Vulkanen met lentekriebels

Julie
De Groote

Eén van de meest actieve vulkanen in Chili heeft last van lentekriebels en dat is geen toeval! Uitbarstingen in de lente lijken voorspelbaar, maar de klimaatopwarming zou wel eens een spelbreker kunnen zijn…

 

Meer dan vijftien jaar geleden merkten Chileense wetenschappers op dat er een seizoensgebonden patroon aanwezig lijkt te zijn in de uitbarstingen van de Villarricavulkaan in Chili. Toeval of niet? Wel, met behulp van statistische berekeningen konden wij aantonen dat de meeste erupties in de afgelopen eeuwen inderdaad startten in de lente. Nooit eerder werd naar een verklaring gezocht voor dit opmerkelijke en voorspelbare patroon van vulkaanuitbarstingen. Tot nu!

Image of Villarrica Volcano

De Villarricavulkaan barst vaker uit in de lente omwille van de smeltende sneeuwbedekking.

 

De invloed van winterse sneeuw en de lentezon

De Villarricavulkaan lijkt last te hebben van lentekriebels na een eerder bedrukt wintergevoel. En dat mag je letterlijk nemen. Met behulp van lokale klimatologische gegevens en satellietbeelden in combinatie met numerieke modellering konden we aantonen dat de dikke sneeuwlaag die in de winter de vulkaan bedekt (ca. 10 m) druk uitoefent bovenop de magmakamer en ervoor zorgt dat uitbarstingen in de winter worden onderdrukt. Dit zorgt echter slechts voor een tijdelijk uitstel, want wanneer de sneeuw vervolgens in de lente smelt, worden uitbarstingen bevorderd door de afname van de druk in de ondergrond. Dit uitbarstingspatroon met een verminderd aantal erupties in de winter en vooral een verhoogd aantal vulkaanuitbarstingen in de lente, dat veroorzaakt wordt door de jaarlijkse sneeuwcyclus, vinden we terug bij vulkanen die net als de Villarricavulkaan een bolvormige of oblate (~ afgeplatte bol) magmakamer hebben.  

Langs de andere kant kan extra druk door sneeuw op een vulkaan in de winter ook zorgen voor een verhoogde druk in de magmakamer. Een uitbarsting in de winter zou dus ook net bevorderd kunnen worden in plaats van tegengehouden. Dat is het geval wanneer de magmakamer eerder prolaat is (~ zoals een rechtopstaande rugbybal) en geldt dus niet voor de Villarricavulkaan.

Illustration of oblate and prolate shape

De vorm van de magmakamer van een vulkaan bepaalt hoe de vulkaan zal reageren op de verandering in sneeuwbedekking doorheen het jaar (Links oblaat en rechts prolaat).

 

De klimaatverandering als spelbreker?

De wereldwijde klimaatopwarming is ook in Chili te voelen. Klimaatmodellen voorspellen dat de huidige trends in stijgende temperatuur en afnemende neerslag in de regio rond de Villarricavulkaan zich ook in de toekomst zullen voortzetten. Hierdoor verwachten we een afname van de winterse sneeuwbedekking op de vulkaan. Deze toekomstige dunnere en minder uitgestrekte winterse sneeuwbedekking zal volgens onze modellen ook leiden tot een minder uitgesproken seizoensgebonden patroon van de uitbarstingen van de vulkaan. De opwarming van de aarde kan dus zorgen voor een minder voorspelbaar uitbarstingspatroon van de Villarricavulkaan in Chili.

Graphical illustration of the influence of climate change on eruption seasonality

De klimaatverandering zorgt ervoor dat de Villarricavulkaan mogelijks in de toekomst van zijn lentekriebels verlost wordt.

 

Het lijkt er dus op dat alvast de Villarricavulkaan soms last heeft van lentekriebels. Bovendien hebben andere vulkanen met een winters sneeuwdekentje en een eerder oblate magmakamer er waarschijnlijk ook mee te maken. Als door de klimaatsverandering de (Chileense) winters in de toekomst minder streng worden, dan zullen die vulkanen mogelijks van hun lentekriebels verlost worden. Andere vulkanen krijgen er dan echter misschien net wél last van…

Bibliografie

Bibliografie:

Albino, F. (2011). Modélisation des interactions magma-encaissant : Application aux zones de stockage et aux conduits de volcans andésitiques . ISTerre - Institut des Sciences de la Terre, 258.

