Heeft u zich al eens afgevraagd hoe de voedingsindustrie ervoor zorgt dat onze producten steeds veilig zijn? Misschien kent u het antwoord op deze vraag wel voor het heden, maar wat brengt de toekomst? In dit artikel zal u een nieuwe techniek ontdekken die de veiligheid van levensmiddelen kan garanderen, maar die ook een aantal uitdagingen voor de toekomst met zich meebrengt.
Voedselveiligheid, een vanzelfsprekendheid?
In België wordt de veiligheid van voedsel vaak als vanzelfsprekend aanzien door consumenten. Maar vergis u niet, voedselgerelateerde ziekten vormen nog steeds een ernstige bedreiging voor de menselijke gezondheid. Jaarlijks worden naar schatting 600 miljoen mensen ziek en overlijden meer dan 400 000 mensen door het consumeren van gecontamineerd voedsel. Dit wordt onder andere veroorzaakt door de aanwezigheid van pathogene micro-organismen (denk bijvoorbeeld aan Salmonella en Listeria monocytogenes). In de voedingsindustrie worden verschillende technieken gebruikt om deze micro-organismen af te doden. Voorbeelden hiervan zijn thermische processen zoals een pasteurisatie- of sterilisatieproces. Deze technieken hebben bijgedragen tot het reduceren van het aantal voedselgerelateerde ziekten, maar worden ook gekenmerkt door een aantal beperkingen. Zo kunnen ze aanleiding geven tot ongewenste wijzigingen van de textuur, kleur en smaak van een product, de afbraak van vitaminen en de vorming van toxische moleculen. Daarom is er nood aan milde conserveringstechnieken; deze technieken hebben een minimale impact op de kwaliteit van het product terwijl ze de veiligheid toch kunnen garanderen.
Milde conserveringstechnieken
Recent werd de mogelijkheid bestudeerd om koud plasma te gebruiken als milde conserveringstechniek. Koud plasma is een energierijk gas dat opgebouwd is uit minuscule deeltjes zoals ionen, fotonen, radicalen en elektronen. Deze worden “reactieve deeltjes” genoemd omdat ze over heel wat energie beschikken. Zoveel energie dat ze via complexe mechanismen in staat zijn om micro-organismen af te doden. Jammer genoeg interageren de reactieve deeltjes niet enkel met micro-organismen maar ook met voedselcomponenten zoals lipiden (vetten), wat de kwaliteit en veiligheid van een product negatief kan beïnvloeden. Zo werd in voorgaande onderzoeken al aangetoond dat bepaalde reactieve deeltjes zoals ozon, wat een reactief zuurstofdeeltje is, bederfprocessen zoals lipide-oxidatie kunnen veroorzaken. Lipide-oxidatie kan zorgen voor een ranzige smaak, de afbraak van gezonde antioxidanten en de vorming van toxische moleculen. Daarom werd in dit onderzoek bestudeerd in welke mate koud plasma lipide-oxidatie kan veroorzaken in levensmiddelen. Dit werd experimenteel getest op oliemengsels, aangezien deze matrices gevoelig zijn voor lipide-oxidatie.
Het werkingsprincipe van koud plasma en enkele FAQ worden beschreven in de onderstaande box.
-------------------------------------------------------------
Hoe ontstaat koud plasma?
Wanneer een gas zoals lucht wordt blootgesteld aan een elektrisch veld, worden geladen deeltjes (ionen en elektronen) die aanwezig zijn in het gas, versneld. Hierdoor ontstaat een elektrische stroom. Vervolgens kunnen geladen deeltjes en ongeladen deeltjes (atomen en moleculen) met elkaar botsen, waarbij de geladen deeltjes hun energie overdragen aan de ongeladen deeltjes. Deze zullen hierdoor gesplitst worden tot reactieve deeltjes. Daarnaast kunnen UV-fotonen vrijgesteld worden wanneer positieve ionen met elektronen versmelten.
Waarom moet het plasma koud zijn?
In tegenstelling tot een thermisch plasma (plasma met een temperatuur hoger dan 20 000 °C) hebben alle deeltjes van een koud plasma, met uitzondering van de elektronen, een temperatuur lager dan 60°C. Hierdoor zal koud plasma een levensmiddel niet thermisch (ten gevolge van hitte) beschadigen.
Hoe wordt koud plasma toegepast op een levensmiddel?
In een eerste stap wordt een draaggas (bijvoorbeeld lucht) onder druk in het toestel gebracht. Vervolgens wordt het draaggas tussen 2 elektroden gestuurd. Hier wordt het gas blootgesteld aan een elektrisch veld, waardoor koud plasma ontstaat. In het koud plasma bevinden zich reactieve deeltjes, die zich via kleine openingen in de elektroden in de richting van het levensmiddel kunnen bewegen, zoals wordt weergegeven in de onderstaande figuur. Ten slotte zullen de reactieve deeltjes micro-organismen die zich op het levensmiddel bevinden, afdoden.
------------------------------------------------------------
Wat vertellen de experimenten?
Tijdens de experimentele fase van het onderzoek werd vastgesteld dat koud plasma lipide-oxidatie induceert in oliemengsels wanneer lucht als draaggas wordt gebruikt. Dit wordt veroorzaakt door de aanwezigheid van reactieve zuurstofdeeltjes, zoals ozon en waterstofperoxide, in het plasma. De negatieve invloed die koud plasma op de kwaliteit van oliemengsels uitoefent, neemt toe wanneer (i) de onverzadigdheid [1] van de oliemengsels stijgt, (ii) de duur van de plasmabehandeling wordt verlengd, (iii) antioxidanten (moleculen die lipide-oxidatie vertragen) uit de oliemengsels worden verwijderd, en (iv) het gas een hogere zuurstofconcentratie bevat. De vorming van toxische moleculen tijdens koud plasma behandelingen blijkt gelukkig heel beperkt te zijn.
Heeft koud plasma een toekomst als conserveringstechniek?
Koud plasma zal in de toekomst wellicht niet kunnen gebruikt worden als milde conserveringstechniek voor producten die rijk zijn aan onverzadigd vet (zoals oliemengsels en vette vis), maar mogelijks wel voor producten zoals water, groenten en fruit, aangezien deze weinig vet bevatten. Om te evalueren voor welke producten koud plasma al dan niet kan toegepast worden, moet bovendien rekening gehouden worden met de beperkingen van deze techniek, waaronder (i) het beperkte penetratievermogen van reactieve deeltjes in vaste matrices (zoals groenten en fruit), waardoor koud plasma voor deze producten enkel het oppervlak kan behandelen, (ii) het feit dat draaggassen die zuurstof bevatten (zoals lucht) het meest effectief zijn voor het elimineren van micro-organismen, maar ook het sterkst lipide-oxidatie bevorderen, en (iii) de hoge kostprijs van koud plasma t.o.v. klassieke conserveringstechnologieën zoals thermische processen. Verder onderzoek naar de invloed van koud plasma op de kwaliteit en veiligheid van levensmiddelen is bovendien nodig om goedkeuring te kunnen verwerven als nieuwe voedingstechnologie in Europa. Zo werd reeds vastgesteld dat reactieve deeltjes ook de structuur van pesticiden en bepaalde toxines (ongewenst) kan wijzigen. Daarnaast lopen op dit moment nog onderzoeken naar de impact van koud plasma op de structuur, kwaliteit en veiligheid van eiwitten en koolhydraten. De toekomst brengt dus nog vele uitdagingen, maar dat mag geen obstakel zijn om deze veelbelovende milde conserveringstechniek tot in de kleinste details uit de pluizen. We willen toch allemaal veilige en smakelijke voeding, niet?
[1] Onverzadigdheid: onverzadigde vetten zijn gevoeliger voor lipide-oxidatie dan verzadigde vetten. Zo zijn omega-3-vetzuren gevoeliger voor lipide-oxidatie dan verzadigde vetzuren.
A
Abramzon, N., Joaquin, J.C., Bray, J., Brelles-Marino, G. (2006). Biofilm destruction by RF high-pressure cold plasma jet.
IEEE Transactions on Plasma Science, 34 (4). 1304-1309.
Afshari, R., Hosseini, H. (2014). Non-thermal plasma as a new food preservation method, it’s present and future
prospect. Journal of Paramedical Sciences, 5 (1). 116-120.
Albertos, I., Martin-Diana, A.B., Cullen, P.J., Tiwari, B.K., Ojha, K.S., Bourke, P., Rico, D. (2019). Shelf-life extension of
herring (Clupea harengus ) using in-package atmospheric plasma technology.
Innovative Food Science & Emerging Technologies, 53. 85-91.
Alizadeh, A.M., Hashempour-Baltork, F., Khaneghah, A.M., Hosseini, H. (2021). New perspective approaches in
controlling fungi and mycotoxins in food using emerging and green technologies.
Current Opinion in Food Science, 39. 7-15.
