Ottonetti, L., Tucci, L. en Santini, G. (2020). Resource-dependent mutual association with sap-feeders and a high predation rate in the ant Crematogaster scutellaris: help or harm in olive pest control? BioControl, 601–611. Frizzi, F., Panichi, S., Rispoli, A., Masoni, A. en Santini, G. (2014). Spatial variation of the aggressive response towards conspecifics in the ant Crematogaster scutellaris (Hymenoptera Formicidae). Redia-Giornale Di Zoologia, 97, 165-169. Frizzi, F., Rispoli, A., Chelazzi, G. en Santini, G. (2016). Effect of water and resource availability on ant feeding preferences: a field experiment on the Mediterranean ant Crematogaster scutellaris. Insectes Sociaux, 63, 565-574. doi: 10.1007/s00040-016-0500-4 Frizzi, F., Santini, G., Natali, C., Chelazzi, G. en Ciofi, C. (2009). Characterization of polymorphic microsatellite loci in the ant Crematogaster scutellaris. Conservation Genetics Resources, 1, 425-428. Giannetti, D., Mandrioli, M., Schifani, E., Castracani, C., Spotti, F. A., Mori, A. en Grasso, D. (2021). First report on the acrobat ant Crematogaster scutellaris storing live aphids in its oak-gall nests. Insects, 12, 108. doi: 10.3390/insects12020108 Gobin, B., Audenaert, J., Vissers, M., Delsen, B., Vlaeminck, M. en Pauwels, E. (2013). Broad mite control in woody ornamentals: Developing an integrated pest management solution. Acta Horticulturae, 990, 47-53. doi: 10.17660/ActaHortic.2013.990.3 Godfray, H. C. J., Agassiz, D. J. L., Nash, D. R. en Lawton, J. H. (1995). The recruitment of parasitoid species to two invading herbivores. Journal of Animal Ecology, 64, 393-402. Goetz, D. W. (2008). Harmonia axyridis ladybug invasion and allergy. Allergy and Asthma 53 Proceedings, 29, 123-131. Gonzalez, F., Tkaczuk, C., Mihaela Monica, D., Fiedler, Z., Vidal, S., Zchori-Fein, E. en Messelink, G. (2016). New opportunities for the integration of microorganisms into biological pest control systems in greenhouse crops. Journal of Pest Science, 89, 295–311. doi: 10.1007/s10340-016-0751-x Gradish, A. E., Scott-Dupree, C. D., Shipp, L., Harris, C. R. en Ferguson, G. (2011). Effect of reduced risk pesticides on greenhouse vegetable arthropod biological control agents. Pest Management Science, 67, 82-86. Gritche, E. (2020). Crematogaster scutellaris. (Bron: flickr.com. © Alle rechten voorbehouden.) Grover, C. D., Kay, A. D., Monson, J. A., Marsh, T. C. en Holway, D. A. (2007). Linking nutrition and behavioural dominance: carbohydrate scarcity limits aggression and activity in Argentine ants. Proceedings of the Royal Society B: Biological Sciences, 274, 2951- 2957. Gullino, M., Albajes, R. en van Lenteren, J. (1999). Setting the stage: characteristics of protected cultivation and tools for sustainable crop protection. In R. Albajes, M. Lodovica Gullino, J. van Lenteren en Y. Elad (red.), Integrated pest and disease management in greenhouse crops (p. 1-15). Kluwer Academic Publishers. Haelewaters, D., Zhao, S. en Clusella-Trullas, S. (2017). Parasites of Harmonia axyridis: current research and perspectives. BioControl, 62, 355–371. Hallsworth, J. E. en Magan, N. (1999). Water and temperature relations of growth of the entomogenous fungi Beauveria bassiana, Metarhizium anisopliae, and Paecilomyces farinosus. Journal of Invertebrate Pathology, 74, 261-266. doi: 10.1006/jipa.1999 .4883 Hanson, P. E. en Miller, J. C. (1984). Scale insects on ornamental plants: a biological control perspective. Journal of Arboriculture, 10, 259-264. Hazaa, M. A. M., Mohsen, E. I., Alm El-din, M. M. S., Hassan, R. S. en Shoush, S. R. M. (2019). Biocontrol potential of some entomopathogenic fungi against the cotton leaf worm Spodoptera littoralis in vitro. Journal of Nuclear Technology in Applied Science, 7, 65-78. Hegazi, E. M., Hammad, S. M. en El-Minshawy, A. M. (1977). Field and laboratory observations on the parasitoids of Spodoptera littoralis. Zeitschrift für Angewandte Entomologie, 84, 316-321. Heimpel, G. E., Yang, Y., Hill, J. D. en Ragsdale, D. W. (2013). Environmental