Albino, F., Amelung, F., & Gregg, P. (2018). The Role of Pore Fluid Pressure on the Failure of Magma Reservoirs: Insights From Indonesian and Aleutian Arc Volcanoes. Journal of Geophysical Research: Solid Earth, 123(2), 1328–1349. https://doi.org/10.1002/2017JB014523

Albino, F., Pinel, V., & Sigmundsson, F. (2010). Influence of surface load variations on eruption likelihood: application to two Icelandic subglacial volcanoes, Grímsvötn and Katla. Geophysical Journal International, 181(3), 1510–1524. https://doi.org/10.1111/j.1365-246X.2010.04603.x

Aneshansley, D. J., & Larkin, T. S. (1981). V-test is not a statistical test of ‘homeward’ direction. Nature, 293(5829), 239–239. https://doi.org/10.1038/293239a0

Araneda, A., Torrejón, F., Aguayo, M., Torres, L., Cruces, F., Cisternas, M., & Urrutia, R. (2007). Historical records of San Rafael glacier advances (North Patagonian Icefield): another clue to “Little Ice Age” timing in southern Chile? The Holocene, 17(7), 987–998. https://doi.org/10.1177/0959683607082414

Arzilli, F., Morgavi, D., Petrelli, M., Polacci, M., Burton, M., di Genova, D., Spina, L., la Spina, G., Hartley, M. E., Romero, J. E., Fellowes, J., Diaz-Alvarado, J., & Perugini, D. (2019). The unexpected explosive sub-Plinian eruption of Calbuco volcano (22–23 April 2015; southern Chile): Triggering mechanism implications. Journal of Volcanology and Geothermal Research, 378, 35–50. https://doi.org/10.1016/j.jvolgeores.2019.04.006

Aubry, T. J., Farquharson, J. I., Rowell, C., Watt, S., Pinel, V., Beckett, F., Fasullo, J., Hopcroft, P., Pyle, D., Schmidt, A., & Sykes, J. S. (2021). Impact of climate change on volcanic processes: current understanding and future challenges. https://doi.org/10.31223/X58S5Q

Bertrand, S., Boës, X., Castiaux, J., Charlet, F., Urrutia, R., Espinoza, C., Lepoint, G., Charlier, B., & Fagel, N. (2005). Temporal evolution of sediment supply in Lago Puyehue (Southern Chile) during the last 600 yr and its climatic significance. Quaternary Research, 64(2), 163–175. https://doi.org/10.1016/j.yqres.2005.06.005

Boschetty, F. O., Ferguson, D. J., Cortés, J. A., Morgado, E., Ebmeier, S. K., Morgan, D. J., Romero, J. E., & Parejas, C. S. (2022). Insights into Magma Storage Beneath a Frequently Erupting Arc Volcano (Villarrica, Chile) from Unsupervised Machine Learning Analysis of Mineral Compositions. Geochemistry, Geophysics, Geosystems, 23, e2022GC010333. https://doi.org/10.1029/2022GC010333

Bown, F., & Rivera, A. (2007). Climate changes and recent glacier behaviour in the Chilean Lake District. Global and Planetary Change, 59(1–4), 79–86. https://doi.org/10.1016/j.gloplacha.2006.11.015

Bredemeyer, S., & Hansteen, T. H. (2014). Synchronous degassing patterns of the neighbouring volcanoes Llaima and Villarrica in south-central Chile: the influence of tidal forces. International Journal of Earth Sciences, 103(7), 1999–2012. https://doi.org/10.1007/s00531-014-1029-2

Brock, B., Burger, F., Rivera, A., & Montecinos, A. (2012). A fifty year record of winter glacier melt events in southern Chile, 38°–42°S. Environmental Research Letters, 7(4), 045403. https://doi.org/10.1088/1748-9326/7/4/045403

Brock, B., Rivera, A., Casassa, G., Bown, F., & Acuña, C. (2007). The surface energy balance of an active ice-covered volcano: Villarrica Volcano, southern Chile. Annals of Glaciology, 45, 104–114. https://doi.org/10.3189/172756407782282372

Cabré, M. F., Solman, S., & Núñez, M. (2016). Regional climate change scenarios over southern South America for future climate (2080-2099) using the MM5 Model. Mean, interannual variability and uncertainties. Atmósfera, 29(1), 35-60. https://doi.org/10.20937/ATM.2016.29.01.04

Caricchi, L., Annen, C., Blundy, J., Simpson, G., & Pinel, V. (2014). Frequency and magnitude of volcanic eruptions controlled by magma injection and buoyancy. Nature Geoscience, 7(2), 126–130. https://doi.org/10.1038/ngeo2041

Caricchi, L., Townsend, M., Rivalta, E., & Namiki, A. (2021). The build-up and triggers of volcanic eruptions. Nature Reviews Earth & Environment, 2(7), 458–476. https://doi.org/10.1038/s43017-021-00174-8

