Efficiente energietoevoer voor duurzame generatie van waterstof

Merijn
Van Deyck

Waterstof, een hype of een technologie die ons warm zal houden in een energiesysteem zonder fossiele brandstoffen? Hoewel de meningen hierover verdeeld zijn, staat het vast dat de Europese Unie ambities heeft om deze energiedrager een grote rol te laten spelen in het verminderen van de broeikasgasuitstoot. Het zal dus essentieel zijn om deze grondstof op een duurzame en efficiënte manier te produceren. Deze thesis biedt hiervoor een oplossing op industrieel niveau door het ontwerp van een efficiënte energietoevoer, of power converter.

Het duurzaam produceren van waterstof uit water, een techniek genaamd elektrolyse gevoed door (hernieuwbare) elektriciteit, gaat gebukt onder een lage efficiëntie van dit chemische proces. Waterstof gebruiken zal dus onvermijdelijk gepaard gaan met een verlies van waardevolle hernieuwbare energie. Desondanks zal de vraag naar duurzame waterstof in de toekomst zeker stijgen. Waterstof is in verschillende toepassingen de ideale vervanger van aardgas, bijvoorbeeld verwarmen op hoge temperaturen. Zodus kan met dit duurzaam alternatief de broeikasgasuitstoot verminderd worden, zowel voor bedrijven als gezinnen. Er wordt zelfs voorspeld dat in 2050 tot 24% van alle energieconsumptie in de vorm van waterstof zal zijn. Elke verbetering in de efficiëntie van het productieproces, zal dus een grote besparing van hernieuwbare elektriciteit teweeg brengen. Daarom focust deze thesis op het ontwerpen van een optimale energietoevoer.

Overvloed aan omvormers

De elektriciteit die nodig is voor de productie van waterstof verschilt van de typische elektriciteit die uit een stopcontact komt. Voor elektrolyse is er namelijk een gelijkstroom (DC) nodig, in tegenstelling tot de gebruikelijke wisselstroom (AC) van het elektriciteitsnet. Hedendaagse industriële elektrolyseapparaten gebruiken dus een power converter om de beschikbare AC stroom om te zetten naar DC. Deze conversie gebeurt in omgekeerde richting voor bepaalde hernieuwbare bronnen en opslagtechnieken, zoals zonnepanelen en batterijen, wiens DC stroom via een omzetting naar AC in het net geïnjecteerd wordt.

Figuur 1: Klassieke systeemopstelling van generatie tot productie van waterstof

Elk van deze omvormingen gaat gepaard met een verlies van energie.  Bovendien zijn de omvormers die gebruikt worden bij elektrolyse niet specifiek ontworpen voor deze toepassing. We kunnen dus de efficiëntie van het gehele proces verhogen door een specifieke omvormer te ontwerpen om de DC stroom te voorzien op het gepaste spanningsniveau voor de elektrolyse, gevoed door DC hernieuwbare bronnen: een geoptimaliseerde DC/DC converter.

Figuur 2: Voorgestelde systeemopstelling met geoptimaliseerde omvormer

Figuren 1 en 2 tonen respectievelijk de klassieke systeemopstelling en de voorgestelde opstelling met een geoptimaliseerde omvormer. Elke omvormer gaat gepaard met een beperkte efficiëntie en dus met energieverliezen. Bovendien zijn DC/DC omvormers efficiënter dan AC/DC of DC/AC convertoren, waardoor de voorgestelde systeemopstelling tot minder verliezen leidt bij de waterstofproductie met hernieuwbare energie.

Commerciële beschikbaarheid en schaal

In voorafgaand wetenschappelijk onderzoek over omvormers voor elektrolyse werd er steeds gewerkt met kleinschalige prototypes. Industriële installaties zijn echter vele malen groter, waardoor ook andere vereisten van toepassing zijn op de energietoevoer. Hoge vermogens op industriële schaal elimineren verscheidene klassieke converterontwerpen. Een gespecialiseerde converter voor hoge vermogens moet dus ontworpen worden om de elektrolyse optimaal aan te drijven.

Door samenwerking met producenten van commerciële elektrolysepparaten is er in dit onderzoek een realistisch model geconstrueerd, gebaseerd op wetenschappelijke voorkennis, om de optimale condities te berekenen voor de toegediende energie. Bovendien kan er via deze industriële partners een referentie vastgesteld worden voor de efficiëntie van de huidige omvormer die maximaal 97% bedraagt. Het doel van het voorgestelde converterontwerp zal dus zijn om deze efficiëntie te overtreffen.

Om industriële spelers een efficiënter alternatief te bieden dan de huidige omvormers, is het voorgestelde ontwerp gebaseerd op commercieel  beschikbare componenten die online aangekocht kunnen worden. Zo kan dit onderzoek direct door bedrijven toegepast worden om de kost en energieconsumptie van waterstofproductie te verlagen.

Converter ontwerp en resultaten

Figuur 3 toont het finale converterontwerp waarmee de elektrolyse optimaal aangedreven kan worden. Door het aansturen van de schakelaars (S1-S6 op de figuur) kan het spanningsniveau aan de uitgangsklemmen van de converter bepaald worden. Doordat de inkomende stroom over zes parallelle paden verdeeld kan worden, heeft deze converter een hoge vermogenscapaciteit en is deze dus uitermate geschikt om commerciële elektrolyse aan te drijven.

Figuur 3: Finaal DC/DC converter ontwerp

Op het maximale vermogen heeft deze converter een efficiëntie van 99.1%. Er kan dus 2.1% van de toegevoerde energie bespaard worden. Op de industriële schaal (1.7MW) van de onderzochte apparaten komt dit overeen met een constante besparing van 37 kW, vergelijkbaar met het laadvermogen van 10 elektrische wagens.