consequences of invasive species: Greenhouse gas emissions of insecticide use and the role of biological control in reducing emissions. PLoS One, 8, e72293. Henry, C., Taylor, K. en Johnson, J. (2019). A new lacewing species of the Chrysoperla carnea species-group from central Asia associated with conifers (Neuroptera: Chrysopidae). Journal of Natural History, 53, 1277-1300. doi: 10.1080/00222933.2019.1644385 Henry, C. S. (1983). Acoustic recognition of sibling species within the holarctic lacewing Chrysoperla carnea (Neuroptera: Chrysopidae). Systematic Entomology, 8, 293-301. doi: 10.1111/j.1365-3113.1983.tb00483.x Hilbeck, A., Baumgartner, M., Fried, P. M. en Bigler, F. (1998). Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperla carnea (Neuroptera: Chrysopidae). Environmental Entomology, 27, 480-487. 54 Hilbeck, A., Moar, W., Pusztai-Carey, M., Filippini, A. en Bigler, F. (1999). Prey-mediated effects of Cry1ab toxin and protoxin and Cry2a protoxin on the predator Chrysoperla carnea. Entomologia Experimentalis et Applicata, 91, 305-316. Howarth, F. (1991). Environmental impacts of classical biological control. Annual Review of entomology, 36, 485-509. doi: 10.1146/annurev.en.36.010191.002413 Huang, H. T. en Yang, P. (1987). The ancient cultured citrus ant. BioScience, 37, 665-671. Huang, N. en Enkegaard, A. (2010). Predation capacity and prey preference of Chrysoperla carnea on Pieris brassicae. BioControl, 55, 379-385. Human Rights Watch. (2001). Underage and unprotected: Child labor in Egypt’s cotton fields. (https://www.refworld.org/docid/3ae6a87c8.html) Hölldobler, B. en Wilson, E. O. (1990). The Ants. Harvard University Press. Itioka, T. en Inoue, T. (1996). The consequences of ant-attendance to the biological control of the red wax scale insect Ceroplastes rubens by Anicetus beneficus. Journal of Applied Ecology, 33, 609-618. Jarvis, W. R. (1989). Managing diseases in greenhouse crops. Plant Disease, 73, 190-194. Jeanne, R. L. (1979). A latitudinal gradient in rates of ant predation. Ecology, 60, 1211- 1224. Kaplan, I. en Eubanks, M. D. (2002). Disruption of Cotton Aphid (Homoptera: Aphididae)—Natural Enemy Dynamics by Red Imported Fire Ants (Hymenoptera: Formicidae). Environmental Entomology, 31, 1175-1183. doi: 10.1603/0046-225X-31.6.1175 Kehat, M., Dunkelblum, E. en Gothilf, S. (1983). Mating disruption of the cotton leafworm, Spodoptera littoralis (Lepidoptera: Noctuidae), by release of sex pheromone from widely separated hercon-laminated dispensers. Environmental Entomology, 12, 1265- 1269. doi: 10.1093/ee/12.4.1265 Kenis, M., Hurley, B. en Hajek, A. (2017). Classical biological control of insect pests of trees: facts and figures. Biological Invasions, 19, 3401–3417. Kergunteuil, A., Basso, C. en Pintureau, B. (2013). Impact of two ant species on egg parasitoids released as part of a biological control program. Journal of Insect Science, 13, 106. Khan, M. A. en Ahmad, W. (2015). The management of Spodopteran pests using fungal pathogens. Biocontrol of Lepidopteran Pests, 123–160. doi: 10.1007/978-3-319-14499 -3_6 Kimber, I. (2011). Uk moths: Mediterranean Brocade Spodoptera littoralis. (http://ukmoths.org.uk/show.php?id=4322) Knapp, M., Palevsky, E. en Rapisarda, C. (2020). Insect and mite pests. In M. L. Gullino, R. Albajes en P. C. Nicot (red.), Integrated pest and disease management in greenhouse crops (p. 101-146). Cham: Springer International Publishing. doi: 10.1007/ 978-3-030-22304-5_4 Knapp, M., Reˇricha, M., Marsíková, S., Harabi ˇ s, F., Kadlec, T., Nedv ˇ ed, O. en Teder, T. (2019). ˇ Invasive host caught up with a native parasitoid: field data reveal high parasitism of Harmonia axyridis by Dinocampus coccinellae in Central Europe. Biological Invasions, 21, 2795-2802. doi: 10.1007/s10530-019-02027-4 Koch, R. en Galvan, T. (2008). Bad side of a good beetle: the North American experience with Harmonia axyridis. BioControl, 53, 23–35. Koczor, S., Szentkirályi, F., Birkett, M., Pickett, J., Voigt, E. en Tóth, M. (2010). Attraction of 55 