Carrasco, J. F., Casassa, G., & Quintana, J. (2005). Changes of the 0°C isotherm and the equilibrium line altitude in central Chile during the last quarter of the 20th century / Changements de l’isotherme 0°C et de la ligne d’équilibre des neiges dans le Chili central durant le dernier quart du 20ème siècle. Hydrological Sciences Journal, 50(6), 948. https://doi.org/10.1623/hysj.2005.50.6.933

Carrasco, J. F., Osorio, R., & Casassa, G. (2008). Secular trend of the equilibrium-line altitude on the western side of the southern Andes, derived from radiosonde and surface observations. Journal of Glaciology, 54(186), 538–550. https://doi.org/10.3189/002214308785837002

Cashman, K. v., Sparks, R. S. J., & Blundy, J. D. (2017). Vertically extensive and unstable magmatic systems: A unified view of igneous processes. Science, 355(6331). https://doi.org/10.1126/science.aag3055

Cembrano, J., Schermer, E., Lavenu, A., & Sanhueza, A. (2000). Contrasting nature of deformation along an intra-arc shear zone, the Liquiñe–Ofqui fault zone, southern Chilean Andes. Tectonophysics, 319(2), 129–149. https://doi.org/10.1016/S0040-1951(99)00321-2

Centro de Ciencia del Clima y la Resiliencia (CR)2. (2022). Explorador Climático. Https://Explorador.Cr2.Cl/.

Clavero, J., & Moreno, H. (2004). Evolution of Villarrica Volcano. In L. Lara and J. Clavero, Eds,‘Villarrica Volcano (39.5◦S) Southern Andes, Chile. Boletin No. 61’, Servicio Nacional de Geologíay Minería.

COMSOL Multiphysics® v. 6.0. www.comsol.com. COMSOL AB, Stockholm, Sweden.

Copernicus Sentinel data, for Sentinel 2 data, retrieved from https://peps.cnes.fr/rocket/#/search?maxRecords=50&page=1 [04/2022]. 

Davies, B. J., Darvill, C. M., Lovell, H., Bendle, J. M., Dowdeswell, J. A., Fabel, D., García, J.-L., Geiger, A., Glasser, N. F., Gheorghiu, D. M., Harrison, S., Hein, A. S., Kaplan, M. R., Martin, J. R. V., Mendelova, M., Palmer, A., Pelto, M., Rodés, Á., Sagredo, E. A., Smedley, R. K., Smellie, J. L., & Thorndycraft, V. R. (2020). The evolution of the Patagonian Ice Sheet from 35 ka to the present day (PATICE). Earth-Science Reviews, 204, 103152. https://doi.org/10.1016/j.earscirev.2020.103152

Delgado, F., Pritchard, M. E., Ebmeier, S., González, P., & Lara, L. (2017). Recent unrest (2002–2015) imaged by space geodesy at the highest risk Chilean volcanoes: Villarrica, Llaima, and Calbuco (Southern Andes). Journal of Volcanology and Geothermal Research, 344, 270–288. https://doi.org/10.1016/j.jvolgeores.2017.05.020

Durand, D., & Greenwood, J. A. (1958). Modifications of the Rayleigh Test for Uniformity in Analysis of Two-Dimensional Orientation Data. The Journal of Geology, 66(3), 229–238. https://doi.org/10.1086/626501

Dussaillant, I., Berthier, E., Brun, F., Masiokas, M., Hugonnet, R., Favier, V., Rabatel, A., Pitte, P., & Ruiz, L. (2019). Two decades of glacier mass loss along the Andes. Nature Geoscience, 12(10), 802–808. https://doi.org/10.1038/s41561-019-0432-5

Dzierma, Y., & Wehrmann, H. (2010a). Eruption time series statistically examined: Probabilities of future eruptions at Villarrica and Llaima Volcanoes, Southern Volcanic Zone, Chile. Journal of Volcanology and Geothermal Research, 193(1–2), 82–92. https://doi.org/10.1016/j.jvolgeores.2010.03.009

Dzierma, Y., & Wehrmann, H. (2010b). Statistical eruption forecast for the Chilean Southern Volcanic Zone: typical probabilities of volcanic eruptions as baseline for possibly enhanced activity following the large 2010 Concepción earthquake. Natural Hazards and Earth System Sciences, 10(10), 2093–2108. https://doi.org/10.5194/nhess-10-2093-2010

Dzierma, Y., & Wehrmann, H. (2012). On the likelihood of future eruptions in the Chilean Southern Volcanic Zone: interpreting the past century’s eruption record based on statistical analyses. Andean Geology, 39(3), 380-393. https://doi.org/10.5027/andgeoV39n3-a02