Tot slot worden twee realistische situaties in rekening gebracht om de voorgestelde converter en het aangepaste systeemontwerp te vergelijken met de commerciële referentie. In deze gevallen wordt er gefocust op het maximaal benutten van hernieuwbare energie als bron.

In het eerste geval wordt het systeem getest op het maximale werkingsvermogen. In deze situatie wordt er aangenomen dat een bepaalde hoeveelheid generatie voorzien wordt door zonnepanelen en batterijen in DC. Aangezien men er niet zeker kan zijn dat er genoeg zonne-energie beschikbaar is om het maximale vermogen te voorzien, wordt een connectie met het klassieke AC net toegevoegd. Deze opstelling is weergegeven in figuur 4. De totale systeemefficiëntie is dus afhankelijk van de hoeveelheid energie die rechtstreeks door de hernieuwbare bronnen geproduceerd wordt. Vanaf een hernieuwbaar aandeel van 28.38% zal deze systeemopstelling het beter doen dan de commerciële referentie.

Figuur 4: Opstelling voor test op maximaal vermogen, gedeeltelijk gevoed door het AC netwerk

In de andere opstelling wordt een opstelling met enkel zonne-energie overwogen. De variabiliteit hiervan wordt dus in rekening gebracht voor een opstelling in België en in Marokko, waar de condities voor zonnepanelen significant beter zijn. Door gebruik te maken van een directe connectie met de ontworpen converter, kan er op beide locaties respectievelijk 17 370m3 en 27 220m3 aan waterstof extra geproduceerd worden per jaar.

Conclusie

De testresultaten tonen duidelijk aan dat het optimaliseren van de energietoevoer een positieve impact heeft op de opbrengst en energieconsumptie van waterstofproductie. Door deze commercieel beschikbare verbetering toe te passen, kunnen bedrijven besparen op hun energiekost. Dankzij dit duurzaam alternatief voor aardgas verlagen ze bovendien hun uitstoot. Optimalisaties zoals deze, die gefocust zijn op het maximaal benutten van beschikbare hernieuwbare energie, zullen in de toekomst essentieel worden om broeikasgasuitstoot te verminderen en de klimaatopwarming te beperken.

Bibliografie

Bibliography
[1] European Comission. Communication from the Commision to the European
Parliament, the Council, the European Economic and Social Committee of the Regions: A hydrogen strategy for a climate-neutral Europe, COM(2020) 301 final. https://ec.europa.eu/energy/sites/ener/files/hydrogen_
strategy.pdf. 2020.


[2] IRENA. Global Renewables Outlook. Energy transformation 2050. Tech. rep. Abu Dhabi, UAE, 2020.
[3] BloombergNEF. Hydrogen Economy Outlook. Key messages. Tech. rep. March
2020.
[4] International Energy Agency. The Future of Hydrogen. Seizing today’s opportunities.
Tech. rep. FR, June 2019.
[5] Daniel L. Gerber et al.

A simulation-based efficiency comparison of AC
and DC power distribution networks in commercial buildings”. In: Applied
Energy 210 (January 2018), pp. 1167–1187. issn: 03062619. doi: 10.1016/j.
apenergy.2017.05.179.
[6] Guy Allee and William Tschudi.

Edison redux: 380 Vdc brings reliability and
efficiency to sustainable data centers”. In: IEEE Power and Energy Magazine
10.6 (2012), pp. 50–59. issn: 15407977. doi: 10.1109/MPE.2012.2212607.
[7] Scott Backhaus et al. Los Alamos National Laboratory DC Microgrids Scoping
Study-Estimate of Technical and Economic Benefits. Tech. rep. 2015.
[8] Fuel Cells and Hydrogen Joint Undertaking. Hydrogen Roadmap Europe, A
Sustainable Pathway for the European Energy Transition. Tech. rep. Charleroi,
BE, January 2019.
[9] Bert Droste-Franke et al. Balancing Renewable Electricity. Energy Storage,
Demand Side Management, and Network Extension from an Interdisciplinary
Perspective. Ed. by Carl Friedrich Gethmann and Franziska Mosthaf. Vol. 40.
Ethics of Science and Technology Assessment. Springer, 2012.
[10] Usman Salahuddin, Haider Ejaz, and Naseem Iqbal.

Grid to wheel energy
efficiency analysis of battery- and fuel cell–powered vehicles”. In: International
Journal of Energy Research 42.5 (April 2018), pp. 2021–2028. issn: 1099114X.
doi: 10.1002/er.3994.
85
86 BIBLIOGRAPHY
[11] Powerwall. Tesla Powerwall 2. Tesla. 2019. url: https : / / www . tesla .
com/sites/default/files/pdfs/powerwall/Powerwall%5C%202_AC_
Datasheet_en_northamerica.pdf (visited on 05/25/2022).
[12] G¨unther Brauner. System Efficiency by Renewable Electricity. Strategies for
Efficient Energy Supply until 2050. Ed. by Daniel Fr¨olich. Springer, 2022.
[13] Shafiqur Rehman, Luai M. Al-Hadhrami, and Md Mahbub Alam. Pumped
hydro energy storage system: A technological review. 2015. doi: 10.1016/j.
rser.2014.12.040.
[14] IEC. Electrical Energy Storage White Paper. Tech. rep. Geneva, CH, December
2011.
[15] Subodh Kharel and Bahman Shabani.

Hydrogen as a long-term large-scale
energy storage solution to support renewables”. In: Energies 11.10 (2018).
issn: 19961073. doi: 10.3390/en11102825.
[16] K. A. Kavadias, D. Apostolou, and J. K. Kaldellis.

Modelling and optimisation
of a hydrogen-based energy storage system in an autonomous electrical
network”. In: Applied Energy 227 (October 2018), pp. 574–586. issn: 03062619.
doi: 10.1016/j.apenergy.2017.08.050.
[17] Jason Moore and Bahman Shabani. A critical study of stationary energy
storage policies in Australia in an international context: The role of hydrogen
and battery technologies. 2016. doi: 10.3390/en9090674.
[18] Felipe Ignacio Gallardo et al.