Chrysoperla carnea complex and Chrysopa spp. lacewings (Neuroptera: Chrysopidae) to aphid sex pheromone components and a synthetic blend of floral compounds in Hungary. Pest Management Science, 66, 1374-1379. doi: 10.1002/ps.2030 Korrat, E., Abdelmonem, A. E., Helalia, A. A. en Khalifa, H. (2012). Toxicological study of some conventional and nonconventional insecticides and their mixtures against cotton leaf worm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Annals of Agricultural Sciences, 57, 145-152. Kukla, M. (2018). Crematogaster scutellaris. (Bron: flickr.com. © Alle rechten voorbehouden.) Lahav, S., Soroker, V., Hefetz, A. en Meer, R. K. V. (1999). Direct behavioral evidence for hydrocarbons as ant recognition discriminators. Naturwissenschaften, 86, 246-249. Lecomte, C., Alabouvette, C., Edel-Hermann, V., Robert, F. en Steinberg, C. (2016). Biological control of ornamental plant diseases caused by Fusarium oxysporum: A review. Biological Control, 101, 17-30. doi: 10.1016/j.biocontrol.2016.06.004 Leston, D. (1973). The ant mosaic - tropical tree crops and the limiting of pests and diseases. PANS Pest Articles & News Summaries, 19, 311-341. doi: 10.1080/ 09670877309412778 López-Sebastian, E., Tinaut, A. en Selfa, J. (2004). Acerca de Crematogaster scutellaris (Olivier, 1791) (Hymenoptera, Formicidae) como depredador de huevos de la procesionaria del pino. Boletín de Sanidad Vegetal, 30, 699-702. Lourenço, P., Brito, C., Backeljau, T., Thierry, D. en Ventura, M. A. (2006). Molecular systematics of the Chrysoperla carnea group (Neuroptera: Chrysopidae) in Europe. Journal of Zoological Systematics and Evolutionary Research, 44, 180-184. doi: 10.1111/j.1439-0469.2006.00352.x Maes, S., Moands, M., Grégoire, J.-C. en De Clercq, P. (2013). A survey of exotic biological control agents used in Europe. IOBC-WPRS Bulletin, 94, 111-115. Mansour, F., Rosen, D. en Shulov, A. (1981). Disturbing effect of a spider on larval aggregations of Spodoptera littoralis. Entomologia Experimentalis et Applicata, 29, 234-237. doi: 10.1111/j.1570-7458.1981.tb03063.x Marlier, J., Quinet, Y. en de Biseau, J. (2004). Defensive behaviour and biological activities of the abdominal secretion in the ant Crematogaster scutellaris (Hymenoptera: Myrmicinae). Behavioural Processes, 67, 427-440. doi: 10.1016/j.beproc.2004.07.003 Marsh, T. (2009). Adopting biological control for ornamental crops in greenhouses. Cab Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 4, 1-9. doi: 10.1079/PAVSNNR20094022 Mason, P., De Clercq, P., Heimpel, G. en Kenis, M. (2009). Attributes of biological control agents against arthropods: What are we looking for? Proceedings of the Third International Symposium on Biological Control of Arthropods, Christchurch, New Zealand, 385-392. Masoni, A., Frizzi, F., Natali, C., Ciofi, C. en Santini, G. (2019). Mating frequency and colony genetic structure analyses reveal unexpected polygyny in the Mediterranean acrobat ant Crematogaster scutellaris. Ethology Ecology & Evolution, 32, 122-134. doi: 10.1080/03949370.2019.1680449 Masoni, A., Frizzi, F., Nieri, R., Casacci, L. P., Mazzoni, V., Turillazzi, S. en Santini, G. (2021). Ants modulate stridulatory signals depending on the behavioural context. Scientific 56 Reports, 11, 5933. doi: 10.1038/s41598-021-84925-z Masoni, A., Frizzi, F., Turillazzi, S. en Santini, G. (2018). Making the right choice: how Crematogaster scutellaris queens choose to co-found in relation to nest availability. Insectes Sociaux, 66, 257-263. doi: 10.1007/s00040-018-00683-8 Mccorquodale, D. B. (1998). Adventive lady beetles (Coleoptera: Coccinellidae) in Eastern Nova Scotia, Canada. Entomological news, 109, 15-20. Menzel, F., Schmitt, T. en Blaimer, B. (2017). The evolution of a complex trait: Cuticular hydrocarbons in ants evolve independent from phylogenetic constraints. Journal of Evolutionary Biology, 30, 1372–1385. doi: 10.1111/jeb.13115 Menzel, F., Woywod, M., Blüthgen, N. en Schmitt, T. (2010). Behavioural and chemical mechanisms behind a Mediterranean