Ebmeier, S. K., Andrews, B. J., Araya, M. C., Arnold, D. W. D., Biggs, J., Cooper, C., Cottrell, E., Furtney, M., Hickey, J., Jay, J., Lloyd, R., Parker, A. L., Pritchard, M. E., Robertson, E., Venzke, E., & Williamson, J. L. (2018). Synthesis of global satellite observations of magmatic and volcanic deformation: implications for volcano monitoring & the lateral extent of magmatic domains. Journal of Applied Volcanology, 7(1), 2. https://doi.org/10.1186/s13617-018-0071-3

Fontijn, K., Rawson, H., Van Daele, M., Moernaut, J., Abarzúa, A. M., Heirman, K., Bertrand, S., Pyle, D. M., Mather, T. A., de Batist, M., Naranjo, J.-A., & Moreno, H. (2016). Synchronisation of sedimentary records using tephra: A postglacial tephrochronological model for the Chilean Lake District. Quaternary Science Reviews, 137, 234–254. https://doi.org/10.1016/j.quascirev.2016.02.015

Girona, T., Costa, F., & Schubert, G. (2015). Degassing during quiescence as a trigger of magma ascent and volcanic eruptions. Scientific Reports, 5(1), 18212. https://doi.org/10.1038/srep18212

Global Volcanism Program. (2013). Volcanoes of the World, v. 4.10.6 (24 Mar 2022). Venzke, E (ed.). Smithsonian Institution.

Grosfils, E. B. (2007). Magma reservoir failure on the terrestrial planets: Assessing the importance of gravitational loading in simple elastic models. Journal of Volcanology and Geothermal Research, 166(2), 47–75. https://doi.org/10.1016/j.jvolgeores.2007.06.007

Hall, K. (1982). Rapid deglaciation as an initiator of volcanic activity: An hypothesis. Earth Surface Processes and Landforms, 7(1), 45–51. https://doi.org/10.1002/esp.3290070106

Hall, D. K., & Riggs, G. A. (2020). MODIS/Terra CGF Snow Cover Daily L3 Global 500m SIN Grid, Version 61. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/MODIS/MOD10A1F.061. [21/02/2022].

Hall, D. K., Riggs, G. A., DiGirolamo, N. E., & Román, M. O. (2019). MODIS Cloud-Gap Filled Snow-Cover Products: Advantages 2 and Uncertainties. Hydrol. Earth Syst. Sci. Discuss., 1–23. https://doi.org/10.5194/hess-2019-123

Hinton, E., & Irons, B. (1968). Least squares smoothing of experimental data using Finite Elements. Strain, 4(3), 24–27. https://doi.org/10.1111/j.1475-1305.1968.tb01368.x

Huppert, H. E., & Woods, A. W. (2002). The role of volatiles in magma chamber dynamics. Nature, 420(6915), 493–495. https://doi.org/10.1038/nature01211

Huybers, P., & Langmuir, C. (2009). Feedback between deglaciation, volcanism, and atmospheric CO2. Earth and Planetary Science Letters, 286(3–4), 479–491. https://doi.org/10.1016/j.epsl.2009.07.014

Jull, M., & McKenzie, D. (1996). The effect of deglaciation on mantle melting beneath Iceland. Journal of Geophysical Research: Solid Earth, 101(B10), 21815–21828. https://doi.org/10.1029/96JB01308

Kasahara, J., & Sato, T. (2001). Tidal Effects on Volcanic Earthquakes and Deep-sea Hydrothermal Activity Revealed by Ocean Bottom Seismometer Measurements. Journal of the Geodetic Society of Japan, 47(1), 424–433.

Kim, J. C., Park, S. H., & Jung, H.-S. (2014). Snow cover correlation between Mt. Villarrica and Mt. Lliama in Chile. Proceedings of SPIE - The International Society for Optical Engineering, 9260. https://doi.org/10.1117/12.2069102

Kutterolf, S., Jegen, M., Mitrovica, J. X., Kwasnitschka, T., Freundt, A., & Huybers, P. J. (2013). A detection of Milankovitch frequencies in global volcanic activity. Geology, 41(2), 227–230. https://doi.org/10.1130/G33419.1

Landler, L., Ruxton, G. D., & Malkemper, E. P. (2018). Circular data in biology: advice for effectively implementing statistical procedures. Behavioral Ecology and Sociobiology, 72(8), 128. https://doi.org/10.1007/s00265-018-2538-y

Lara, L. E., & Clavero, J. (2004). Villarrica Volcano (39.5°S), Southern Andes, Chile. Servicio Nacional de Geología y Minería, 6, 66.