AOCS. (2017). AOCS Official Method Cd 18-90: p-Anisidine Value. Opgehaald van
https://www.aocs.org/attain-lab-services/methods/methods/search-results?method=111529&SSO=True
op 17/10/2021.
Assadi, M., Pourreza, S. (2019). Base and Catalyst-Free Preparation of Silyl Ethers in the Choline Chloride/Urea Deep
Eutectic Solvent (DES). Journal of Inorganic and Organometallic Polymers and Materials, 29 (2). 541-549.
Azizi, N., Yousefi, R., Saidi, M.R. (2006). Efficient and practical protocol for silylation of hydroxyl groups using reusable
lithium perchlorate dispread in silica gel under neutral condition.
Journal of Organometallic Chemistry, 691 (5). 817-820.
B
Bahrami, N., Bayliss, D., Chope, G., Penson, S., Perehinec, T., Fisk, I.D. (2016). Cold plasma: A new technology to modify
wheat flour functionality. Food Chemistry, 202. 247-253.
Bai, Y., Chen, J., Mu, H., Zhang, C., Li, B. (2009). Reduction of dichlorvos and omethoate residues by O2 plasma treatment.
Journal of Agricultural and Food Chemistry, 57 (14). 6238-6245.
Baker, M.B. (2003). Lightning. Holton, J.R. (Eds.). Encyclopedia of Atmospheric Sciences (pp. 1216-1223).
Academic Press. Boston.
Bao, M., Joza, P., Masters, A., Rickert, W. (2014). Analysis of Selected Carbonyl Compounds in Tobacco Samples by Using
Pentafluorobenzylhydroxylamine Derivatization and Gas Chromatography-Mass Spectrometry. International/Contributions to Tobacco Research, 26 (3). 86-97.
Bárdos, L., Baránková, H. (2010). Cold atmospheric plasma: Sources, processes, and applications.
Thin Solid Films, 518. 6705-6713.
Basak, S., Annapure, U.S. (2022). Recent trends in the application of cold plasma for the modification of plant proteins - A review. Future Foods, 5. 1-17.
Bauer, A., Ni, Y., Bauer, S., Paulsen, P., Modic, M., Walsh, J.L., Smulders, F.J.M. (2017). The effects of atmospheric pressure
cold plasma treatment on microbiological, physical-chemical and sensory characteristics of vacuum packaged beef loin. Meat Science, 128. 77-87.
Berhanu, B., Lübben, J., Nalankilli, G. (2020). Cold Plasma Treatment in Wet Chemical Textile Processing.
Fibres & Textiles in Eastern Europe, 28. 118-126.
Berlett, B.S., Stadtman, E.R. (1997). Protein oxidation in aging, disease, and oxidative stress.
The Journal of Biological Chemistry, 272 (33). 20313-20316.
Bermudez-Aguirre, D. (2019). Advances in Cold Plasma Applications for Food Safety and Preservation (First Edition).
Elsevier. Richland.
Bourke, P., Ziuzina, D., Boehm, D., Cullen, P.J., Keener, K. (2018). The potential of cold plasma for safe and sustainable
food production. Trends in Biotechnology, 36. 615-626.
Bourke, P., Ziuzina, D., Han, L., Cullen, P., Gilmore, B. (2017). Microbiological interactions with cold plasma.
Journal of applied microbiology, 123. 308-324.
Braun, D., Küchler, U., Pietsch, G. (1988). Behaviour of NOx in air-fed ozonizers. Pure and Applied Chemistry, 60. 741-746
Bruggeman, P.J., Iza, F., Brandenburg, R. (2017). Foundations of atmospheric pressure non-equilibrium plasmas.
Plasma Sources Science and Technology, 26 (12). 1-17.
C
Caligiani, A., Nocetti, M., Lolli, V., Marseglia, A., Palla, G. (2016). Development of a Quantitative GC–MS Method for the
Detection of Cyclopropane Fatty Acids in Cheese as New Molecular Markers for Parmigiano Reggiano Authentication. Journal of Agricultural and Food Chemistry, 64 (20). 4158-4164.
Cantera. (2021). Modeling Chemical Reactions in Cantera. Opgehaald van
https://cantera.org/science/reactions.html op 13/09/2021.
Cataldo. (2014). Hydrogen peroxide photolysis with different UV light sources including a new UV-LED light source.
New Frontiers in Chemistry, 23 (2). 99-110.
CDC. (2020). Foodborne Germs and Illnesses. Opgehaald van
https://www.cdc.gov/foodsafety/foodborne-germs.html op 8/09/2021.
Choi, S., Puligundla, P., Mok, C. (2017). Impact of corona discharge plasma treatment on microbial load and
physicochemical and sensory characteristics of semi-dried squid (Todarodes pacificus ).
Food Science And Biotechnology, 26. 1137-1144.
Chutia, H., Kalita, D., Mahanta, C.L., Ojah, N., Choudhury, A.J. (2019). Kinetics of inactivation of peroxidase and polyphenol
oxidase in tender coconut water by dielectric barrier discharge plasma.
Food Science and Technology, 101. 625-629.
Ciucanu, C.I., Vlad, D.C., Ciucanu, I., Dumitraşcu, V. (2020). Selective and fast methylation of free fatty acids directly in plasma for their individual analysis by gas chromatography-mass spectrometry.
Journal of Chromatography A, 1624 (461259). 1-8.
Conrads, H., Schmidt, M. (2000). Plasma generation and plasma sources.
Plasma Sources Science and Technology, 9 (4). 441-454.
Costa, M., Sezgin-Bayindir, Z., Losada-Barreiro, S., Paiva-Martins, F., Saso, L., Bravo-Díaz, C. (2021). Polyphenols as Antioxidants for Extending Food Shelf-Life and in the Prevention of Health Diseases: Encapsulation and
Interfacial Phenomena. Biomedicines, 9 (1909). 1-41.
Coutinho, N.M., Silveira, M.R., Rocha, R.S., Moraes, J., Ferreira, M.V.S., Pimentel, T.C., Freitas, M.Q., Silva, M.C., Raices, R.S.L.,
Ranadheera, C.S., Borges, F.O., Mathias, S.P., Fernandes, F.A.N., Rodrigues, S., Cruz, A.G. (2018). Cold plasma processing of milk and dairy products. Trends in Food Science & Technology, 74. 56-68.
Critzer, F.J., Kelly-Wintenberg, K., South, S.L., Golden, D.A. (2007). Atmospheric plasma inactivation of foodborne
pathogens on fresh produce surfaces. Journal of Food Protection, 70 (10). 2290-2296.
D
de Falco, B., Lanzotti, V. (2018). NMR spectroscopy and mass spectrometry in metabolomics analysis of Salvia.
Phytochemistry Reviews, 17. 1-22.
Deilmann, M., Halfmann, H., Bibinov, N., Wunderlich, J., Awakowicz, P. (2008). Low-pressure microwave plasma
sterilization of polyethylene terephthalate bottles. Journal of Food Protection, 71 (10). 2119-2123.
Del Rio, D., Stewart, A.J., Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and
biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases, 15 (4). 316-328.
De Meulenaer, B. (2019). Levensmiddelenchemie. Theoriecursus.
Denes, A.R., Somers, E.B., Wong, A.L.C., Denes, F.S. (2000). Plasma aided treatment of surfaces against bacterial
attachment and biofilm deposition. US Patent 6 096 564.
Deng, X., Shi, J., Shama, G., Kong, M. (2005). Effects of microbial loading and sporulation temperature on atmospheric
plasma inactivation of Bacillus subtilis spores. Applied Physics Letters, 87. 1-3.
Desmet, T., Morent, R., De Geyter, N., Leys, C., Schacht, E., Dubruel, P. (2009). Nonthermal plasma technology as a
versatile strategy for polymeric biomaterials surface modification: a review.
Biomacromolecules, 10 (9). 2351-2378.
Dessì, M.A., Deiana, M., Day, B.W., Rosa, A., Banni, S., Corongiu, F.P. (2002). Oxidative stability of polyunsaturated fatty acids: effect of squalene. European Journal of Lipid Science and Technology, 104. 506-512.
Devi, Y., Thirumdas, R., Sarangapani, C., Deshmukh, R.R., Annapure, U.S. (2017). Influence of cold plasma on fungal
growth and aflatoxins production on groundnuts. Food Control, 77. 187-191.
Devlieghere, F., Debevere, J., Jacxsens, L., Rajkovic, A., Uyttendaele, M., Vermeulen, A. (2016). Levensmiddelen-
microbiologie en conservering. die Keure. Brugge.
Dewettinck, K. (2020). Food Technology. Theoriecursus.
D’hooghe, M. (2019). Chemie 4: Organische Chemie - Reactiviteit. Theoriecursus.