ant–ant association. Ecological Entomology, 35, 711-720. doi: 10.1111/j.1365-2311.2010.01231.x Miller, G. (1977). Mortality of Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae) non-freezing temperatures. Bulletin of Entomological Research, 67, 142–152. doi: 10.1017/S0007485300010968 Miller, G. W. (1976). Cold storage as a quarantine treatment to prevent the introduction of Spodoptera littoralis (Boisd.) into glasshouses in the U.K. Plant Pathology, 25, 193- 196. Miranda-Fuentes, P., Quesada-Moraga, E., Aldebis, H. K. en Yousef-Naef, M. (2019). Compatibility between the endoparasitoid Hyposoter didymator and the entomopathogenic fungus Metarhizium brunneum: a laboratory simulation for the simultaneous use to control Spodoptera littoralis. Pest Management Science, 76, 1060-1070. doi: 10.1002/ps.5616 Modlmeier, A. P. en Foitzik, S. (2011). Productivity increases with variation in aggression among group members in Temnothorax ants. Behavioral Ecology, 22, 1026-1032. Mohamed, H. A., Alkordy, A. W. en Atta, A. A. (2019). Effect of host plants on biology of Spodoptera littoralis (Boisd.). Egyptian Academic Journal of Biological Sciences and Entomology, 12, 65-73. Mokbel, E.-S., Huesien, A., Fouad, H., Osman, H. en History, A. (2017). Assessment of resistance risk to Emamectin Benzoate, Indoxacarb and Spinetoram in cotton leaf worm, Spodoptera littoralis (Boisd.). Egyptian Academic Journal of Biological Sciences for Toxicology & Pest control, 9, 9-18. Morris, T. I., Campos, M. B., Jervis, M. A., Mcewen, P. K. en Kidd, N. A. C. (1998). Potential effects of various ant species on green lacewing, Chrysoperla carnea (Stephens) (Neuroptera, Chrysopidae) egg numbers. Journal of Applied Entomology, 122, 401-403. Noma, T., Colunga-Garcia, M., Brewer, M., Landis, J. en Gooch, A. (2010). Michigan State University’s invasive species factsheets: Egyptian cottonworm Spodoptera littoralis. Nonacs, P. (1991). Less growth with more food: How insect-prey availability changes colony demographics in the ant, Camponotus floridanus. Journal of Insect Physiology, 37, 891-898. doi: 10.1016/0022-1910(91)90004-J Nováková, P., Holusa, J. en Horák, J. (2016). The role of geography and host abundance in ˇ the distribution of parasitoids of an alien pest. PeerJ, 4, e1592. Obrycki, J. J., Hamid, M. N., Sajap, A. S. en Lewis, L. C. (1989). Suitability of corn insect pests for development and survival of Chrysoperla carnea and Chrysopa oculata (Neuroptera: Chrysopidae). Environmental Entomology, 18, 1126-1130. 57 Offenberg, J. (2007). The distribution of weaver ant pheromones on host trees. Insectes Sociaux, 54, 248-250. doi: 10.1007/s00040-007-0938-5 Offenberg, J. (2015). Ants as tools in sustainable agriculture. Journal of Applied Ecology, 52, 1197-1205. Olivier, G. A. (1792). Insectes: Discours prélim. In Encyclopédie méthodique. histoire naturelle des animaux. Paris. Orozco, R., Lee, M.-M. en Stock, S. P. (2014). Soil sampling and isolation of entomopathogenic nematodes (Steinernematidae, Heterorhabditidae). Journal of visualized experiments, e52083. doi: 10.3791/52083 Osborne, L. S. en Oetting, R. D. (1989). Biological control of pests attacking greenhouse grown ornamentals. The Florida Entomologist, 72, 408-413. Osman, M. Z. en Selman, B. J. (1993). Storage of Chrysoperla carnea Steph. (Neuroptera, Chrysopidae) eggs and pupae. Journal of Applied Entomology, 115, 115-117. Pal, K. en Gardener, B. M. (2006). Biological control of plant pathogens. The Plant Health Instructor, 2, 1117-1142. doi: 10.1094/PHI-A-2006-1117-02 Parmentier, T., Dekoninck, W. en Wenseleers, T. (2015). Context-dependent specialization in colony defence in the red wood ant Formica rufa. Animal Behaviour, 103, 161-167. doi: 10.1016/j.anbehav.2015.02.023 Parrella, M. P., Hansen, L. S. en Van Lenteren, J. (1999). Handbook of biological control: Chapter 31 - glasshouse environments. In (p. 819-839). San Diego: Academic Press. doi: 10.1016/B978-012257305-7/50078-3 Parrella, M. P. en Lewis, E. E. (2017). Biological control in greenhouse and nursery production: Present status and future directions. American Entomologist, 63, 237-250. Pasteels, J., Daloze, D. en Boevé, J.