Lin, J., Svensson, A., Hvidberg, C. S., Lohmann, J., Kristiansen, S., Dahl-Jensen, D., Steffensen, J. P., Rasmussen, S. O., Cook, E., Kjær, H. A., Vinther, B. M., Fischer, H., Stocker, T., Sigl, M., Bigler, M., Severi, M., Traversi, R., & Mulvaney, R. (2022). Magnitude, frequency and climate forcing of global volcanism during the last glacial period as seen in Greenland and Antarctic ice cores (60–9 ka). Climate of the Past, 18(3), 485–506. https://doi.org/10.5194/cp-18-485-2022

Lohmar, S., Robin, C., Parada, M.A., Gourgaud, A., López-Escobar, L., Moreno, H., & Naranjo, J. (2005). The two major postglacial (13–14,000 BP) pyroclastic eruptions of Llaima and Villarrica volcanoes (Southern Andes): A comparison. 6th International Symposium on Andean Geodynamics (ISAG 2005, Barcelona), Extended Abstracts, 442-445.

Lohmar, S., Parada, M., Gutiérrez, F., Robin, C., & Gerbe, M. C. (2012). Mineralogical and numerical approaches to establish the pre-eruptive conditions of the mafic Licán Ignimbrite, Villarrica Volcano (Chilean Southern Andes). Journal of Volcanology and Geothermal Research, 235–236, 55–69. https://doi.org/10.1016/j.jvolgeores.2012.05.006

Lucas, L. C., Albright, J. A., Gregg, P. M., & Zhan, Y. (2022). The Impact of Ice Caps on the Mechanical Stability of Magmatic Systems: Implications for Forecasting on Human Timescales. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.868569

Magrin, G. O., Marengo, J. A., Boulanger, J.-P., Buckeridge, M. S., Castellanos, E., Poveda, G., Scarano, F. R., & Vicuña, S. (2014). Central and South America. In V. R. , Barros, C.B. Field, D.J. Dokken, M.D. Mastrandrea, K.J. Mach, T.E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, & L. L. White (Eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 1499–1566.

Malfait, W. J., Seifert, R., Petitgirard, S., Perrillat, J.-P., Mezouar, M., Ota, T., Nakamura, E., Lerch, P., & Sanchez-Valle, C. (2014). Supervolcano eruptions driven by melt buoyancy in large silicic magma chambers. Nature Geoscience, 7(2), 122–125. https://doi.org/10.1038/ngeo2042

Mason, B. G., Pyle, D. M., Dade, W. B., & Jupp, T. (2004). Seasonality of volcanic eruptions. Journal of Geophysical Research: Solid Earth, 109, B04206. https://doi.org/10.1029/2002JB002293

Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., & Zhou, B. (2021). IPCC 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

Mauk, F. J., & Johnston, M. J. S. (1973). On the triggering of volcanic eruptions by Earth tides. Journal of Geophysical Research, 78(17), 3356–3362. https://doi.org/10.1029/JB078i017p03356

McGarr, A. (1988). On the State of Lithospheric Stress in the Absence of Applied Tectonic Forces. Journal of Geophysical Research: Solid Earth, 93(B11), 13609–13617. https://doi.org/10.1029/JB093iB11p13609

Meyer, I., & Wagner, S. (2009). The Little Ice Age in southern South America: Proxy and model based evidence. Past climate variability in South America and surrounding regions, Development in Paleoenvironmental Research 14. F. Vimeux, F. Sylvestre and M. Khodri. Dordrecht, The Netherlands, Springer: 395-412. https://doi.org/10.1007/978-90-481-2672-9_16

Mogi, K., 1958. Relations between eruptions of various volcanoes and the deformations of the ground surface around them. Bull. Earthquake Res. Inst. Univ. Tokyo 36, 99-134.

Moreno, P. I., Denton, G. H., Moreno, H., Lowell, T. v., Putnam, A. E., & Kaplan, M. R. (2015). Radiocarbon chronology of the last glacial maximum and its termination in northwestern Patagonia. Quaternary Science Reviews, 122, 233–249. https://doi.org/10.1016/j.quascirev.2015.05.027

Moreno, R. H., & Clavero, R. J. (2006). Geología del Volcán Villarrica, regiones de La Araucanía y de Los Lagos; 1 mapa 1:50.000. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica, 98, 35.

Morgado, E., Parada, M. A., Contreras, C., Castruccio, A., Gutiérrez, F., & McGee, L. E. (2015). Contrasting records from mantle to surface of Holocene lavas of two nearby arc volcanic complexes: Caburgua-Huelemolle Small Eruptive Centers and Villarrica Volcano, Southern Chile. Journal of Volcanology and Geothermal Research, 306, 1–16. https://doi.org/10.1016/j.jvolgeores.2015.09.023

Neuberg, J. (2000). External modulation of volcanic activity. Geophysical Journal International, 142(1), 232–240. https://doi.org/10.1046/j.1365-246x.2000.00161.x