A Techno-Economic Analysis of solar hydrogen
production by electrolysis in the north of Chile and the case of exportation from
Atacama Desert to Japan”. In: International Journal of Hydrogen Energy 46.26
(April 2021), pp. 13709–13728. issn: 03603199. doi: 10.1016/j.ijhydene.
2020.07.050.
[19] John Andrews and Bahman Shabani.

Re-envisioning the role of hydrogen
in a sustainable energy economy”. In: International Journal of Hydrogen
Energy 37.2 (January 2012), pp. 1184–1203. issn: 03603199. doi: 10.1016/j.
ijhydene.2011.09.137.
[20] Johan Driesen. Transport & Energy System Integration. “alternative” fuels.
https://p.cygnus.cc.kuleuven.be/bbcswebdav/pid- 30058749- dtcontent-
rid-307705644_2/courses/B-KUL-H04C8a-2122/alternative%
20fuels.pdf. 2019.
[21] Ivan Mareev, Jan Becker, and Dirk Uwe Sauer.

Battery dimensioning and
life cycle costs analysis for a heavy-duty truck considering the requirements of
long-haul transportation”. In: Energies 11.1 (January 2018). issn: 19961073.
doi: 10.3390/en11010055.
[22] Heikki Liimatainen, Oscar van Vliet, and David Aplyn.

The potential of
electric trucks – An international commodity-level analysis”. In: Applied
Energy 236 (February 2019), pp. 804–814. issn: 03062619. doi: 10.1016/j.
apenergy.2018.12.017.
BIBLIOGRAPHY 87
[23] C. E. Thomas.

Fuel cell and battery electric vehicles compared”. In: International
Journal of Hydrogen Energy 34.15 (August 2009), pp. 6005–6020. issn:
03603199. doi: 10.1016/j.ijhydene.2009.06.003.
[24] Patrick Moriarty and Damon Honnery.

Prospects for hydrogen as a transport
fuel”. In: International Journal of Hydrogen Energy 44.31 (June 2019),
pp. 16029–16037. issn: 03603199. doi: 10.1016/j.ijhydene.2019.04.278.
[25] Simon T. Thompson et al.

Direct hydrogen fuel cell electric vehicle cost
analysis: System and high-volume manufacturing description, validation, and
outlook”. In: Journal of Power Sources 399 (September 2018), pp. 304–313.
issn: 03787753. doi: 10.1016/j.jpowsour.2018.07.100.
[26] Yusuf Bicer and Ibrahim Dincer.

Life cycle evaluation of hydrogen and
other potential fuels for aircrafts”. In: International Journal of Hydrogen
Energy 42.16 (April 2017), pp. 10722–10738. issn: 03603199. doi: 10.1016/j.
ijhydene.2016.12.119.
[27] Yusuf Bicer and Ibrahim Dincer.

Clean fuel options with hydrogen for sea
transportation: A life cycle approach”. In: International Journal of Hydrogen
Energy 43.2 (2018), pp. 1179–1193. issn: 03603199. doi: 10.1016/j.ijhydene.
2017.10.157.
[28] FEBEG. Statistieken gas. Import en consumptie van aardgas in Belgi¨e. 2022.
url: https://www.febeg.be/statistieken-gas (visited on 04/29/2022).
[29] Fluxys. Natural gas & green gas. Lecture KU-Leuven. https://p.cygnus.cc.
kuleuven.be/bbcswebdav/pid-30121351-dt-content-rid-323458400_2/
courses/B-KUL-H06P1a-2122/2022%20-%20gas%20grid%20training%20%
28part%201%29.pdf. April 2022.
[30] Anselm Eisentraut and Adam Brown. Heating Without Global Warming.
Market Developments and Policy Considerations for Renewable Heat. Tech.
rep. Paris, FR: International Energy Agency, April 2014.
[31] Richard Hoggett, Judith Ward, and Catherine Mitchell. Heat in Homes:
customer choice on fuel and technologies Study for Scotia Gas Networks
Energy Policy Group Heat in Homes: customer choice on fuel and technologies.
Tech. rep. 2011. url: www.exeter.ac.uk/epg.
[32] Fluvius. Premie warmtepomp. 2022. url: https : / / www . fluvius . be /
nl/thema/premies/premies- voor- huishoudelijke- klanten/premiewarmtepomp
(visited on 04/30/2022).
[33] Vlaamse overheid. Geen aardgasaansluitingen meer bij nieuwe grote projecten.
2022. url: https://www.vlaanderen.be/nieuwe-verwarmingsinstallatiekiezen/
geen-aardgasaansluitingen-meer-bij-nieuwe-grote-projecten#
q-5a16d194-4404-4c48-9b78-e2bdfa8a5a4c (visited on 04/30/2022).
[34] A Uytterhoeven et al. Hybrid heat pump scenarios as a transition towards
more flexible buildings. Tech. rep. Liege: KULeuven, December 2018.
88 BIBLIOGRAPHY
[35] International Energy Agency. Energy Technology Perspectives 2012. Pathways
to a Clean Energy System. Tech. rep. Paris, FR, June 2012.
[36] Dries Haeseldonckx and William D’haeseleer.

The use of the natural-gas
pipeline infrastructure for hydrogen transport in a changing market structure”.
In: International Journal of Hydrogen Energy 32.10-11 (July 2007), pp. 1381–
1386. issn: 03603199. doi: 10.1016/j.ijhydene.2006.10.018.
[37] J Pangborn, M Scott, and J Sharer. TECHNICAL PROSPECTS FOR COMMERCIAL
AND RESIDENTIAL DISTRIBUTION AND UTILIZATION OF
HYDROGEN. Tech. rep. 1977, p. 431445.
[38] Mahdi Deymi-Dashtebayaz et al.