Domínguez, R., Pateiro, M., Gagaoua, M., Barba, F.J., Zhang, W., Lorenzo, J.M. (2019). A Comprehensive Review on Lipid
Oxidation in Meat and Meat Products. Antioxidants, 8 (429). 1-31.
Doolaege, E.H., Vossen, E., Raes, K., De Meulenaer, B., Verhé, R., Paelinck, H., De Smet, S. (2012). Effect of rosemary extract
dose on lipid oxidation, colour stability and antioxidant concentrations, in reduced nitrite liver pâtés.
Meat science, 90 (4). 925-931.
E
EFSA. (2021). Applications for regulated products, claims and processes. Opgehaald van
https://www.efsa.europa.eu/en/applications/regulatedproducts op 20/09/2021.
Ekezie, F-G.C., Sun, D-W., Cheng, J-H. (2017a). A review on recent advances in cold plasma technology for the food
industry: current applications and future trends. Trends in Food Science & Technology, 69. 46-58.
Ekezie, F-G.C., Sun, D-W., Han, Z., Cheng, J-H. (2017b). Microwave-assisted food processing technologies for enhancing
product quality and process efficiency: a review of recent developments.
Trends in Food Science & Technology, 67. 58-69.
Eliasson, B., Kogelschatz, U. (1991). Non-equilibrium volume plasma chemical processing.
IEEE Transactions on Plasma Science, 19. 1063-1077.
European Commission. (2021). Foods & food ingredients authorised for irradiation in the EU. Opgehaald van
https://ec.europa.eu/food/safety/biological-safety/food-irradiation/legislation_en op 9/09/2021.
F
Falkenstein, Z., Coogan, J.J. (1997). Microdischarge behaviour in the silent discharge of nitrogen - oxygen and water -
air mixtures. Journal of Physics D: Applied Physics, 30. 817-825.
FAO. (2021). Fruit and vegetables, your dietary essentials. The International Year of Fruits and Vegetables -
Background paper. Opgehaald van http://www.fao.org/3/cb2395en/CB2395EN.pdf op 7/10/2021.
Farlex. (2021). Arc discharge. American Heritage® Dictionary of the English Language (Fifth Edition). Opgehaald van
https://www.thefreedictionary.com/Arc+discharge op 15/09/2021.
Fernandez-Gutierrez, S., Pedrow, P., Pitts, M., Powers, J. (2010). Cold Atmospheric-Pressure Plasmas Applied to Active
Packaging of Apples. IEEE Transactions on Plasma Science, 38 (4). 957-965.
Filipić, A., Gutierrez-Aguirre, I., Primc, G., Mozetič, M., Dobnik, D. (2020). Cold Plasma, a New Hope in the Field of Virus
Inactivation. Trends in Biotechnology, 38 (11). 1278-1291.
Fisher, T.J., Dussault, P.H. (2017). Alkene ozonolysis. Tetrahedron, 73 (30). 4233-4258.
Folayan, A.J., Anawe, P.A.L., Aladejare, A.E., Ayeni, A.O. (2019). Experimental investigation of the effect of fatty acids configuration, chain length, branching and degree of unsaturation on biodiesel fuel properties obtained from lauric oils, high-oleic and high-linoleic vegetable oil biomass. Energy Reports, 5. 793-806.
Frankel, E.N. (1996). Antioxidants in lipid foods and their impact on food quality. Food Chemistry, 57 (1). 51-55.
Frankel, E.N. (2005). Lipid oxidation (Second Edition). Woodhead publishing. Philadelphia.
Fridman, A. (2004). Physics and Applications of the Gliding Arc Discharge. The 31st IEEE International Conference on
Plasma Science, ICOPS. IEEE Conference Record - Abstracts, pp. 410.
Fridman, G., Peddinghaus, M., Balasubramanian, M., Ayan, H., Fridman, A., Gutsol, A., Brooks, A. (2006). Blood Coagulation
and Living Tissue Sterilization by Floating-Electrode Dielectric Barrier Discharge in Air.
Plasma Chemistry and Plasma Processing, 26. 425-442.
G
Gan, Z., Feng, X., Hou, Y., Sun, A., Wang, R. (2021). Cold plasma jet with dielectric barrier configuration: investigating its
effect on the cell membrane of E. coli and S. cerevisiae and its impact on the quality of chokeberry juice.
Food Science and Technology, 136. 1-8.
Gao, Y., Zhuang, H., Yeh, H-Y., Bowker, B., Zhang, J. (2019). Effect of rosemary extract on microbial growth, pH, color, and
lipid oxidation in cold plasma-processed ground chicken patties.
Innovative Food Science & Emerging Technologies, 57. 1-6.
Garate, E., Evans, K., Gornostaeva, O., Alexeff, I., Kang, W., Rader, M., Wood, T.K. (1998). Atmospheric plasma induced
sterilization and chemical neutralization. Proceedings IEEE international conference on plasma science, 23. 183.
Garner, A.L., Loveless, A.M., Dahal, J.N., Venkattraman, A. (2020). A tutorial on theoretical and computational techniques
for gas breakdown in microscale gaps. IEEE Transactions on Plasma Science, 48. 808-824.
Gaunt, L.F, Beggs, C.B., Georghiou, G.E. (2006). Bactericidal Action of the Reactive Species Produced by Gas-Discharge
Nonthermal Plasma at Atmospheric Pressure: A Review.
IEEE Transactions on Plasma Science, 34 (4). 1257-1269.
Gavahian, M., Chu, Y., Khaneghah, A.M., Barba, F.J., Misra, N.N. (2018). A critical analysis of the cold plasma induced lipid
oxidation in foods. Trends in Food Science & Technology, 77. 32-41.
Gavahian, M., Khaneghah, A.M. (2019). Cold plasma as a tool for the elimination of food contaminants: Recent
advances and future trends. Critical Reviews in Food Science and Nutrition, 60 (9). 1581-1592.
Gavahian, M., Sarangapani, S., Misra, N.N. (2021). Cold plasma for mitigating agrochemical and pesticide residue in food
and water: Similarities with ozone and ultraviolet technologies. Food Research International, 141. 1-15.
Gebremical, G.G., Emire, S.A., Birhanu, T. (2019). Effects of Multihollow Surface Dielectric Barrier Discharge Plasma on
Chemical and Antioxidant Properties of Peanut. Journal of Food Quality. 1-10.
Goding, J.W. (1996). Chapter 4 - Nature of Antigens. Monoclonal Antibodies - Principles and Practice (Third edition)
(pp. 57). Academic Press. Victoria.
Greene, J.F., Newman, J.W., Williamson, K.C., Hammock, B.D. (2000). Toxicity of Epoxy Fatty Acids and Related Compounds to Cells Expressing Human Soluble Epoxide Hydrolase. Chemical Research in Toxicology, 13 (4). 217-226.
Grilo, E.C., Costa, P.N., Gurgel, C.S.S., Beserra, A.F.d.L., Almeida, F.N.d.S., Dimenstein, R. (2014). Alpha-tocopherol and
gamma-tocopherol concentration in vegetable oils. Journal of Food Science and Technology, 34 (2). 379-385.
Grossweiner, L.I. (1984). Photochemistry of proteins: A review. Current Eye Research, 3. 137-144.
Guo, L., Xu, R., Gou, L., Liu, Z., Zhao, Y., Liu, D., Zhang, L., Chen, H., Kong, M.G. (2018). Mechanism of Virus Inactivation by
Cold Atmospheric-Pressure Plasma and Plasma-Activated Water.
Applied and Environmental Microbiology, 84 (17). 1-10.
H
Haitz, F., Radloff, S., Rupp, S., Froehling, M., Hirth, T., Zibek, S. (2018). Chemo-Enzymatic Epoxidation of Lallemantia
Iberica Seed Oil: Process Development and Economic-Ecological Evaluation.
Applied Biochemistry and Biotechnology, 185 (1). 1-21.
Han, L., Patil, S., Boehm, D., Milosavljević, V., Cullen, P.J., Bourke, P. (2016). Mechanisms of Inactivation by High-Voltage
Atmospheric Cold Plasma Differ for Escherichia coli and Staphylococcus aureus.
Applied and Environmental Microbiology, 82 (2). 450-458.
Hanson, R.E., Houser, N.M., Lavoie, P. (2014). Dielectric material degradation monitoring of dielectric barrier discharge
plasma actuators. Journal of Applied Physics, 115. 1-9.
Hertwig, C., Reineke, K., Ehlbeck, J., Knorr, D., Schlüter, O. (2015). Decontamination of whole black pepper using different
cold atmospheric pressure plasma applications. Food Control, 55. 221-229.
Hirschler, R. (2012). Chapter 10 - Whiteness, Yellowness, and Browning in Food Colorimetry: A Critical Review. Caivano,
J.L., del Pilar Buera, M. (Eds.). Color in Food Technological and Psychophysical Aspects (First Edition)
(pp. 93-103). CRC Press. Boca Raton.