-L. (1989). Aldehydic contact poisons and alarm pheromone of the ant Crematogaster scutellaris (Hymenoptera: Myrmicinae) - enzymemediated production from acetate precursors. Journal of Chemical Ecology, 15, 1501- 1511. doi: 10.1007/BF01012379 Paulitz, T. en Belanger, R. (2001). Biological control in greenhouse systems. Annual Review of Phytopathology, 39, 103-133. doi: 10.1146/annurev.phyto.39.1.103 Perfecto, I. (1991). Ants (Hymenoptera: Formicidae) as natural control agents of pests in irrigated maize in Nicaragua. Journal of Economic Entomology, 84, 65-70. Perfecto, I. en Castiñeiras, A. (1998). Chapter 15 - deployment of the predaceous ants and their conservation in agroecosystems. In P. Barbosa (red.), Conservation biological control (p. 269-289). San Diego: Academic Press. doi: 10.1016/B978-012078147-8/ 50061-X Perfecto, I., Hajian-Forooshani, Z., White, A. en Vandermeer, J. (2021). Ecological complexity and contingency: Ants and lizards affect biological control of the coffee leaf miner in Puerto Rico. Agriculture, Ecosystems & Environment, 305, 107104. doi: 10.1016/ j.agee.2020.107104 Perito, B., Cremonini, M., Montecchi, T. en Turillazzi, S. (2018). A preliminary study on the antimicrobial activity of sting secretion and gastral glands of the acrobat ant Crematogaster scutellaris. Bulletin of Insectology, 71, 97-101. Pijnakker, J., Vangansbeke, D., Duarte, M., Moerkens, R. en Wäckers, F. (2020). Predators and parasitoids-in-first: From inundative releases to preventative biological control in greenhouse crops. Frontiers in Sustainable Food Systems, 4, 1-38. doi: 10.3389/ 58 fsufs.2020.595630 Pilkington, L. J., Messelink, G. J., van Lenteren, J. C. en Mottee, K. L. (2010). Protected biological control - Biological pest management in the greenhouse industry. Biological Control, 52, 216-220. Price, B. W., Henry, C. S., Hall, A. C., Mochizuki, A., Duelli, P. en Brooks, S. J. (2015). Singing from the grave: DNA from a 180 year old type specimen confirms the identity of Chrysoperla carnea (Stephens). PLoS One, 10, 1-11. doi: 10.1371/journal.pone .0121127 Quesada-Moraga, E., Carrasco-Díaz, J.-A. en Santiago-Álvarez, C. (2006). Insecticidal and antifeedant activities of proteins secreted by entomopathogenic fungi against Spodoptera littoralis (Lep., Noctuidae). Journal of Applied Entomology, 130, 442-452. doi: 10.1111/j.1439-0418.2006.01079.x R Core Team. (2020). R: A language and environment for statistical computing [Handleiding van computersoftware]. Vienna, Austria. Radeghieri, P. (2004). Cameraria ohridella (Lepidoptera Gracillariidae) predation by Crematogaster scutellaris (Hymenoptera Formicidae) in Northern Italy (Preliminary note). Bulletin of Insectology, 57, 63-64. Rama, F., Reggiori, F. en Albertini, A. (2009). Control of Spodoptera littoralis (Bsdv.) by biodegradable, low-dosage, slow-release pheromone dispensers.. (Joint Conference of IOBC-WPRS and IOBC EPRS Pheromone Groups) Ramires, I. D. H. (2020). Olive fly management today: the role of predators. (Universidade de Lisboa) Ramos, R., Picanço, M., Santana Júnior, P., Silva, E., Bacci, L., Gonring, A. en Silva, G. (2012). Natural biological control of lepidopteran pests by ants. Sociobiology, 59, 1389-1399. doi: 10.13102/sociobiology.v59i4.511 Ravary, F., Lecoutey, E., Kaminski, G., Châline, N. en Jaisson, P. (2007). Individual experience alone can generate lasting division of labor in ants. Current Biology, 17, 1308-1312. Redolfi, I., Tinaut, A., Pascual, F. en Campos, M. G. (1999). Qualitative aspects of myrmecocenosis (Hym., Formicidae) in olive orchards with different agricultural management in Spain. Journal of Applied Entomology, 123, 621-627. Ridgway, R. L., Morrison, R. K. en Badgley, M. E. (1970). Mass rearing a green lacewing. Journal of Economic Entomology, 63, 834-836. Ridgway, R. L. en Murphy, W. L. (1984). Biological control in the field. In