Investigating the effect of hydrogen injection
on natural gas thermo-physical properties with various compositions”. In:
Energy 167 (January 2019), pp. 235–245. issn: 03605442. doi: 10.1016/j.
energy.2018.10.186.
[39] Engineering ToolBox. Fuels-Higher and Lower Calorific Values. 2003. url:
https : / / www . engineeringtoolbox . com / fuels - higher - calorific -
values-d_169.html (visited on 04/30/2022).
[40] Weijia Liu, Fushuan Wen, and Yusheng Xue. Power-to-gas technology in
energy systems: current status and prospects of potential operation strategies.
May 2017. doi: 10.1007/s40565-017-0285-0.
[41] Amela Ajanovic and Reinhard Haas. On the long-term prospects of power-togas
technologies. January 2019. doi: 10.1002/wene.318.
[42] Max Wei, Colin A. McMillan, and Stephane de la Rue du Can. Electrification
of Industry: Potential, Challenges and Outlook. December 2019. doi: 10.1007/
s40518-019-00136-1.
[43] International Energy Agency. Global Hydrogen Review 2021. Tech. rep. FR,
November 2021.
[44] International Energy Agency. Iron and Steel Technology Roadmap. Towards
more sustainable steelmaking. Tech. rep. FR, October 2020.
[45] ArcelorMittal. Climate Action in Europe, Our carbon emissions reduction
roadmap: 30% by 2030 and carbon neutral by 2050. Tech. rep. Luxembourg,
May 2020.
[46] R. R. Wang et al. Hydrogen direct reduction (H-DR) in steel industry—An
overview of challenges and opportunities. December 2021. doi: 10.1016/j.
jclepro.2021.129797.
[47]

BASF preents roadmap to climate neutrality”. In: www.basf.com (March
2021). url: https://www.basf.com/global/en/who-we-are/sustainability/
whats- new/sustainability- news/2021/basf- presents- roadmap- toclimate-
neutrality.html.
[48] Mamoon Rashid et al. Hydrogen Production by Water Electrolysis: A Review
of Alkaline Water Electrolysis, PEM Water Electrolysis and High Temperature
Water Electrolysis. Tech. rep. 3. 2015, pp. 2249–8958.
BIBLIOGRAPHY 89
[49] Andrea Mazza, Ettore Bompard, and Gianfranco Chicco. Applications of
power to gas technologies in emerging electrical systems. September 2018. doi:
10.1016/j.rser.2018.04.072.
[50] J.H. Russel, L.J. Nuttall, and A.P. Fickett.

Hydrogen generation by solid polymer
electrolyte water electrolysis”. In: American Chemical Society Division
of Fuel Chemistry Preprints 18 (1973), pp. 24–40.
[51] Marcelo Carmo et al. A comprehensive review on PEM water electrolysis.
April 2013. doi: 10.1016/j.ijhydene.2013.01.151.
[52] S. Shiva Kumar and V. Himabindu.

Hydrogen production by PEM water
electrolysis – A review”. In: Materials Science for Energy Technologies 2.3
(December 2019), pp. 442–454. issn: 25892991. doi: 10.1016/j.mset.2019.
03.002.
[53] Anne Hauch et al.

Highly efficient high temperature electrolysis”. In: Journal
of Materials Chemistry 18.20 (2008), pp. 2331–2340. issn: 09599428. doi:
10.1039/b718822f.
[54] W Doenitz et al. HYDROGEN PRODUCTION BY HIGH TEMPERATURE
ELECTROLYSIS OF WATER VAPOUR. Tech. rep. 1980, pp. 55–63.
[55] M. A. Laguna-Bercero. Recent advances in high temperature electrolysis using
solid oxide fuel cells: A review. April 2012. doi: 10.1016/j.jpowsour.2011.
12.019.
[56] Seyedmehdi Sharifian, Neda Asasian Kolur, and Michael Harasek.

Transient
simulation and modeling of photovoltaic-PEM water electrolysis”. In: Energy
Sources, Part A: Recovery, Utilization and Environmental Effects 42.9
(May 2020), pp. 1097–1107. issn: 15567230. doi: 10.1080/15567036.2019.
1602220.
[57] Z. Abdin, C. J. Webb, and E. Maca Gray.

Modelling and simulation of a
proton exchange membrane (PEM) electrolyser cell”. In: International Journal
of Hydrogen Energy 40.39 (October 2015), pp. 13243–13257. issn: 03603199.
doi: 10.1016/j.ijhydene.2015.07.129.
[58] R. Garc´ıa-Valverde et al.

Optimized photovoltaic generator-water electrolyser
coupling through a controlled DC-DC converter”. In: International Journal of
Hydrogen Energy 33.20 (October 2008), pp. 5352–5362. issn: 03603199. doi:
10.1016/j.ijhydene.2008.06.015.
[59] Frano Barbir.

PEM electrolysis for production of hydrogen from renewable
energy sources”. In: Solar Energy 78.5 (May 2005), pp. 661–669. issn:
0038092X. doi: 10.1016/j.solener.2004.09.003.
[60] Haluk G¨org¨un.

Dynamic modelling of a proton exchange membrane (PEM)
electrolyzer”. In: International Journal of Hydrogen Energy 31.1 (January
2006), pp. 29–38. issn: 03603199. doi: 10.1016/j.ijhydene.2005.04.001.
90 BIBLIOGRAPHY
[61] Vesa Ruuskanen et al.

PEM water electrolyzer model for a power-hardwarein-
loop simulator”. In: International Journal of Hydrogen Energy 42.16 (April
2017), pp. 10775–10784. issn: 03603199. doi: 10.1016/j.ijhydene.2017.03.
046.
[62] Fran¸cois Parache et al.

Impact of Power Converter Current Ripple on the
Degradation of PEM Electrolyzer Performances”. In: Membranes 12.2 (February
2022). issn: 20770375. doi: 10.3390/membranes12020109.
[63] Vesa Ruuskanen et al.