Newhall, C. G., & Self, S. (1982). The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism. Journal of Geophysical Research, 87(C2), 1231. https://doi.org/10.1029/JC087iC02p01231

Pavez, M., Schill, E., Held, S., Díaz, D., & Kohl, T. (2020). Visualizing preferential magmatic and geothermal fluid pathways via electric conductivity at Villarrica Volcano, S-Chile. Journal of Volcanology and Geothermal Research, 400, 106913. https://doi.org/10.1016/j.jvolgeores.2020.106913

Petit-Breuilh, M. E. (2004). La Historia Eruptiva de los Volcanes Hispanoamericanos (Siglos XVI Al XX): El Modelo Chileno: Casa de los Volcanes Servicio de Publicaciones Excelentísimo Cabildo Insular de Lanzarote.

Pezoa, L. S. (2003). Recopilación y análisis de la variación de las temperaturas (período 1965-2001) y las precipitaciones (período 1931-2001) a partir de la información de estaciones meteorológicas de Chile entre los 33° y 53° de latitud Sur.

Pinel, V., & Jaupart, C. (2005). Some consequences of volcanic edifice destruction for eruption conditions. Journal of Volcanology and Geothermal Research, 145(1–2), 68–80. https://doi.org/10.1016/j.jvolgeores.2005.01.012

Pinel, V., & Albino, F. (2013). Consequences of volcano sector collapse on magmatic storage zones: Insights from numerical modeling. Journal of Volcanology and Geothermal Research, 252, 29–37. https://doi.org/10.1016/j.jvolgeores.2012.11.009

Pioli, L., Scalisi, L., Costantini, L., di Muro, A., Bonadonna, C., & Clavero, J. (2015). Explosive style, magma degassing and evolution in the Chaimilla eruption, Villarrica volcano, Southern Andes. Bulletin of Volcanology, 77(11), 93. https://doi.org/10.1007/s00445-015-0976-1

Pizarro, C., Parada, M. A., Contreras, C., & Morgado, E. (2019). Cryptic magma recharge associated with the most voluminous 20th century eruptions (1921, 1948 and 1971) at Villarrica Volcano. Journal of Volcanology and Geothermal Research, 384, 48–63. https://doi.org/10.1016/j.jvolgeores.2019.07.001

QGIS Development Team (2020). QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org

Quintana, J. M., & Aceituno, P. (2012). Changes in the rainfall regime along the extratropical west coast of South America (Chile): 30-43o S. Atmósfera, 25(1).

Rampino, M. R., Self, S., & Fairbridge, R. W. (1979). Can Rapid Climatic Change Cause Volcanic Eruptions? Science, 206(4420), 826–829. https://doi.org/10.1126/science.206.4420.826

Rawson, H., Pyle, D. M., Mather, T. A., Smith, V. C., Fontijn, K., Lachowycz, S. M., & Naranjo, J. A. (2016). The magmatic and eruptive response of arc volcanoes to deglaciation: Insights from southern Chile. Geology, 44(4), 251–254. https://doi.org/10.1130/G37504.1

Rayleigh, L. (1880). On the resultant of a large number of vibrations of the same pitch and of arbitrary phase. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 10(60), 73–78. https://doi.org/10.1080/14786448008626893

Reid, M. E., Keith, T. E. C., Kayen, R. E., Iverson, N. R., Iverson, R. M., & Brien, D. L. (2010). Volcano collapse promoted by progressive strength reduction: new data from Mount St. Helens. Bulletin of Volcanology, 72(6), 761–766. https://doi.org/10.1007/s00445-010-0377-4

Rivalta, E., Taisne, B., Bunger, A. P., & Katz, R. F. (2015). A review of mechanical models of dike propagation: Schools of thought, results and future directions. Tectonophysics, 638, 1–42. https://doi.org/10.1016/j.tecto.2014.10.003

Rivera, A., & Bown, F. (2013). Recent glacier variations on active ice capped volcanoes in the Southern Volcanic Zone (37°–46°S), Chilean Andes. Journal of South American Earth Sciences, 45, 345–356. https://doi.org/10.1016/j.jsames.2013.02.004

Rivera, A., Bown, F., Carrión, D., & Zenteno, P. (2012). Glacier responses to recent volcanic activity in Southern Chile. Environmental Research Letters, 7(1), 014036. https://doi.org/10.1088/1748-9326/7/1/014036

Rivera, A., Bown, F., Mella, R., Wendt, J., Casassa, G., Acuña, C., Rignot, E., Clavero, J., & Brock, B. (2006). Ice volumetric changes on active volcanoes in southern Chile. Annals of Glaciology, 43, 111–122. https://doi.org/10.3189/172756406781811970