Holub, M., Brandenburg, R., Grosch, H., Weinmann, S., Hansel, B. (2014). Plasma Supported Odour Removal from Waste
Air in Water Treatment Plants: An Industrial Case Study. Aerosol and Air Quality Research, 14. 697-707.
Hrycay, E.G., Bandiera, S.M. (2015). Chapter 2 - Involvement of Cytochrome P450 in Reactive Oxygen Species Formation and Cancer. Hardwick, J.P. (Eds.). Advances in Pharmacology, 74 (pp. 35-84). Academic Press. Amsterdam.
Huang, M., Wang, J., Zhuang, H., Yan, W., Zhao, J., Zhang, J. (2019). Effect of in-package high voltage dielectric barrier
discharge on microbiological, color and oxidation properties of pork in modified atmosphere packaging during storage. Meat Science, 149. 107-113.
Huang, M., Zhuang, H., Zhao, J., Wang, J., Yan, W., Zhang, J. (2020). Differences in cellular damage induced by dielectric
barrier discharge plasma between Salmonella Typhimurium and Staphylococcus aureus.
Bioelectrochemistry, 132. 1-12.
Huang, Y., Ye, X.P., Doona, C.J., Feeherry, F.E., Radosevich, M., Wang, S. (2019). An investigation of inactivation
mechanisms of Bacillus amyloliquefaciens spores in non-thermal plasma of ambient air.
Journal of the Science of Food and Agriculture, 99. 368-378.
Hugas, M., Tsigarida, E. (2008). Pros and cons of carcass decontamination: The role of the European Food Safety
Authority. Meat science, 78. 43-52.
J
Jahanmiri, A., Rahimpour, M.R., Mohamadzadeh Shirazi, M., Hooshmand, N., Taghvaei, H. (2012). Naphtha cracking
through a pulsed DBD plasma reactor: effect of applied voltage, pulse repetition frequency and electrode material. Chemical Engineering Journal, 191. 416-425.
Janda, M., Martišovitš, V., Machala, Z. (2011). Transient spark: A dc-driven repetitively pulsed discharge and its control by
electric circuit parameters. Plasma Sources Science and Technology, 20 (035015). 1-10.
Janda, M., Martišovitš, V., Hensel, K. (2016). Generation of Antimicrobial NOx by Atmospheric Air Transient Spark
Discharge. Plasma Chemistry and Plasma Processing, 36. 767-781.
K
Kar, R., Chand, N., Bute, A., Maiti, N., Rao, A.V.S.S.N., Nagar, V., Shashidhar, R., Patil, D.S., Ghosh, S.K., Sharma, A. (2020). Cold
Plasma: Clean Technology to Destroy Pathogenic Micro-organisms.
Transactions of the Indian National Academy of Engineering, 5. 327-331.
Katrib, Y., Martin, S. Hung, H-M., Rudich, Y., Zhang, H., Slowik, J., Davidovcits, P., Jayne, J., Worsnop, D. (2004). Products
and Mechanisms of Ozone Reactions with Oleic Acid for Aerosol Particles Having Core−Shell Morphologies.
Journal of Physical Chemistry A, 108. 6686-6695.
Kim, D.S., Kim, H.S., Lee, K.T., Hong, D.L., Cho, S.R., Pan, J.H., Park, Y.B., Lee, Y.B., Kim, J.K., Shin, E.C. (2018). Chemical Characterization and Oxidative Stability of Medium- and Long-Chain Fatty Acid Profiles in Tree-Borne Seed Oils. Journal of analytical methods in chemistry, 2018. 1-9.
Kim, H-J., Yong, H.I., Park, S., Kim, K., Choe, W., Jo, C. (2015). Microbial safety and quality attributes of milk following
treatment with atmospheric pressure encapsulated dielectric barrier discharge plasma.
Food Control, 47. 451-456.
Kim, K-H., Kabir, E., Jahan, S.A. (2017). Exposure to pesticides and the associated human health effects.
Science of The Total Environment, 575. 525-535.
Kogelschatz, U. (2002). Dielectric-barrier discharges: Their history, discharge physics, and industrial applications.
Plasma Chemistry and Plasma Processing, 23. 1-46.
Konica Minolta. (2016). Spectrophotometer CM-2500d. Opgehaald van
https://sensing.konicaminolta.us/wp-content/uploads/cm2500d_catalog_eng-9869375736.pdf op 22/12/2021.
Korachi, M., Ozen, F., Aslan, N., Vannini, L., Guerzoni, M.E., Gottardi, D., Ekinci, F.Y. (2015). Biochemical changes to milk
following treatment by a novel, cold atmospheric plasma system. International Dairy Journal, 42. 64-69.
Krumpolec, R., Richter, V., Zemánek, M., Homola, T. (2019). Multi-hollow surface dielectric barrier discharge for plasma
treatment of patterned silicon surfaces. Surfaces and Interfaces, 16. 181-187.
Kulawik, P., Alvarez, C., Cullen, P.J., Aznar-Roca, R., Mullen, A.M., Tiwari, B. (2018). The effect of non-thermal plasma on
the lipid oxidation and microbiological quality of sushi.
Innovative Food Science & Emerging Technologies, 45. 412-417.
L
Laguerre, M., Lecomte, J., Villeneuve, P. (2007). Evaluation of the ability of antioxidants to counteract lipid oxidation:
Existing methods, new trends and challenges. Progress in Lipid Research, 46. 244-282.
Laroque, D.A., Seó, S.T., Valencia, G.A., Laurindo, J.B., Carciofi, B.A.M. (2021). Cold plasma in food processing: Design,
mechanisms, and application. Journal of Food Engineering, 312 (110748). 1-24.
Lassen, K.S., Nordby, B., Grün, R. (2003). Optimization of a RF generated CF4 /O2 gas plasma sterilization process.
Journal of Biomedical Materials Research Part B: Applied Biomaterials, 65 (2). 239-244.
Lee, E.S., Cheigh, C-I., Kang, J.H., Lee, S.Y., Min, S.C. (2020). Evaluation of In-Package Atmospheric Dielectric Barrier
Discharge Cold Plasma Treatment as an Intervention Technology for Decontaminating Bulk Ready-To-Eat
Chicken Breast Cubes in Plastic Containers. Applied Sciences, 10 (18). 1-21.
Lee, H., Kim, J.E., Chung, M.S., Min, S.C. (2015). Cold plasma treatment for the microbiological safety of cabbage,
lettuce, and dried figs. Food Microbiology, 51. 74-80.
Lee, H-J., Song, H-P., Jung, H., Choe, W., Ham, J., Lee, J.H., Jo, C. (2012). Effect of Atmospheric Pressure Plasma Jet on
Inactivation of Listeria monocytogenes, Quality, and Genotoxicity of Cooked Egg White and Yolk.
Korean Journal for Food Science of Animal Resources, 32 (5). 561-570.
Lee, K.H., Woo, K.S., Yong, H.I., Jo, C., Lee, S.K., Lee, B.W., Oh, S.K., Lee, Y.Y., Lee, B., Kim, H.J. (2017). Assessment of microbial
safety and quality changes of brown and white cooked rice treated with atmospheric pressure plasma.
Food science and biotechnology, 27 (3). 661-667.
Lercker, G., Rodriguez-Estrada, M.T., Bonoli, M. (2003). Analysis of the oxidation products of cis- and trans-
octadecenoate methyl esters by capillary gas chromatography–ion-trap mass spectrometry: I. Epoxide and
dimeric compounds. Journal of Chromatography A, 985 (1-2). 333-342.
Liao, X., Liu, D., Xiang, Q., Ahn, J., Chen, S., Ye, X., Ding, T. (2017). Inactivation mechanisms of non-thermal plasma on
microbes: A review. Food Control, 75. 83-91.
Liu, R., Jin, Q., Tao, G., Shan, L., Liu, Y., Wang, X. (2009). LC-MS and UPLC-quadrupole time-of-flight MS for
identification of photodegradation products of aflatoxin B1. Chromatographia, 71 (1-2). 107-112.
Liu, X. (2021). Chapter 9 - Free Radical Substitution Reaction of Alkanes. Organic Chemistry I. Opgehaald van
https://kpu.pressbooks.pub/organicchemistry/ op 30/09/2021.
Lo, K., Yung, Y.L. (2013). Integration of Headspace Solid Phase Micro-Extraction with Gas Chromatography for
Quantitative Analysis of Formaldehyde. Bulletin of the Korean Chemical Society, 34 (1). 139-142.
Locke, B.R., Shih, K-Y. (2011). Review of the methods to form hydrogen peroxide in electrical discharge plasma with
liquid water. Plasma Sources Science and Technology, 20 (3). 1-15.
López, M., Calvo, T., Prieto, M., Múgica-Vidal, R., Muro-Fraguas, I., Alba-Elías, F., Alvarez-Ordóñez, A. (2019). A Review on
Non-thermal Atmospheric Plasma for Food Preservation: Mode of Action, Determinants of Effectiveness, and Applications. Frontiers in Microbiology, 10 (622). 1-21.