Power quality estimation of water electrolyzers based
on current and voltage measurements”. In: Journal of Power Sources 450
(February 2020). issn: 03787753. doi: 10.1016/j.jpowsour.2019.227603.
[64] Henning P.C. Buitendach et al.

Effect of a ripple current on the efficiency of a
PEM electrolyser”. In: Results in Engineering 10 (June 2021). issn: 25901230.
doi: 10.1016/j.rineng.2021.100216.
[65] Francisco Da Costa Lopes and Edson H. Watanabe.

Experimental and
theoretical development of a PEM electrolyzer model applied to energy storage
systems”. In: 2009 Brazilian Power Electronics Conference, COBEP2009.
IEEE Computer Society, 2009, pp. 775–782. isbn: 9781424433704. doi: 10.
1109/COBEP.2009.5347619.
[66] Yuedong Zhan et al.

Comprehensive influences measurement and analysis of
power converter low frequency current ripple on PEM fuel cell”. In: International
Journal of Hydrogen Energy 44.59 (November 2019), pp. 31352–31359.
issn: 03603199. doi: 10.1016/j.ijhydene.2019.09.231.
[67] Bouchra Wahdame et al.

Impact of power converter current ripple on the
durability of a fuel cell stack”. In: IEEE International Symposium on Industrial
Electronics. 2008, pp. 1495–1500. isbn: 1424416655. doi: 10.1109/ISIE.2008.
4677206.
[68] Brinda A. Thomas, Inˆcs L. Azevedo, and Granger Morgan.

Edison Revisited:
Should we use DC circuits for lighting in commercial buildings?” In: Energy
Policy 45 (June 2012), pp. 399–411. issn: 03014215. doi: 10.1016/j.enpol.
2012.02.048.
[69] Vagelis Vossos, Karina Garbesi, and Hongxia Shen.

Energy savings from
direct-DC in U.S. residential buildings”. In: Energy and Buildings 68.PARTA
(2014), pp. 223–231. issn: 03787788. doi: 10.1016/j.enbuild.2013.09.009.
[70] Brock Glasgo, Inˆes Lima Azevedo, and Chris Hendrickson.

How much electricity
can we save by using direct current circuits in homes? Understanding
the potential for electricity savings and assessing feasibility of a transition
towards DC powered buildings”. In: Applied Energy 180 (October 2016),
pp. 66–75. issn: 03062619. doi: 10.1016/j.apenergy.2016.07.036.
[71] Bernd Wunder et al.

Energy efficient DC-grids for commercial buildings”. In:
INTELEC, International Telecommunications Energy Conference (Proceedings).
Vol. 2014-January. January. Institute of Electrical and Electronics Engineers
Inc., 2014. isbn: 9781479931057. doi: 10.1109/intlec.2014.6972215.
BIBLIOGRAPHY 91
[72] U. Boeke and M. Wendt.

DC power grids for buildings”. In: 2015 IEEE
1st International Conference on Direct Current Microgrids, ICDCM 2015.
Institute of Electrical and Electronics Engineers Inc., July 2015, pp. 210–214.
isbn: 9781479998791. doi: 10.1109/ICDCM.2015.7152040.
[73] Daniel Fregosi et al.

A comparative study of DC and AC microgrids in
commercial buildings across different climates and operating profiles”. In: 2015
IEEE 1st International Conference on Direct Current Microgrids, ICDCM
2015. Institute of Electrical and Electronics Engineers Inc., July 2015, pp. 159–
164. isbn: 9781479998791. doi: 10.1109/ICDCM.2015.7152031.
[74] Masatoshi Noritake et al.

Demonstrative research on DC microgrids for
office buildings”. In: INTELEC, International Telecommunications Energy
Conference (Proceedings). Vol. 2014-January. January. Institute of Electrical
and Electronics Engineers Inc., 2014. isbn: 9781479931057. doi: 10.1109/
intlec.2014.6972180.
[75] Vagelis Vossos et al.

Techno-economic analysis of DC power distribution in
commercial buildings”. In: Applied Energy 230 (November 2018), pp. 663–678.
issn: 03062619. doi: 10.1016/j.apenergy.2018.08.069.
[76] Daniel L. Gerber, Richard Liou, and Richard Brown.

Energy-saving opportunities
of direct-DC loads in buildings”. In: Applied Energy 248 (August 2019),
pp. 274–287. issn: 03062619. doi: 10.1016/j.apenergy.2019.04.089.
[77] Darian Andreas Schaab et al.

Simulative Analysis of a Flexible, Robust
and Sustainable Energy Supply through Industrial Smart-DC-Grid with
Distributed Grid Management”. In: Procedia CIRP. Vol. 69. Elsevier B.V.,
2018, pp. 366–370. doi: 10.1016/j.procir.2017.11.037.
[78] Timm Kuhlmann, Isabella Bianchini, and Alexander Sauer.

Resource and
energy efficiency assessment of an industrial DC smart grid”. In: Procedia
CIRP. Vol. 90. Elsevier B.V., 2020, pp. 672–676. doi: 10.1016/j.procir.
2020.01.074.
[79] Kris Baert. EnergyVille Bipolar low-voltage DC lab. Flexible DC lab Test
facility for the new low-voltage DC technology for building-level nanogrids and
district-level microgrids. https://www.energyville.be/sites/energyville/
files/downloads/2020/dc_labnewstyleweb.pdf.
[80] Qianqian Jiao, Rasoul Hosseini, and Robert M. Cuzner.