Rivera, A., Corripio, J. G., Brock, B., Clavero, J., & Wendt, J. (2008). Monitoring ice-capped active Volcán Villarrica, southern Chile, using terrestrial photography combined with automatic weather stations and global positioning systems. Journal of Glaciology, 54(188), 920–930. https://doi.org/10.3189/002214308787780076

Rivera, A., Koppes, M., Bravo, C., & Aravena, J. C. (2012). Little Ice Age advance and retreat of Glaciar Jorge Montt, Chilean Patagonia. Climate of the Past, 8(2), 403–414. https://doi.org/10.5194/cp-8-403-2012

Rivera, A., Zamora, R., Uribe, J., Wendt, A., Oberreuter, J., Cisternas, S., Gimeno, F., & Clavero, J. (2015). Recent changes in total ice volume on Volcán Villarrica, Southern Chile. Natural Hazards, 75(1), 33–55. https://doi.org/10.1007/s11069-014-1306-1

Ruxton, G. D. (2017). Testing for departure from uniformity and estimating mean direction for circular data. Biology Letters, 13(1), 20160756. https://doi.org/10.1098/rsbl.2016.0756

Sahoo, S., Tiwari, D. K., Panda, D., & Kundu, B. (2022). Eruption cycles of Mount Etna triggered by seasonal climatic rainfall. Journal of Geodynamics, 149, 101896. https://doi.org/10.1016/j.jog.2021.101896

SERNAGEOMIN. (2019). Anuario de la Minería de Chile 2019 (D. C. Montenegro, C. E. del Solar, J. v. Vargas, R. E. Pincheira, H. G. Cano, J. M. C. Correa, A. C. Gajardo, C. A. Ferraz, L. G. Guerra, M. R. Tapia, G. A. López, R. T. Olivares, & E. I. Zúñiga, Eds.). Servicio Nacional de Geología y Minería.

Seropian, G., Kennedy, B. M., Walter, T. R., Ichihara, M., & Jolly, A. D. (2021). A review framework of how earthquakes trigger volcanic eruptions. Nature Communications, 12(1), 1004. https://doi.org/10.1038/s41467-021-21166-8

Sigmundsson, F., Albino, F., Schmidt, P., Lund, B., Pinel, V., Hooper, A., & Pagli, C. (2013). Multiple Effects of Ice Load Changes and Associated Stress Change on Magmatic Systems. In: B. McGuire and M. Maslin (ed), Climate Forcing of Geological Hazards. Ltd, Chichester, UK, John Wiley & Sons. (PR). https://doi.org/10.1002/9781118482698.ch5

Sigmundsson, F., Pinel, V., Grapenthin, R., Hooper, A., Halldórsson, S. A., Einarsson, P., Ófeigsson, B. G., Heimisson, E. R., Jónsdóttir, K., Gudmundsson, M. T., Vogfjörd, K., Parks, M., Li, S., Drouin, V., Geirsson, H., Dumont, S., Fridriksdottir, H. M., Gudmundsson, G. B., Wright, T. J., & Yamasaki, T. (2020). Unexpected large eruptions from buoyant magma bodies within viscoelastic crust. Nature Communications, 11(1), 2403. https://doi.org/10.1038/s41467-020-16054-6

Sigmundsson, F., Pinel, V., Lund, B., Albino, F., Pagli, C., Geirsson, H., & Sturkell, E. (2010). Climate effects on volcanism: influence on magmatic systems of loading and unloading from ice mass variations, with examples from Iceland. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1919), 2519–2534. https://doi.org/10.1098/rsta.2010.0042

Simkin, T., & Siebert, L. (1994). Volcanoes of the world [2nd edition]. Tucson, Arizona, Geoscience Press. 349.

Simmons, I. C., Cortés, J. A., McGarvie, D., & Calder, E. S. (2020). Tectonic constraints on a magmatic plumbing system: The Quetrupillán Volcanic Complex (39°30′ S, 71°43′ W), Southern Andes, Chile. Journal of Volcanology and Geothermal Research, 407, 107101. https://doi.org/10.1016/j.jvolgeores.2020.107101

Snow-Forecast: Ski Pucon. (2022). Villarrica-Pucon snow history. Https://Www.Snow-Forecast.Com/Resorts/VillarricaPucon/History.