M. Canard, Y. Séméria en T. R. New (red.), Biology of Chrysopidae (p. 220-228). Romeis, J., Dutton, A. C. en Bigler, F. (2004). Bacillus thuringiensis toxin (Cry1ab) has no direct effect on larvae of the green lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). Journal of Insect Physiology, 50, 175-183. Rosenheim, J. A., Limburg, D. D. en Colfer, R. G. (1999). Impact of generalist predators on a biological control agent, Chrysoperla carnea: Direct observations. Ecological Applications, 9, 409-417. Rosenheim, J. A., Wilhoit, L. R. en Armer, C. A. (1993). Influence of intraguild predation among generalist insect predators on the suppression of an herbivore population. Oecologia, 96, 439-449. Sadashivappa, P. en Qaim, M. (2009). Bt cotton in India: Development of benefits and the role of government seed price interventions. Journal of Agrobiotechnology Manage59 ment & Economics, 12, 172-183. Salama, H. S., Dimetry, N. Z. en Salem, S. A. (1971). On the host preference and biology of the cotton leaf worm Spodoptera littoralis (Boisd.). Zeitschrift für Angewandte Entomologie, 67, 141-143. doi: 10.1111/j.1439-0418.1971.tb02122.x Salama, H. S., Moawed, S. M. en Zaki, F. N. (1987). Effects of nuclear polyhedrosis virus - Bacillus thuringiensis combinations on Spodoptera littoralis (Boisd.). Journal of Applied Entomology, 104, 23–27. doi: 10.1111/j.1439-0418.1987.tb00491.x Salama, H. S. en Shoukry, A. (2009a). Flight range of the moth of the cotton leaf worm Spodoptera littoralis (Bois.). Zeitschrift für Angewandte Entomologie, 71, 181-184. doi: 10.1111/j.1439-0418.1972.tb01739.x Salama, H. S., Zaki, F. N. en Sharaby, A. F. (2009b). Effect of Bacillus thuringiensis Berl. on parasites and predators of the cotton leafworm Spodoptera littoralis (Boisd.). Journal of Applied Entomology, 94, 498-504. Salem, S. en Salama, H. S. (2009). Sex pheromones for mass trapping of Spodoptera littoralis (Boisd.) in Egypt. Zeitschrift für Angewandte Entomologie, 100, 316–319. doi: 10.1111/j.1439-0418.1985.tb02785.x Santini, G., Ramsay, P. M., Tucci, L., Ottonetti, L. en Frizzi, F. (2011). Spatial patterns of the ant Crematogaster scutellaris in a model ecosystem. Ecological Entomology, 36, 625-634. doi: 10.1111/j.1365-2311.2011.01306.x Sarwar, M. (2014). The propensity of different larval stages of lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) to control aphid Myzus persicae (Sulzer) (Homoptera: Aphididae) evaluated on canola Brassica napus L. Songklanakarin Journal of Science and Technology, 36, 143-148. Sattar, M. H. A. en Abro, G. H. (2011). Mass rearing of Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) adults for integrated pest management programmes. Pakistan Journal of Zoology, 43, 483-487. Schatz, B. en Hossaert-McKey, M. (2003). Interactions of the ant Crematogaster scutellaris with the fig/fig wasp mutualism. Ecological Entomology, 90, 456-459. doi: 10.1007/ s00114-003-0457-9 Schifani, E., Castracani, C., Giannetti, D., Spotti, F. A., Reggiani, R., Leonardi, S., Mori, A. en Grasso, D. A. (2020). New tools for conservation biological control: Testing antattracting artificial nectaries to employ ants as plant defenders. Insects, 11, 129. doi: 10.3390/insects11020129 Schultz, T. R. en Brady, S. G. (2008). Major evolutionary transitions in ant agriculture. Proceedings of the National Academy of Sciences, 105, 5435-5440. doi: 10.1073/ pnas.0711024105 Schumacher, S. K., Marsh, T. L. en Williams, K. A. (2006). Optimal pest control in greenhouse production of ornamental crops. Agricultural Economics, 34, 39-50. doi: 10.1111/ j.1574-0862.2006.00101.x Sengonca, C. en Grooterhorst, A. (1985). The feeding activity of Chrysoperla carnea (Stephens) on Barathra brassicae L. and Spodoptera littoralis (Boisd.). Journal of Applied Entomology, 100, 219-223. Shairra, S. en Noah, G. (2014). Efficacy of entomopathogenic nematodes and fungi as biological control agent against the cotton leafworm, Spodoptera littoralis (Boisd.). Egyptian Journal of Pest Control, 24, 247-253. 