A comparison between
silicon carbide based current source rectifier and voltage source rectifier
for applications in community DC microgrid”. In: 2016 IEEE International
Conference on Renewable Energy Research and Applications, ICRERA 2016.
Institute of Electrical and Electronics Engineers Inc., March 2017, pp. 544–549.
isbn: 9781509033881. doi: 10.1109/ICRERA.2016.7884394.
[81] Stafan Pfenninger and Iain Staffell. Renewables.ninja. April 2020. url: www.
renewables.ninja (visited on 05/05/2022).
92 BIBLIOGRAPHY
[82] Iain Staffell and Stefan Pfenninger.

Using bias-corrected reanalysis to simulate
current and future wind power output”. In: Energy 114 (November 2016),
pp. 1224–1239. issn: 03605442. doi: 10.1016/j.energy.2016.08.068.
[83] Stefan Pfenninger and Iain Staffell.

Long-term patterns of European PV
output using 30 years of validated hourly reanalysis and satellite data”. In:
Energy 114 (November 2016), pp. 1251–1265. issn: 03605442. doi: 10.1016/
j.energy.2016.08.060.
[84] Ned Mohan, Tore M. Underland, and William P. Robbins. Power Electronics:
Applications and Design. 3rd ed. Danvers, MA: Wiley, 2003.
[85] Kuei Hsiang Chao and Chun Hao Huang.

Bidirectional DC-DC soft-switching
converter for stand-alone photovoltaic power generation systems”. In: IET
Power Electronics 7.6 (2014), pp. 1557–1565. issn: 17554543. doi: 10.1049/
iet-pel.2013.0335.
[86] Abdelfatah Kolli et al. A review on DC/DC converter architectures for power
fuel cell applications. August 2015. doi: 10.1016/j.enconman.2015.07.060.
[87] Martijn Deckers and Johan Driesen. An Investigation on the Impact of the
Driver to the Performance of GaN Components. Leuven, BE.
[88] Damien Guilbert, Stefania Maria Collura, and Angel Scipioni. DC/DC converter
topologies for electrolyzers: State-of-the-art and remaining key issues.
2017. doi: 10.1016/j.ijhydene.2017.07.174.
[89] Mohammad Kabalo et al.

State-of-the-art of DC-DC converters for fuel cell
vehicles”. In: 2010 IEEE Vehicle Power and Propulsion Conference, VPPC
2010. 2010. isbn: 9781424482191. doi: 10.1109/VPPC.2010.5729051.
[90] Sakda Somkun, Chatchai Sirisamphanwong, and Sukruedee Sukchai.

A DSPbased
interleaved boost DC-DC converter for fuel cell applications”. In: International
Journal of Hydrogen Energy 40.19 (May 2015), pp. 6391–6404. issn:
03603199. doi: 10.1016/j.ijhydene.2015.03.069.
[91] Damien Guilbert et al.

Fuel cell systems reliability and availability enhancement
by developing a fast and efficient power switch open-circuit fault
detection algorithm in interleaved DC/DC boost converter topologies”. In:
International Journal of Hydrogen Energy 41.34 (September 2016), pp. 15505–
15517. issn: 03603199. doi: 10.1016/j.ijhydene.2016.01.169.
[92] Boris Axelrod, Yefim Berkovich, and Adrian Ioinovici.

Switched-capacitor/switchedinductor
structures for getting transformerless hybrid DC-DC PWM converters”.
In: IEEE Transactions on Circuits and Systems I: Regular Papers 55.2
(2008), pp. 687–696. issn: 10577122. doi: 10.1109/TCSI.2008.916403.
[93] Il Oun Lee, Shin Young Cho, and Gun Woo Moon.

Interleaved buck converter
having low switching losses and improved step-down conversion ratio”. In:
IEEE Transactions on Power Electronics 27.8 (2012), pp. 3664–3675. issn:
08858993. doi: 10.1109/TPEL.2012.2185515.
BIBLIOGRAPHY 93
[94] Wilmar Martinez et al.

A novel high step-down interleaved converter with
coupled inductor”. In: INTELEC, International Telecommunications Energy
Conference (Proceedings). Vol. 2016-September. Institute of Electrical and
Electronics Engineers Inc., September 2016. isbn: 9781479965823. doi: 10.
1109/INTLEC.2015.7572421.
[95] Mriganka Biswas, Somanath Majhi, and Harshal Nemade.

Two-phase high
efficiency interleaved buck converter with improved step-down conversion
ratio and low voltage stress”. In: IET Power Electronics 12.15 (December
2019), pp. 3942–3952. issn: 17554543. doi: 10.1049/iet-pel.2019.0547.
[96] Menaouar Berrehil El Kattel et al.

Four-phase interleaved DC–DC step-down
converter using coupled inductor for high power application”. In: International
Journal of Circuit Theory and Applications 48.10 (October 2020), pp. 1696–
1723. issn: 1097007X. doi: 10.1002/cta.2843.
[97] Andrei Blinov and Anna Andrijanovits.

New DC/DC Converter for Electrolyser
Interfacing with Stand-Alone Renewable Energy System”. In: Electrical,
Control and Communication Engineering 1.1 (February 2013), pp. 24–29. issn:
2255-9140. doi: 10.2478/v10314-012-0004-1.
[98] P. Chandrasekhar and S. Rama Reddy.

Performance of soft-switched DCDC
resonant converter for Electrolyzer”. In: Proceedings - ISRCS 2011: 4th
International Symposium on Resilient Control Systems. 2011, pp. 95–100.
isbn: 9781424492930. doi: 10.1109/ISRCS.2011.6016096.
[99] Riccardo Pittini, Zhe Zhang, and Michael A.E. Andersen.

Isolated full bridge
boost DC-DC converter designed for bidirectional operation of fuel cells/electrolyzer
cells in grid-tie applications”. In: 2013 15th European Conference on
Power Electronics and Applications, EPE 2013. 2013. isbn: 9781479901166.
doi: 10.1109/EPE.2013.6634433.
[100] Dharmraj V. Ghodke, Kishore Chatterjee, and B. G. Fernandes.