Lowke, J.J., Morrow, R. (1995). Theoretical analysis of removal of oxides of sulphur and nitrogen in pulsed operation of
electrostatic precipitators. IEEE Transactions on Plasma Science, 23 (4). 661-671.
Lukes, P., Dolezalova, E., Sisrova, I., Clupek, M. (2014). Aqueous-phase chemistry and bactericidal effects from an air
discharge plasma in contact with water: Evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2. Plasma Sources Science and Technology, 23. 1-15.
Ly, B., Dyer, E., Feig, J., Chien, A., Bino, S. (2020). Research Techniques Made Simple: Cutaneous Colorimetry: A Reliable
Technique for Objective Skin Color Measurement. The Journal of investigative dermatology, 140. 3-12.
M
Machala, Z., Tarabova, B., Hensel, K., Spetlikova, E., Sikurova, L., Lukes, P. (2013). Formation of ROS and RNS in water electrosprayed through transient spark discharge in air and their bactericidal effects.
Plasma Processes and Polymers, 10 (7). 649-659.
Machala, Z., Tarabová, B., Sersenová, D., Janda, M., Hensel, K. (2019). Chemical and antibacterial effects of plasma
activated water: correlation with gaseous and aqueous reactive oxygen and nitrogen species, plasma sources
and air flow conditions. Journal of Physics D: Applied Physics, 52 (3). 1-17.
Mai-Prochnow, A., Clauson, M., Hong, J., Murphy, A.B. (2016). Gram positive and Gram negative bacteria differ in their
sensitivity to cold plasma. Scientific Reports, 6. 1-11.
Mai-Prochnow, A., Murphy, A.B., McLean, K.M., Kong, M.G., Ostrikov, K. (2014). Atmospheric pressure plasmas: Infection
control and bacterial responses. International Journal of Antimicrobial Agents, 43 (6). 508-517.
Mandal, R., Singh, A., Singh, A.P. (2018). Recent developments in cold plasma decontamination technology in the food
industry. Trends in Food Science & Technology, 80. 93-103.
Mao, J., He, B., Zhang, L., Li, P., Zhang, Q., Ding, X., Zhang, W. (2016). A structure identification and toxicity assessment
of the degradation products of aflatoxin B1 in peanut oil under UV irradiation. Toxins, 8 (332). 1-11.
Martín-Martínez, J.M. (2002). Chapter 13 - Rubber base adhesives. Dillard, D.A., Pocius, A.V., Chaudhury, M. (Eds.).
Adhesion Science and Engineering (pp. 573-675). Elsevier Science B.V. Amsterdam.
Meinlschmidt, P., Ueberham, E., Lehmann, J., Reineke, K., Schlüter, O., Schweiggert-Weisz, U., Eisner, P. (2016). The
effects of pulsed ultraviolet light, cold atmospheric pressure plasma, and gamma-irradiation on the immunoreactivity of soy protein isolate. Innovative Food Science and Emerging Technologies, 38. 374-383.
Merényi, G., Lind, J., Engman, L. (1994). One-and two-electron reduction potentials of peroxyl radicals and related
species. Journal of the Chemical Society, Perkin Transactions II, 12. 2551-2553.
Mir, S., Siddiqui, M., Dar, B., Shah, M., Wani, M., Roohinejad, S., Annor, G., Mallikarjunan, K., Chin, C., Ali, A. (2020). Promising
applications of cold plasma for microbial safety, chemical decontamination and quality enhancement in fruits. Journal of Applied Microbiology, 129. 474-485.
Mishra, R., Bhatia, S., Pal, R., Visen, A., Trivedi, H. (2016). Cold Plasma: Emerging As the New Standard in Food Safety.
International Journal of Engineering and Science, 6 (2). 15-20.
Misra, N.N., Han, L., Tiwari, B., Bourke, P., Cullen, P. (2014). Nonthermal plasma technology for decontamination of foods.
Boziaris, I.S. (Eds.). Novel food preservation and microbial assessment techniques (pp. 155-183).
CRC Press. Boca Raton.
Misra, N.N., Kumar, T.B., Raghavarao, K., Cullen, P.J. (2011). Nonthermal Plasma Inactivation of Food-Borne Pathogens.
Food Engineering Reviews, 3. 159-170.
Misra, N.N., Schlüter, O., Cullen, P.J. (2016). Cold plasma in food and Agriculture: Fundamentals and applications
(First Edition). Academic Press. San Diego.
Misra, N.N., Yadav, B., Roopesh, M., Jo, C. (2019a). Cold Plasma for Effective Fungal and Mycotoxin Control in Foods:
Mechanisms, Inactivation Effects, and Applications.
Comprehensive Reviews in Food Science and Food Safety, 18. 106-120.
Misra, N.N., Yepez, X., Xu, L., Keener, K. (2019b). In-package cold plasma technologies.
Journal of Food Engineering, 244. 21-31.
Mittler, R., Vanderauwera, S., Suzuki, N., Miller, G., Tognetti, V.B., Vandepoele, K., Gollery, M., Shulaev, V., Van Breusegem, F.
(2011). ROS signaling: the new wave? Trends in Plant Science, 16 (6). 300-309.
Mousavi, S.M., Imani, S., Dorranian, D., Larijani, K., Shojaee, M. (2017). Effect of cold plasma on degradation of
organophosphorus pesticides used on some agricultural products.
Journal of Plant Protection Research, 57 (1). 26-35.
Moutiq, R., Misra, N.N., Mendonça, A., Keener, K. (2020). In-package decontamination of chicken breast using cold
plasma technology: Microbial, quality and storage studies. Meat Science, 159. 1-9.
Mubiru, E., Shrestha, K., Papastergiadis, A., De Meulenaer, B. (2013). Improved gas chromatography flame ionization detector analytical method for the analysis of epoxy fatty acids. Journal of Chromatography A, 1318 (2013). 217-225.
Mubiru, E., Shrestha, K., Papastergiadis, A., De Meulenaer, B. (2014). Development and Validation of a Gas Chromatography - Flame Ionization Detection Method for the Determination of Epoxy Fatty Acids in Food Matrices. Journal of Agricultural and Food Chemistry, 62. 2982-2988.
Mubiru, E., Jacxsens, L., Papastergiadis, A., Lachat, C., Shrestha, K., Mozumder, N.H.M.R., De Meulenaer, B. (2017). Exposure assessment of epoxy fatty acids through consumption of specific foods available in Belgium.
Food Additives & Contaminants: Part A, 34 (6). 1000-1011.
Muhammad, A.I., Liao, X., Cullen, P.J., Liu, D., Xiang, Q., Wang, J., Chen, S., Ye, X., Ding, T. (2018a). Effects of Nonthermal
Plasma Technology on Functional Food Components.
Comprehensive Reviews in Food Science and Food Safety, 17 (5). 1379-1394.
Muhammad, A.I., Xiang, Q., Liao, X., Liu, D., Ding, T. (2018b). Understanding the Impact of Nonthermal Plasma on Food
Constituents and Microstructure: A Review. Food and Bioprocess Technology, 11. 463-486.
Muranyi, P., Wunderlich, J., Heise, M. (2008). Influence of relative gas humidity on the inactivation efficiency of a low
temperature gas plasma. Journal of Applied Microbiology, 104. 1659-1666.
N
Na, H.S., Mok, C.K., Lee, J.H. (2020). Effects of plasma treatment on the oxidative stability of vegetable oil containing
antioxidants. Food Chemistry, 302. 1-6.
Nehra, V., Kumar, A., Dwivedi, H. (2008). Atmospheric non-thermal plasma sources.
International Journal of Engineering, 2. 53-68.
NEVO. (2021). Nederlands voedingsstoffenbestand. Opgehaald van https://nevo-online.rivm.nl/ op 2/10/2021.
Niemira, B.A. (2012). Cold Plasma Decontamination of Foods.
The Annual Review of Food Science and Technology, 3. 125-142.
Niemira, B.A. (2014). Chapter 18 - Decontamination of Foods by Cold Plasma. Sun, D-W. (Eds.). Emerging Technologies
for Food Processing (Second Edition) (pp. 327-333). Academic Press. Amsterdam.
Niemira, B.A., Sites, J. (2008). Cold plasma inactivates Salmonella Stanley and Escherichia coli O157:H7 inoculated
on golden delicious apples. Journal of Food Protection, 71 (7). 1357-1365.
Nishime, T.M.C., Borges, A.C., Koga-Ito, C.Y., Machida, M., Hein, L.R.O., Kostov, K.G. (2017). Non-thermal atmospheric
pressure plasma jet applied to inactivation of different microorganisms.
Surface and Coatings Technology, 312. 19-24.