60 Sharma, A., Diwevidi, V. D., Singh, S., Pawar, K. K., Jerman, M., Singh, L. en Srivastawa, D. (2013). Biological control and its important in agriculture. International Journal of Biotechnology and Bioengineering Research, 4, 175-180. Shaurub, E., Reyad, N. F., Abdel-Wahab, H. en Ahmed, S. (2016). Mortality and nematode production in Spodoptera littoralis larvae in relation to dual infection with Steinernema riobrave, Heterorhabditis bacteriophora, and Beauveria bassiana, and the host plant. Biological Control, 103, 86-94. Simberloff, D. en Stiling, P. (1996). How risky is biological control? Ecology, 77, 1965-1974. Simmonds, F. J., Franz, J. en Sailer, R. I. (1976). History of biological control. In C. B. Huffaker en P. S. Messenger (red.), Theory and practice of biological control (p. 17-39). Academic Press, New York. Smith, H. S. (1919). On some phases of insect control by the biological method. Journal of Economic Entomology, 12, 288-292. Sneh, B., Gross, S. en Gasith, A. (2009). Biological control of Spodoptera littoralis (Boisd.) (Lep., Noctuidae) by Bacillus thuringiensis subsp. entomocidus and Bracon hebetor Say (Hym., Braconidae). Journal of Applied Entomology, 96, 408-412. Soulié, J. (1956b). La nidification chez les espèces françaises du genre Cremastogaster Lund (Hymenoptera — Formicoidea). Insectes Sociaux, 3, 93-105. Soulié, J. (1965). Les nids et le comportement nidificateur des fourmis du genre Cremastogaster d’Europe, d’Afrique du Nord et d’Asie du Sud-Est. Insectes Sociaux, 8, 213-297. Soulié, J. (1956a). Le déclenchement et la rupture de l’état d’hibernation chez Cremastogaster scutellaris Ol. (Hymenoptera-Formicoidea). Insectes Sociaux, 3, 431–438. doi: 10.1007/BF02225763 Souza, B. en Marucci, R. C. (2021). Biological control in ornamental plants: from basic to applied knowledge. Ornamental Horticulture, 27, 255-267. Stelzl, M. en Devetak, D. (1999). Neuroptera in agricultural ecosystems. Agriculture, Ecosystems & Environment, 74, 305-321. doi: 10.1016/S0167-8809(99)00040-7 Stenberg, J., Sundh, I., Becher, P. en et al. (2021). When is it biological control? A framework of definitions, mechanisms, and classifications. Journal of Pest Science, 94, 665–676. doi: 10.1007/s10340-021-01354-7 Symondson, W. O. C., Sunderland, K. D. en Greenstone, M. H. (2002). Can generalist predators be effective biocontrol agents? Annual Review of Entomology, 47, 561-594. Tauber, M. J. en Tauber, C. A. (1976). Insect seasonality: Diapause maintenance, termination, and postdiapause development. Annual Review of Entomology, 21, 81-107. doi: 10.1146/annurev.en.21.010176.000501 Tauber, M. J. en Tauber, C. A. (2022). Chrysoperla (= Chrysopa) carnea, C. rufilabris (Neuroptera: Chrysopidae). Verkregen van https://biocontrol.entomology.cornell.edu/ predators/Chrysoperla.php Tayeh, A., Hufbauer, R. en Estoup, A. (2015). Biological invasion and biological control select for differandt life histories. Nature Communications, 6, 7268. Tu, M., Hurd, C. en Randall, J. M. (2001). Weed control methods handbook: Tools & techniques for use in natural areas. The Nature Conservancy. Uddin, J., Holliday, N. J. en Mackay, P. A. (2005). Rearing lacewings, Chrysoperla carnea and Chrysopa oculata (Neuroptera: Chrysopidae), on prepupae of alfalfa leafcutting bee, Megachile rotundata (Hymenoptera: Megachilidae). Proceedings of the Entomological 61 Society of Manitoba, 11-19. University of California. (2018). Lacewing life cycle. Verkregen van https://www.pbase .com/10kzoomfz/image/76202580 Van Butsele, J. (2020). Invloed van klimaat op het predatiepotentieel van de mier Crematogaster scutellaris op de Californische trips. (Masterthesis Universiteit Gent) Vandermeer, J., Perfecto, I., Núñez, G. I., Phillpott, S. en Ballinas, A. G. (2002). Ants (Azteca sp.) as potential biological control agents in shade coffee production in Chiapas, Mexico. Agroforestry Systems, 56, 271-276. Vander Meer, R. K. en Alonso, L. E. (2002). Queen primer pheromone affects conspecific fire ant (Solenopsis invicta) aggression. Behavioral