Three-phase
three level, soft switched, phase shifted PWM DC-DC converter for high
power applications”. In: IEEE Transactions on Power Electronics 23.3 (May
2008), pp. 1214–1227. issn: 08858993. doi: 10.1109/TPEL.2008.920881.
[101] Damien Guilbert and Gianpaolo Vitale.

Dynamic emulation of a PEM
electrolyzer by time constant based exponential model”. In: Energies 12.4
(February 2019). issn: 19961073. doi: 10.3390/en12040750.
[102] ´Angel Hern´andez-G´omez et al.

Development of an adaptive static-dynamic
electrical model based on input electrical energy for PEM water electrolysis”.
In: International Journal of Hydrogen Energy 45.38 (July 2020), pp. 18817–
18830. issn: 03603199. doi: 10.1016/j.ijhydene.2020.04.182.
[103] F. Marangio, M. Santarelli, and M. Cal`ı.

Theoretical model and experimental
analysis of a high pressure PEM water electrolyser for hydrogen production”.
In: International Journal of Hydrogen Energy 34.3 (February 2009), pp. 1143–
1158. issn: 03603199. doi: 10.1016/j.ijhydene.2008.11.083.
94 BIBLIOGRAPHY
[104] A. Awasthi, Keith Scott, and S. Basu.

Dynamic modeling and simulation
of a proton exchange membrane electrolyzer for hydrogen production”. In:
International Journal of Hydrogen Energy 36.22 (November 2011), pp. 14779–
14786. issn: 03603199. doi: 10.1016/j.ijhydene.2011.03.045.
[105] Vincenzo Liso et al.

Modelling and experimental analysis of a polymer
electrolyte membrane water electrolysis cell at different operating temperatures”.
In: Energies 11.12 (December 2018). issn: 19961073. doi: 10.3390/
en11123273.
[106] Ra´ul Sarrias-Mena et al.

Electrolyzer models for hydrogen production from
wind energy systems”. In: International Journal of Hydrogen Energy 40.7
(February 2015), pp. 2927–2938. issn: 03603199. doi: 10.1016/j.ijhydene.
2014.12.125.
[107] Manuel Espinosa-L´opez et al.

Modelling and experimental validation of a 46
kW PEM high pressure water electrolyzer”. In: Renewable Energy 119 (April
2018), pp. 160–173. issn: 18790682. doi: 10.1016/j.renene.2017.11.081.
[108] M. G. Santarelli, M. F. Torchio, and P. Cochis.

Parameters estimation
of a PEM fuel cell polarization curve and analysis of their behavior with
temperature”. In: Journal of Power Sources 159.2 (September 2006), pp. 824–
835. issn: 03787753. doi: 10.1016/j.jpowsour.2005.11.099.
[109] C. Y. Biaku et al.

A semiempirical study of the temperature dependence
of the anode charge transfer coefficient of a 6 kW PEM electrolyzer”. In:
International Journal of Hydrogen Energy 33.16 (August 2008), pp. 4247–4254.
issn: 03603199. doi: 10.1016/j.ijhydene.2008.06.006.
[110] Chen Gong et al.

Fick’s Law Assisted Propagation for Semisupervised Learning”.
In: IEEE Transactions on Neural Networks and Learning Systems 26.9
(September 2015), pp. 2148–2162. issn: 21622388. doi: 10.1109/TNNLS.2014.
2376963.
[111] Faruk Civan.

CHAPTER 3 - PETROGRAPHICAL CHARACTERISTICS
OF PETROLEUM-BEARING FORMATIONS”. In: Reservoir Formation
Damage (Second Edition). Ed. by Faruk Civan. Second Edition. Burlington:
Gulf Professional Publishing, 2007, pp. 78–100. isbn: 978-0-7506-7738-7. doi:
https://doi.org/10.1016/B978-075067738-7/50004-X. url: https://
www.sciencedirect.com/science/article/pii/B978075067738750004X.
[112] Adam Z. Weber et al.

A Critical Review of Modeling Transport Phenomena
in Polymer-Electrolyte Fuel Cells”. In: Journal of The Electrochemical Society
161.12 (2014), F1254–F1299. issn: 0013-4651. doi: 10.1149/2.0751412jes.
[113] Meng Ni, Michael K.H. Leung, and Dennis Y.C. Leung.

An electrochemical
model of a solid oxide steam electrolyzer for hydrogen production”. In:
Chemical Engineering and Technology 29.5 (May 2006), pp. 636–642. issn:
09307516. doi: 10.1002/ceat.200500378.
BIBLIOGRAPHY 95
[114] Huayang Zhu and Robert J. Kee.

A general mathematical model for analyzing
the performance of fuel-cell membrane-electrode assemblies”. In: Journal of
Power Sources 117.1-2 (May 2003), pp. 61–74. issn: 03787753. doi: 10.1016/
S0378-7753(03)00358-6.
[115] Adam Z. Weber and John Newman.

Transport in Polymer-Electrolyte Membranes”.
In: Journal of The Electrochemical Society 150.7 (2003), A1008. issn:
00134651. doi: 10.1149/1.1580822.
[116] Burin Yodwong et al.

Proton exchange membrane electrolyzer emulator for
power electronics testing applications”. In: Processes 9.3 (March 2021). issn:
22279717. doi: 10.3390/pr9030498.
[117] Maxeon 3 400W Residential Solar Panel. SPR-MAX3-400. Sunpower Maxeon.
2019. url: https://cdn-happerp.com/scripts/ajaxFileDisplay.php?
file=data/files/articles/2414/documents/sunpower-maxeon-3-400wnl.
pdf&ajaxSubdomain=gd-energy (visited on 06/08/2022).
[118] Quinten Brosens, Ronald Leyman, and Merijn Van Deyck.

PV Battery
System Design”. unpublished. May 2021.
[119] Yuki Tsuno, Yoshihiro Hishikawa, and Kosuke Kurokawa.