Niu, G., Li, Y., Tang, J., Wang, X., Duan, Y. (2018). Optical and electrical analysis of multielectrode cylindrical dielectric
barrier discharge (DBD) plasma reactor. Vacuum, 157. 465-474.
Noriega, E., Shama, G., Laca, A., Díaz, M., Kong, M.G. (2011). Cold atmospheric gas plasma disinfection of chicken meat
and chicken skin contaminated with Listeria innocua. Food Microbiology, 28 (7). 1293-1300.
O
O’Donnell, V.B., Eiserich, J.P., Chumley, P.H., Jablonsky, M.J., Krishna, N.R., Kirk, M., Barnes, S., Darley-Usmar, V.M., Freeman,
B.A. (1999). Nitration of Unsaturated Fatty Acids by Nitric Oxide-Derived Reactive Nitrogen Species Peroxynitrite, Nitrous Acid, Nitrogen Dioxide, and Nitronium Ion. Chemical Research in Toxicology, 12. 83-92.
Oh, Y., Roh, S., Min, S.C. (2016). Cold plasma treatments for improvement of the applicability of defatted soybean meal-
based edible film in food packaging. Food Hydrocolloids, 58. 150-159.
Orata, F. (2012). Derivatization reactions and reagents for gas chromatography analysis.
Advanced Gas Chromatography - Progress in Agricultural, Biomedical and Industrial Applications. 83-107.
Ott, L. C., Appleton, H.J., Shi, H., Keener, K., Mellata, M. (2021). High voltage atmospheric cold plasma treatment
inactivates Aspergillus flavus spores and deoxynivalenol toxin. Food Microbiology, 95. 1-10.
Ouf, S.A., Basher, A.H., Mohamed, A.A. (2015). Inhibitory effect of double atmospheric pressure argon cold plasma on
spores and mycotoxin production of Aspergillus niger contaminating date palm fruits.
Journal of the Science of Food and Agriculture, 95 (15). 3204-3210.
Ozkan, A., Dufour, T., Bogaerts, A., Reniers, F. (2016). How do the barrier thickness and dielectric material influence the
filamentary mode and CO2 conversion in a flowing DBD? Plasma Sources Science and Technology, 25. 1-11.
P
Pandey, A., Höfer, R., Taherzadeh, M., Nampoothiri, K.M., Larroche, C. (2015). Industrial Biorefineries & White
Biotechnology. Elsevier. Amsterdam.
Pankaj, S.K., Misra, N.N., Cullen, P.J. (2013). Kinetics of tomato peroxidase inactivation by atmospheric pressure cold
plasma based on dielectric barrier discharge. Innovative Food Science & Emerging Technologies, 19. 153-157.
Pankaj, S.K., Wan, Z., Keener, K.M. (2018). Effects of Cold Plasma on Food Quality: A Review. Foods, 7 (4). 1-21.
Basel, Switzerland.
Papastergiadis, A. (2014). A contribution to the risk assessment in relation to the formation of toxic aldehydes in foods
as a result of lipid oxidation. PhD dissertation. Faculty of Bioscience Engineering, Ghent University. Gent.
Park, B.J., Takatori, K., Sugita-Konishi, Y., Kim, I-H., Lee, M-H., Han, D-W., Chung, K.H., Hyun, S.O., Park, J-C. (2007).
Degradation of mycotoxins using microwave-induced argon plasma at atmospheric pressure.
Surface and Coatings Technology, 201 (9-11). 5733-5737.
Parkinson, D.R. (2012). Volume 2 - Theory of Extraction Techniques. Comprehensive Sampling and Sample Preparation,
Analytical Techniques for Scientists. Pawliszyn, J. (Eds.). Academic Press. Amsterdam.
Patel, N.K., Shah, S.N. (2015). Chapter 11 - Biodiesel from Plant Oils. Ahuja, S. (Eds.).
Food, Energy and Water (pp. 277-307). Elsevier. Amsterdam.
Patil, S., Moiseev, T., Misra, N.N., Cullen, P.J., Mosnier, J.P., Keener, K.M., Bourke, P. (2014). Influence of high voltage
atmospheric cold plasma process parameters and role of relative humidity on inactivation of
Bacillus atrophaeus spores inside a sealed package. Journal of Hospital Infection, 88 (3). 162-169.
Pavlovich, M., Clark, D., Graves, D. (2014). Quantification of air plasma chemistry for surface disinfection.
Plasma Sources Science and Technology, 23 (6). 1-10.
Pérez-Andrés, J.M., Charoux, C.M.G., Cullen, P.J., Tiwari, B.K. (2018). Chemical Modifications of Lipids and Proteins by
Nonthermal Food Processing Technologies. Journal of Agricultural and Food Chemistry, 66 (20). 5041-5054.
Pérez-Andrés, J.M., Cropotova, J., Harrison, S.M, Brunton, N.P., Cullen, P.J., Rustad, T., Tiwari, B.K. (2020a). Effect of Cold
Plasma on Meat Cholesterol and Lipid Oxidation. Foods, 9 (1786). 1-13.
Pérez-Andrés, J.M., de Alba, M., Harrison, S.M., Brunton, N.P., Cullen, P.J., Tiwari, B.K. (2020b). Effects of cold atmospheric
plasma on mackerel lipid and protein oxidation during storage. Food Science & Technology, 118. 1-12.
Pfrang, C., Sebastiani, F., Lucas, C.O.M., King, M.D., Hoare, I.D., Chang, D., Campbell, R.A. (2014). Ozonolysis of methyl oleate
monolayers at the air-water interface: oxidation kinetics, reaction products and atmospheric implications. Physical Chemistry Chemical Physics, 16 (26). 13220-13228.
PIE Scientific. (2021). Inductively Coupled Plasma - ICP discharge. Opgehaald van
https://piescientific.com/Resource_pages/Resource_inductively_coupled_discharge/ op 16/09/2021.
Pina-Perez, M.C., Martinet, D., Palacios-Gorba, C., Ellert, C., Beyrer, M. (2020). Low-energy short-term cold atmospheric
plasma: controlling the inactivation efficacy of bacterial spores in powders.
Food Research International, 130. 1-10.
Polčic, P., Machala, Z. (2021). Effects of Non-Thermal Plasma on Yeast Saccharomyces cerevisiae.
International Journal of Molecular Sciences, 22 (5):2247.
Prevc, T., Levart, A., Cigić, I.K., Salobir, J., Ulrih, N.P., Cigić, B. (2015). Rapid Estimation of Tocopherol Content in Linseed and Sunflower Oils-Reactivity and Assay. Molecules, 20. 14777-14790.
Pryor, W.A., Stanley, J.P., Blair, E., Cullen, G.B. (1976). Autoxidation of polyunsaturated fatty acids.
Part I. Effect of ozone on the autoxidation of neat methyl linoleate and methyl linolenate.
Archives of Environmental & Occupational Health, 31 (4). 201-210.
Puligundla, P., Mok, C. (2020). Chapter 11 - Microwave- and radio-frequency-powered cold plasma applications for food
safety and preservation. Bermudez-Aguirre, D. (Eds.). Advances in Cold Plasma Applications for Food Safety
and Preservation (pp. 309-329). Academic Press. London.
R
Ragaert, P. (2021). Packaging technology. Theoriecursus.
Ragni, L., Berardinelli, A., Iaccheri, E., Gozzi, G., Cevoli, C., Vannini, L. (2016). Influence of the electrode material on the
decontamination efficacy of dielectric barrier discharge gas plasma treatments towards Listeria monocytogenes and Escherichia coli. Innovative Food Science and Emerging Technologies, 37. 170-176.
Ramos-Diaz, J.M. (2011). Use of amaranth, quinoa and kaniwa in extruded corn snacks. University of Helsinki,
Department of Food and Environmental Sciences. Master Thesis, EKT Series 1522.
Reineke, K., Langer, K., Hertwig, C., Ehlbeck, J., Schlüter, O. (2015). The impact of different process gas compositions on
the inactivation effect of an atmospheric pressure plasma jet on Bacillus spores.
Innovative Food Science and Emerging Technologies, 30. 112-118.
Reineke, K., Mathys, A., Heinz, V., Knorr, D. (2013). Mechanisms of endospore inactivation under high pressure.
Trends in Microbiology, 21. 296-304.
Richardson, G., Eick, S.A., Harwood, D., Rosen, K.G., Dobbs, F. (2003). Negative air ionisation and the production of
hydrogen peroxide. Atmospheric Environment, 37 (26). 3701-3706.
Rokosik, E., Dwiecki, K., Rudzińska, M., Siger, A., Polewski, K. (2019). Column chromatography as a method for minor
components removal from rapeseed oil. Grasas y Aceites, 70 (3). 316. 1-9.
Rowan, N., Espie, S., Harrower, J., Anderson, J., Marsili, L., MacGregor, S. (2007). Pulsed-plasma gas-discharge
inactivation of microbial pathogens in chilled poultry wash water.