Sparks, R. S. J. (1981). Triggering of volcanic eruptions by Earth tides. Nature, 290(5806), 448–448. https://doi.org/10.1038/290448a0

Sparks, S. R. J., Sigurdsson, H., & Wilson, L. (1977). Magma mixing: a mechanism for triggering acid explosive eruptions. Nature, 267(5609), 315–318. https://doi.org/10.1038/267315a0

Stehr, A., & Aguayo, M. (2017). Snow cover dynamics in Andean watersheds of Chile (32.0–39.5° S) during the years 2000–2016. Hydrology and Earth System Sciences, 21(10), 5111–5126. https://doi.org/10.5194/hess-21-5111-2017

Stern, C. R. (2004). Active Andean volcanism: its geologic and tectonic setting. Revista Geológica de Chile, 31(2), 161-206. https://doi.org/10.4067/S0716-02082004000200001

Stern, C.R., Moreno, H., López-Escobar, L., Clavero, J.E., Lara, L.E., Naranjo, J.A., Parada, M.A., & Skewes, M.A. (2007). Chilean volcanoes. The Geology of Chile, Geological Society, London, 147-178.

Stock, M. C. N. (2015). Seismic Structure and Seismicity of Villarrica Volcano (Southern Central Chile). Christian-Albrechts-Universitaet.

Taisne, B., Tait, S., & Jaupart, C. (2011). Conditions for the arrest of a vertical propagating dyke. Bulletin of Volcanology, 73(2), 191–204. https://doi.org/10.1007/s00445-010-0440-1

Tait, S., Jaupart, C., & Vergniolle, S. (1989). Pressure, gas content and eruption periodicity of a shallow, crystallising magma chamber. Earth and Planetary Science Letters, 92(1), 107–123. https://doi.org/10.1016/0012-821X(89)90025-3

The World Bank Group. (2022). World Bank Climate Change Knowledge Portal. https://climateknowledgeportal.worldbank.org/country/chile/climate-data… [13/05/2022]

Touloukian, Y. S., Judd, W. R., & Roy, R. F. (1981). Physical properties of rocks and minerals. Mc Graw-Hill. 548.

Townsend, M., & Huber, C. (2020). A critical magma chamber size for volcanic eruptions. Geology, 48(5), 431–435. https://doi.org/10.1130/G47045.1

Tuffen, H. (2010). How will melting of ice affect volcanic hazards in the twenty-first century? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1919), 2535–2558. https://doi.org/10.1098/rsta.2010.0063

Van Daele, M., Moernaut, J., Silversmit, G., Schmidt, S., Fontijn, K., Heirman, K., Vandoorne, W., de Clercq, M., van Acker, J., Wolff, C., Pino, M., Urrutia, R., Roberts, S. J., Vincze, L., & de Batist, M. (2014). The 600 yr eruptive history of Villarrica Volcano (Chile) revealed by annually laminated lake sediments. Geological Society of America Bulletin, 126(3–4), 481–498. https://doi.org/10.1130/B30798.1

Violette, S., de Marsily, G., Carbonnel, J. P., Goblet, P., Ledoux, E., Tijani, S. M., & Vouille, G. (2001). Can rainfall trigger volcanic eruptions? A mechanical stress model of an active volcano: “Piton de la Fournaise”, Reunion Island. Terra Nova, 13(1), 18–24. https://doi.org/10.1046/j.1365-3121.2001.00297.x

Visual Paradigm Online. (2022). Rose Chart Template. Https://Online.Visual-Paradigm.Com/App/Diagrams/#infoart:Proj=0&type=RoseCharts&gallery=/Repository/F4f05af3-B086-46a1-80f5-A59d1a8b2456.Xml&name=Rose%20Chart .

Walter, T. R., Haghshenas Haghighi, M., Schneider, F. M., Coppola, D., Motagh, M., Saul, J., Babeyko, A., Dahm, T., Troll, V. R., Tilmann, F., Heimann, S., Valade, S., Triyono, R., Khomarudin, R., Kartadinata, N., Laiolo, M., Massimetti, F., & Gaebler, P. (2019). Complex hazard cascade culminating in the Anak Krakatau sector collapse. Nature Communications, 10(1), 4339. https://doi.org/10.1038/s41467-019-12284-5

Watt, S. F. L., Pyle, D. M., & Mather, T. A. (2013). The volcanic response to deglaciation: Evidence from glaciated arcs and a reassessment of global eruption records. Earth-Science Reviews, 122, 77–102. https://doi.org/10.1016/j.earscirev.2013.03.007

Weller, D. J. (2017). Eruption Record and Aspects of Magma Genesis and Evolution for Volcanoes of the Southernmost Andean Southern Volcanic Zone, Chile. University of Colorado Boulder. 320.

Witter, J. B., Kress, V. C., Delmelle, P., & Stix, J. (2004). Volatile degassing, petrology, and magma dynamics of the Villarrica Lava Lake, Southern Chile. Journal of Volcanology and Geothermal Research, 134(4), 303–337. https://doi.org/10.1016/j.jvolgeores.2004.03.002

 

 

Genomineerde shortlist Eosprijs
Universiteit of Hogeschool
Universiteit Gent
Thesis jaar
2022
Promotor(en)
Maarten Van Daele & Virginie Pinel