Translation equations
for temperature and irradiance of the I-V curves of various PV cells and
modules”. In: Conference Record of the 2006 IEEE 4th World Conference on
Photovoltaic Energy Conversion, WCPEC-4. Vol. 2. IEEE Computer Society,
2006, pp. 2246–2249. isbn: 1424400163. doi: 10.1109/WCPEC.2006.279619.
[120] Farnell. Farnell Belgi¨e - Distributeur elektronische componenten. 2022. url:
https://be.farnell.com (visited on 04/20/2022).
[121] Farnell. Farnell UK - Electronic Components Distributor. 2022. url: https:
//uk.farnell.com (visited on 04/18/2022).
[122] Giovanni Franceschini et al.

3boost: A high-power three-phase step-up fullbridge
converter for automotive applications”. In: IEEE Transactions on
Industrial Electronics 55.1 (January 2008), pp. 173–183. issn: 02780046. doi:
10.1109/TIE.2007.905930.
[123] Ling Gu, Ke Jin, and Chang Liu.

Current-tripler-rectifier pulse width modulation
ZVS three-phase full-bridge DC/DC converter with Y-Δ connected
transformer”. In: IET Power Electronics 8.7 (July 2015), pp. 1111–1118. issn:
17554543. doi: 10.1049/iet-pel.2014.0415.
[124] High Current Inductor High Frequency 200 uH, 600 Amps. HCS-201M-600A.
Coil Winding Specialist Inc. 2022. url: https://www.coilws.com/images/
HCS-201M-600A%5C%20REV.D.pdf (visited on 05/25/2022).
[125] Semitrans 3. Fast IGBT4 Modules. SKM400GM12T4. Semikron. 2013. url:
https://www.farnell.com/datasheets/2085432.pdf (visited on 05/25/2022).
[126] Fast Recovery Epitaxial Diode (FRED). DSEI120-12A. IXYS. 2012. url:
https://www.farnell.com/datasheets/1678168.pdf (visited on 05/25/2022).
96 BIBLIOGRAPHY
[127] J. A. Oliver et al.

Passive component analysis in interleaved buck converters”.
In: Conference Proceedings - IEEE Applied Power Electronics Conference and
Exposition - APEC. Vol. 1. 2004, pp. 623–628. doi: 10.1109/apec.2004.
1295871.
[128] KEMET Part Number: C44PLGR6500RBSK. C44PLGR6500RASK. KEMET.
2022. url: https://api.kemet.com/component-edge/download/specsheet/
C44PLGR6500RBSK.pdf (visited on 05/29/2022).
[129] Coil Winding Specialist. Very High Current Power. May 2022. url: https:
//www.coilws.com/index.php?main_page=index&cPath=208_212_366
(visited on 05/26/2022).
[130] High Current Through-Hole Inductor, High Temperature. IHXL-1500VZ-5A.
Vishay. 2020. url: https://www.farnell.com/datasheets/3180558.pdf
(visited on 05/26/2022).
[131] 1200V XPT Gen X4 IGBT. Ultra Low-Vsat PT IGBT for up to 5kHz switching.
IXYH85N120A4. IXYS. 2020. url: https://www.farnell.com/datasheets/
3093869.pdf (visited on 05/27/2022).
[132] IGBT - Ultra Field Stop. FGH40T120SQDNL4. ON Semiconductor. March
2018. url: https://www.farnell.com/datasheets/2619971.pdf (visited
on 05/17/2022).
[133] Drisya K Sasi and A. S Haryhar.

A transformer-less high efficiency interleaved
buck converter with improved step-down conversion ratio and a pre-charging
setup through snubber circuit”. eng. In: 2017 IEEE International Conference
on Signal Processing, Informatics, Communication and Energy Systems
(SPICES). IEEE, 2017, pp. 1–6. isbn: 1538638649.
[134] Morteza Esteki et al.

Interleaved Buck Converter with Continuous Input
Current, Extremely Low Output Current Ripple, Low Switching Losses,
and Improved Step-Down Conversion Ratio”. In: IEEE Transactions on
Industrial Electronics 62.8 (August 2015), pp. 4769–4776. issn: 02780046. doi:
10.1109/TIE.2015.2397881.
[135] Wuhua Li et al.

High-step-up and high-efficiency fuel-cell power-generation
system with active-clamp flyback-forward converter”. In: IEEE Transactions
on Industrial Electronics 59.1 (January 2012), pp. 599–610. issn: 02780046.
doi: 10.1109/TIE.2011.2130499.
[136] River Tin Ho Li and Carl Ngai Man Ho.

An Active Snubber Cell for N-Phase
Interleaved DC-DC Converters”. In: IEEE Journal of Emerging and Selected
Topics in Power Electronics 4.2 (June 2016), pp. 344–351. issn: 21686785.
doi: 10.1109/JESTPE.2015.2449865.
[137] Svetozar S. Broussev and Nikolay T. Tchamov.

Two-phase self-assisted zerovoltage
switching DC-DC converter”. In: IEEE Transactions on Circuits and
Systems II: Express Briefs 60.3 (2013), pp. 157–161. issn: 15497747. doi:
10.1109/TCSII.2013.2240875.
BIBLIOGRAPHY 97
[138] Ahwan Rahimi, Vida Ranjbarizad, and Ebrahim Babaei.

Interleaved Buck–Boost
N-Phase High-Efficiency Converter with Soft Switching and Low Output Voltage
Ripple”. In: Arabian Journal for Science and Engineering 46.10 (October
2021), pp. 9497–9513. issn: 21914281. doi: 10.1007/s13369-021-05337-9.

Download scriptie (21.25 MB)
Genomineerde shortlist mtech+prijs
Universiteit of Hogeschool
KU Leuven
Thesis jaar
2022
Promotor(en)
Prof. dr. ir. Johan Driesen, Prof. dr. ir. Wilmar Martinez