Journal of Food Protection, 70 (12). 2805-2810.
Rubio, C., Cerón, J. (2021). Spectrophotometric assays for evaluation of Reactive Oxygen Species (ROS) in serum: general concepts and applications in dogs and humans. BMC Veterinary Research, 17.
Rusterholtz, D., Lacoste, D. Stancu, G., Pai, D., Laux, C. (2013). Ultrafast heating and oxygen dissociation in atmospheric
pressure air by nanosecond repetitively pulsed discharges.
Journal of Physics D: Applied Physics, 46 (4010-10). 1-21.
S
Sadhu, S., Thirumdas, R., Deshmukh, R., Annapure, U. (2017). Influence of cold plasma on the enzymatic activity in
germinating mung beans (Vigna radiate ). Food Science and Technology, 78. 97-104.
Sakudo, A., Misawa, T., Yagyu, Y. (2020). Chapter 10 - Equipment design for cold plasma disinfection of food products. Bermudez-Aguirre, D. (Eds.). Advances in Cold Plasma Applications for Food Safety and Preservation (pp. 289- 307). Academic Press. London.
Sampels, S. (2013). Chapter 6 - Oxidation and Antioxidants in Fish and Meat from Farm to Fork. Muzzalupo, I. (Eds.).
Food Industry (pp. 115-144). IntechOpen. Rijeka.
Sarangapani, C., Keogh, D.R., Dunne, J., Bourke, P., Cullen, P.J. (2017). Characterisation of cold plasma treated beef and
dairy lipids using spectroscopic and chromatographic methods. Food Chemistry, 235. 324-333.
Sarangapani, C., Misra, N.N., Milosavljevic, V., Bourke, P., O’Regan, F., Cullen, P.J. (2016). Pesticide degradation in water
using atmospheric air cold plasma. Journal of Water Process Engineering, 9. 225-232.
Saremnezhad, S., Soltani, M., Faraji, A. Hayaloglu, A.A. (2021). Chemical changes of food constituents during cold plasma
processing: A review. Food Research International, 147. 1-14.
Sato, K., Hyodo, M., Takagi, J., Aoki, M., Noyori, R. (2000). Hydrogen peroxide oxidation of aldehydes to carboxylic acids: an organic solvent-, halide- and metal-free procedure. Tetrahedron Letters, 41 (9). 1439-1442.
Scally, L., Behan, S., Aguiar de Carvalho, A.M., Sarangapani, C., Tiwari, B., Malone, R., Byrne, H.J., Curtin, J., Cullen, P.J.
(2021). Diagnostics of a large volume pin-to-plate atmospheric plasma source for the study of plasma species interactions with cancer cell cultures. Plasma Processes and Polymers, 18. 1-12.
Schaller, C. (2020). Proton Transfer in Carbonyl Addition. Opgehaald van
Selcuk, M., Oksuz, L., Basaran, P. (2008). Decontamination of grains and legumes infected with Aspergillus spp. and
Penicillum spp. by cold plasma treatment. Bioresource Technology, 99 (11). 5104-5109.
Selivonin, I.V., Lazukin, A.V., Moralev, I.A., Krivov, S.A. (2018). Effect of electrode degradation on the electrical
characteristics of surface dielectric barrier discharge. Plasma Sources Science and Technology, 27. 1-13.
Selivonin, I.V., Lazukin, A.V., Moralev, I.A., Krivov, S.A., Roslyakov, I. (2019). Erosion of the sputtered electrodes in the
surface barrier discharge. Journal of Physics: Conference Series, 1394. 1-6.
Sera, B., Sery, M., Gavril, B., Gajdova, I. (2017). Seed Germination and Early Growth Responses to Seed Pre-treatment by
Non-thermal Plasma in Hemp Cultivars (Cannabis sativa L. ).
Plasma Chemistry and Plasma Processing, 37. 207-221.
Shahidi, F., Zhong, Y. (2010). Lipid oxidation and improving the oxidative stability.
Chemical Society Reviews, 39 (11). 4067-4079.
Shaw, A., Shama, G., Iza, F. (2015). Emerging applications of low temperature gas plasmas in the food industry.
Biointerphases. 10 (2). 1-25.
Shi, H., Cooper, B., Stroshine, R.L., Ileleji, K.E., Keener, K.M. (2017a). Structures of degradation products and degradation
pathways of aflatoxin B1 by high-voltage atmospheric cold plasma (HVACP) treatment.
Journal of Agricultural and Food Chemistry, 65 (30). 6222-6230.
Shi, H., Ileleji, K., Stroshine, R.L., Keener, K., Jensen, J.L. (2017b). Reduction of aflatoxin in corn by high voltage
atmospheric cold plasma. Food and Bioprocess Technology, 10 (6). 1042-1052.
Shiekh, K.A., Benjakul, S. (2020). Effect of high voltage cold atmospheric plasma processing on the quality and shelf-
life of Pacific white shrimp treated with Chamuang leaf extract.
Innovative Food Science & Emerging Technologies, 64. 1-13.
Siciliano, I., Spadaro, D., Prelle, A., Vallauri, D., Cavallero, M.C., Garibaldi, A., Gullino, M.L. (2016). Use of cold atmospheric
plasma to detoxify hazelnuts from aflatoxins. Toxins (Basel), 8 (125). 1-10.
Sierens, J. (2021). Impact van koudplasmabehandelingen op lipiden - een studie op vetzuurmethylesters. Masterproef
voorgelegd voor het behalen van de graad Master of Science in de bio-ingenieurswetenschappen: levensmiddelenwetenschappen en voeding. Promotor: Prof. dr. Bruno De Meulenaer. Tutor: Danyang Liu. UGent.
Singh, A., Benjakul, S. (2020). The combined effect of squid pen chito-oligosaccharides and high voltage cold
atmospheric plasma on the shelf-life extension of Asian sea bass slices stored at 4 °C.
Innovative Food Science & Emerging Technologies, 64. 1-10.
Smet, C., Noriega, E., Rosier, F., Walsh, J.L., Valdramidis, V.P., Van Impe, J.F. (2016). Influence of food intrinsic factors on
the inactivation efficacy of cold atmospheric plasma: Impact of osmotic stress, suboptimal pH and food structure. Innovative Food Science & Emerging Technologies, 38. 393-406.
Spickett, C. (2013). The lipid peroxidation product 4-hydroxy-2-nonenal: Advances in chemistry and analysis.
Redox biology, 1. 145-152.
Srivastava, A.K. (2019). Selection of dielectric material for producing diffuse dielectric barrier discharge plasma at
atmospheric pressure. Materials Today: Proceedings, 18 (3). 1033-1038.
Stancampiano, A., Forgione, D., Simoncelli, E., Laurita, R., Tonini, R., Gherardi, M., Colombo, V. (2019). The effect of cold
atmospheric plasma (cap) treatment at the adhesive-root dentin interface.
The Journal of Adhesive Dentistry, 21. 229-237.
Stanimir, K., Bogaerts, A. (2015). Similarities and differences between gliding glow and gliding arc discharges.
University of Antwerp, Institute of Physics. Plasma sources science and technology, 24 (6). 1-15.
Stoica, M., Alexe, P., Mihalcea, L. (2014). Atmospheric cold plasma as a new strategy for food processing, an overview.
Innovative Romanian Food Biotechnology, 15. 1-8.
Sun, C., Zhao, Y.Y., Curtis, J.M. (2012). A study of the ozonolysis of model lipids by electrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 26 (8). 921-930.
Sureshkumar, S., Neogi, S. (2009). Inactivation characteristics of bacteria in capacitively coupled argon plasma.
IEEE Transactions on Plasma Science, 37 (2). 2347-2352.
Surowsky, B., Fischer, A., Schlueter, O., Knorr, D. (2013). Cold plasma effects on enzyme activity in a model food system.
Innovative Food Science & Emerging Technologies, 19. 146-152.
Surowsky, B., Schlüter, O., Knorr, D. (2014). Interactions of nonthermal atmospheric pressure plasma with solid and
liquid food systems: a review. Food Engineering Reviews, 7 (2). 82-108.
T
Tabares, F.L., Junkar, I. (2021). Cold Plasma Systems and their Application in Surface Treatments for Medicine.
Molecules, 26 (7). 1-16.
Takai, E., Kitano, K., Kuwabara, J., Shiraki, K. (2012). Protein inactivation by low temperature atmospheric pressure
plasma in aqueous solution. Plasma Processes and Polymers, 9. 77-82.
Tammineedi, C.V.R.K., Choudhary, R., Perez-Alvarado, G.C., Watson, D.G. (2013). Determining the effect of UV-C, high
intensity ultrasound and nonthermal atmospheric plasma treatments on reducing the allergenicity of α-casein and whey proteins. Food Science and Technology, 54 (1). 35-41.
Tappi, S., Gozzi, G., Vannini, L., Berardinelli, A., Romani, S., Ragni, L. (2016). Cold plasma treatment for fresh-cut melon
stabilization. Innovative Food Science & Emerging Technologies, 33. 225-233.
Tarabová, B., Lukes, P., Janda, M., Hensel, K., Sikurová, L., Machala, Z. (2018). Specificity of detection methods of nitrites
and ozone in aqueous solutions activated by air plasma. Plasma Processes and Polymers, 15. 1-12.
Tendero, C., Dublanche-Tixier, C., Tristant, P., Desmaison, J., Leprince, P. (2006). Atmospheric Pressure Plasmas: A
Review. Spectrochimica Acta Part B-atomic Spectroscopy, 61. 2-30.
Thankam F.G., Jayabalan, M. (2013). Reactive oxygen species - Control and management using amphiphilic biosynthetic hydrogels for cardiac applications. Advances in Bioscience and Biotechnology, 4. 1134-1146.
Thirumdas, R., Sarangapani, C., Annapure, U.S. (2015). Cold plasma: A novel nonthermal technology for food
processing. Food Biophysics, 10. 1-11.
Turner-Walker, G. (2012). The Removal of Fatty Residues from a Collection of Historic Whale Skeletons in Bergen:
An Aqueous Approach to Degreasing. 10. 1-16.
Tyagi, A.K., Malik, A., Gottardi, D., Guerzoni, M.E. (2012). Essential oil vapour and negative air ions: A novel tool for
food preservation. Trends in Food Science & Technology, 26. 99-113.
U
UCSanDiego. (2018). The San Diego Mechanism. Nitrogen Chemistry. Opgehaald van http://web.eng.ucsd.edu/mae/groups/combustion/sdmech/sandiego_nitrogen/NOx_20180723/NOXsandiego201 80723.pdf
Ulbin-Figlewicz, N., Jarmoluk, A. (2015). Effect of low-pressure plasma treatment on the color and oxidative stability of
raw pork during refrigerated storage. Food Science and Technology International, 22. 1-12.
Umair, M., Jabbar, S., Nasiru, M.M., Sultana, T., Senan, A.M., Awad, F.N., Hong, Z., Zhang, J. (2019). Exploring the potential of
high-voltage electric field cold plasma (HVCP) using a dielectric barrier discharge (DBD) as a plasma source on the quality parameters of carrot juice. Antibiotics, 8 (235). 1-18.
V
Vandamme, J., Nikiforov, A., Dujardin, K., Leys, C., De Cooman, L., Van Durme, J. (2015). Critical evaluation of non-thermal
plasma as an innovative accelerated lipid oxidation technique in fish oil.
Food Research International, 72. 115-125.
Vandemoortele, A. (2020). Reactivity of secondary oxidation products in food modem systems. PhD dissertation,
Faculty of Bioscience engineering, Ghent University, Belgium.
Van Durme, J., Nikiforov, A., Vandamme, J., Leys, C., De Winne, A. (2014). Accelerated lipid oxidation using non-thermal
plasma technology: Evaluation of volatile compounds. Food Research International, 62. 868-876.
Venkataratnam, H., Cahill, O., Sarangapani, C., Cullen, P.J., Barry-Ryan, C. (2020). Impact of cold plasma processing on
major peanut allergens. Scientific Reports, 10. 1-11.
Verhé, R., ; Verleyen, T., Van Hoed, V., De Greyt, W. (2006). Influence of refining of vegetable oils on minor components.
Journal of Oil Palm Research (Special Issue - April 2006). 168-179.
W
Wagner, J-H., Elmadfa, I. (2000). Effects of tocopherols and their mixtures on the oxidative stability of olive oil and linseed oil under heating. European Journal of Lipid Science and Technology, 102. 624-629.
Wan, Z., Misra, N.N., Li, G., Keener, K.M. (2021). High voltage atmospheric cold plasma treatment of Listeria innocua and
Escherichia coli K-12 on queso fresco (fresh cheese). Food Science & Technology, 146. 1-10.
Wang, S-Q., Huang, G-Q., Li, Y-P., Xiao, J-X., Zhang, Y., Jiang, W-L. (2015). Degradation of aflatoxin B1 by low-
temperature radio frequency plasma and degradation product elucidation.
European Food Research and Technology, 241 (1). 103-113.
Wang, X., Wang, Z., Zhuang, H., Nasiru, M.M., Yuan, Y., Zhang, J., Yan, W. (2021). Changes in color, myoglobin, and lipid
oxidation in beef patties treated by dielectric barrier discharge cold plasma during storage. Meat Science, 176. 1-9.
Wei, Y., Li, G., Lü, Q., Cheng, C., Guo, H. (2018a). Epoxidation of Methyl Oleate and Unsaturated Fatty Acid Methyl Esters Obtained from Vegetable Source over Ti-Containing Silica Catalysts.
Industrial & Engineering Chemistry Research, 57 (48). 16284-16294.
Wei, Y., Li, G., Lü, Q., Cheng, C., Guo, H. (2018b). Green and efficient epoxidation of methyl oleate over hierarchical TS-1.
Chinese Journal of Catalysis, 39 (5). 964-972.
Wende, K., von Woedtke, T., Weltmann, K.D., Bekeschus, S. (2018). Chemistry and biochemistry of cold physical plasma
derived reactive species in liquids. Journal of Biological Chemistry, 400 (1). 19-38.
WHO. (2020). Food safety. Opgehaald van https://www.who.int/news-room/fact-sheets/detail/food-safety op 8/09/2021.
Wielogorska, E., Ahmed, Y., Meneely, J., Graham, W.G., Elliott, C.T., Gilmore, B.F. (2019). A holistic study to understand
the detoxification of mycotoxins in maize and impact on its molecular integrity using cold atmospheric plasma treatment. Food chemistry, 301. 1-8.
Wiles, C., Watts, P., Haswell, S.J. (2005). Acid-catalysed synthesis and deprotection of dimethyl acetals in a miniaturised
electroosmotic flow reactor. Tetrahedron, 61 (22). 5209-5217.
Won, M.Y., Lee, S.J., Min, S.C. (2017). Mandarin preservation by microwave-powered cold plasma treatment.
Innovative Food Science & Emerging Technologies, 39. 25-32.
Wu, Y., Liang, Y., Wei, K., Li, W., Yao, M., Zhang, J. (2014). Rapid Allergen Inactivation Using Atmospheric Pressure Cold
Plasma. Environmental science & technology, 48. 2901-2909.
Y
Yadav, B., Spinelli, A.C., Govindan, B.N., Tsui, Y.Y., McMullen, L.M., Roopesh, M.S. (2019). Cold plasma treatment of ready-
to-eat ham: Influence of process conditions and storage on inactivation of Listeria innocua.
Food Research International, 123. 276-285.
Yong, H.I., Kim, H-J., Park, S., Kim, K., Choe, W., Yoo, S.J., Jo, C. (2015). Pathogen inactivation and quality changes in sliced
cheddar cheese treated using flexible thin-layer dielectric barrier discharge plasma.
Food Research International, 69. 57-63.
Z
Zhang, A., Chen, Z.Y. (1997). Oxidative stability of conjugated linoleic acids relative to other polyunsaturated fatty acids.
Journal of the American Oil Chemists' Society, 74. 1611-1613.
Zhang, H., Xu, Z., Shen, J., Li, X., Ding, L., Ma, J., Lan, Y., Xia, W., Cheng, C., Sun, Q., Zhang, Z., Chu, P.K. (2015). Effects and
Mechanism of Atmospheric-Pressure Dielectric Barrier Discharge Cold Plasma on Lactate Dehydrogenase (LDH) Enzyme. Scientific reports, 5. 1-12.
Zhao, Y., Patange, A., Sun, D-W., Tiwari, B. (2020). Plasma-activated water: Physicochemical properties, microbial
inactivation mechanisms, factors influencing antimicrobial effectiveness, and applications in the food industry. Comprehensive Reviews in Food Science and Food Safety, 19. 3951-3979.
Zhou, D., Wang, Z., Tu, S., Chen, S., Peng, J., Tu, K. (2019). Effects of cold plasma, UV-C or aqueous ozone treatment on
Botrytis cinerea and their potential application in preserving blueberry.
Journal of Applied Microbiology, 127. 175-185.
Ziuzina, D., Misra, N.N., Cullen, P.J., Keener, K., Mosnier, J.P., Vilar´o, I., Gaston, E., Bourke, P. (2016). Demonstrating the
potential of industrial scale in-package atmospheric cold plasma for decontamination of cherry tomatoes. Plasma medicine, 6. 397-412.
Zouelm, F., Abhari, K., Hosseini, H., Khani, M.R. (2019). The Effects of Cold Plasma Application on Quality and Chemical
Spoilage of Pacific White Shrimp (Litopenaeus vannamei ) during Refrigerated Storage.
Journal of Aquatic Food Product Technology, 28. 1-13.