Ecology and Sociobiology, 51, 122- 130. van Lenteren, J. C. (1992). Biological pest control in greenhouses: an overview. Arab Journal of Plant Protection, 10, 43-45. van Lenteren, J. C. (2000). Success in biological control of arthropods by augmentation of natural enemies. In Biological control: Measures of success (p. 77-103). doi: 10.1007/ 978-94-011-4014-0_3 van Lenteren, J. C. (2007). Internet book of biological control. Wageningen, The Netherlands. (4th edition) Van Mele, P. (2007). A historical review of research on the weaver ant Oecophylla in biological control. Agricultural and Forest Entomology, 10, 13-22. Van Mele, P., Cuc, N. T., Seguni, Z. S., Camara, K. en Offenberg, J. (2009). Multiple sources of local knowledge: a global review of ways to reduce nuisance from the beneficial weaver ant Oecophylla. International Journal of Agricultural Resources, Governance and Ecology, 8, 484-504. van Schelt, J. en van Rijn, P. (2007). Gaasvliegen (Neuroptera): vraatzuchtige larven voor de goede zaak. Entomologische Berichten, 67, 268-270. van Wilgenburg, E., Clémencet, J. en Tsutsui, N. D. (2009). Experience influences aggressive behaviour in the Argentine ant. Biology Letters, 6, 152-155. van Zyl, C. en Malan, A. (2014). The role of entomopathogenic nematodes as biological control agents of insect pests, with emphasis on the history of their mass culturing and in vivo production. African Entomology, 22, 235-249. doi: 10.4001/003.022.0222 Varela, A. (1992). The role of Oecophylla longinoda (Formicidae) in control of Pseudotheraptus wayi (Coreidae) on coconuts in Tanzania. (Imperial College, Silwood Park, London, U. K.) von Mérey, G., Veyrat, N., D’Alessandro, M. en Turlings, T. (2013). Herbivore-induced maize leaf volatiles affect attraction and feeding behavior of Spodoptera littoralis caterpillars. Frontiers in Plant Science, 4. doi: 10.3389/fpls.2013.00209 Way, M. en Khoo, K. C. (1992). Role of ants in pest management. Annual Review of Entomology, 37, 479-503. doi: 10.1146/annurev.en.37.010192.002403 Way, M. J. (1954). Studies of the life history and ecology of the ant Oecophylla longinoda Latreille. Bulletin of Entomological Research, 45, 93-112. Way, M. J. (1963). Mutualism between ants and honeydew-producing homoptera. Annual Review of Entomology, 8, 307-344. doi: 10.1146/annurev.en.08.010163.001515 Wells, P. M., Baverstock, J., Clark, S. J., Jiggins, F. M., Roy, H. E. en Pell, J. K. (2017). Determining the effects of life stage, shared prey density and host plant on intraguild 62 predation of a native lacewing (Chrysoperla carnea) by an invasive coccinellid (Harmonia axyridis). BioControl, 62, 373-384. Wheeler, W. M. (1911). The ant-colony as an organism. Journal of Morphology, 22, 307-325. doi: 10.1002/jmor.1050220206 Xu, H.-l., Xu, R.-Y., Qin, F., Ma, G., Yu, Y. en Shah, S. (2008, 03). Biological pest and disease control in greenhouse vegetable production. Acta horticulturae, 767, 229-238. doi: 10.17660/ActaHortic.2008.767.23 Yardim, E. N. en Edwards, C. A. (1998). The influence of chemical management of pests, diseases and weeds on pest and predatory arthropods associated with tomatoes. Agriculture, Ecosystems & Environment, 70, 31-48. Youn, Y. N., Seo, M. J., Shin, J. G., Jang, C. en Yu, Y. M. (2003). Toxicity of greenhouse pesticides to multicolored Asian lady beetles, Harmonia axyridis (Coleoptera: Coccinellidae). Biological Control, 28, 164-170. Zemek, R., Hussein, H. M. en Prenerová, E. (2012). Laboratory evaluation of Isaria fumosorosea against Spodoptera littoralis. Communications in agricultural and applied biological sciences, 77, 685-689. Zheng, Y., Daane, K., Hagen, K. en Mittler, T. (1993). Influence of larval food consumption on the fecundity of the lacewing Chrysoperla carnea. Entomologia Experimentalis et Applicata, 67, 9-14. doi: 10.1111/j.1570-7458.1993.tb01645.x

Universiteit of Hogeschool
Bio-ingenieurswetenschappen: Landbouwkunde
Publicatiejaar
2022
Promotor(en)
Patrick De Clercq en Bruno Gobin
Kernwoorden
Share this on: