“An Apple a Day Keeps the Doctor Away” - van gezegde tot profetie?

Charles
Grammens
  • Victor
    De Boi

 

Ergens tussen de 335.000 en de 670.000 Vlamingen.

Een schreeuwende schatting van hoeveel Vlamingen worden veroordeeld tot een leven lang ziek zijn. Voor hen rest een blijvende uitdaging om hun ziekte in toom te houden en hun symptomen leefbaar. Een continue onderhandeling tussen de grillen van het eigen immuunsysteem enerzijds en medicatie en levensstijlaanpassingen anderzijds. Een gevecht geleverd door talloze bezoeken aan huisarts en ziekenhuis, pillen en spuiten… Of straks misschien wel gewoon met een smartwatch?

Geen contractbreuk mogelijk

Reumatoïde arthritis, psoriasis, diabetes mellitus type 1, inflammatoire darmziekten… Stuk voor stuk complexe ziekten die een ernstige impact hebben op het leven van de mensen die ze met zich meedragen. Het zijn maar een paar voorbeelden van een grote groep ziekten die worden samengebracht onder de noemer van chronische immuun-gemedieerde inflammatoire aandoeningen. Naar schatting lijdt tussen de 5 en 10% van de bevolking aan een van dergelijke ziekten. Een niet te onderschatten aantal onfortuinlijken, elk van hen tegen hun eigen wil in opgetekend voor een levenslange ziekte. Hun verhoogde vatbaarheid voor andere aandoeningen en de zware mentale last van hun ziek-zijn krijgen ze er als toemaatje bij.

Traditie, technologie en toekomst.

Heden beoefenen we gezondheidszorg zoals deze al het gros der tijden beoefend wordt. Een zieke gaat naar de arts of hulpverlener, doet er hun verhaal en wordt zo goed mogelijk geholpen met geruststelling, advies of interventie. De patiënt stelt zich in enkele momentopnamen bloot aan de welwillende nieuwsgierigheid en expertise van de hulpverlener en die laatste probeert de patiënt zo goed mogelijk te helpen en ondersteunen.

Maar wat als het anders kan? Wat als het mogelijk zou zijn dag in dag uit de ziekte in de gaten te houden.

Enkele nieuwe technologische producten en toepassingen kunnen vaak al heel wat ijkpunten en symptomen in de gaten houden. De laatste jaren zijn grote spelers zoals Apple en Fitbit erin geslaagd om de nauwkeurigheid van hun apparaten gevoelig op de krikken, enkelen beginnen reeds te kunnen wedijveren met de nauwkeurigheid van medische apparatuur. Het is een vooruitgang die deuren opent. Zo zou het met behulp van accurate metingen en geavanceerdere analysetechnieken de patiënt en arts vroegtijdig kunnen gaan waarschuwen over wanneer de ziekte of de gevolgen ervan dreigen uit de hand te lopen. Of zou het ook aanbevelingen kunnen doen wanneer het merkt dat ziekteprocessen de overhand aan het nemen zijn.

Gezondheidsdata genoeg

Ons lichaam stuurt continu zichtbare en onzichtbare signalen uit. Parameters waar we allemaal erg vertrouwd mee zijn zoals onze hartslag, temperatuur, ademhaling, bloeddruk… Maar ook minder voor de hand liggende zoals de intonatie van onze stem, de golven van onze hersenen of de hormonen in ons bloed. Het is een niet aflatende stroom aan vaak waardevolle informatie, waar momenteel weinig tot niets mee wordt gedaan. Het doet de vraag rijzen of hulpmiddelen zoals data-analyse, statistische modellen en machine learning ons in staat kunnen stellen om deze overvloed aan informatie om te zetten in een vruchtbare stroom die wel kan worden aangewend. Deze zouden dan kunnen worden gebruikt in het bekomen van bijvoorbeeld meer gepersonaliseerde ziekte-behandeling of het vroegtijdig opsporen van ziekteopflakkeringen.

De weg vooruit

In onze masterproef onderzochten we welke technologische toepassingen vandaag de dag reeds op de markt zijn die zouden kunnen worden ingezet in de behandeling van immuun-gemedieerde inflammatoire ziekten, alsook wierpen we een blik op de wetenschappelijke literatuur van waar en hoe sensoren reeds worden gebruikt bij het behandelen van deze ziekten.

We mochten merken dat er reeds heel wat kwalitatieve producten op de markt zijn, die ook vaak al de nodige veiligheidsnormen en kwaliteitslabels konden halen om te kunnen worden ingezet als medische apparatuur. Ook kon uit wetenschappelijk onderzoek vaak blijken dat er voordelen verbonden zijn aan het gebruik van sensoren in de ziektebehandeling. Desalniettemin, hoewel deze technologieën reeds wetenschappelijk gestaafd potentieel tonen, vindt dit potentieel momenteel vaak nog geen weerspiegeling in daadwerkelijk gebruik ervan in de praktijk. Verder onderzoek met integratie van dergelijke technologieën bij de behandeling van ziekten zoals die van de groep van immuun-gemedieerde inflammatoire aandoeningen zouden het pad kunnen effenen voor klinische implementatie. Alsook de ontwikkeling van tools die het voor de behandelende artsen mogelijk maken om de producten makkelijk te implementeren in hun zorgplan.

Bibliografie

  1. Aletaha D, Epstein AJ, Skup M, Zueger P, Garg V, Panaccione R. Risk of Developing Additional Immune- Mediated Manifestations: A Retrospective Matched Cohort Study. Adv Ther. 2019 Jul 1;36(7):1672–83.

  2. El-Gabalawy H, Guenther LC, Bernstein CN. Epidemiology of immune-mediated inflammatory diseases: Incidence, prevalence, natural history, and comorbidities [Internet]. Vol. 37, Journal of Rheumatology. J Rheumatol Suppl; 2010 [cited 2021 Mar 30]. p. 2–10. Available from: https://pubmed.ncbi.nlm.nih.gov/20436161/

  3. Robinson D, Hackett M, Wong J, Kimball AB, Cohen R, Bala M. Co-occurrence and comorbidities in patients with immune-mediated inflammatory disorders: An exploration using US healthcare claims data, 2001-2002. Curr Med Res Opin. 2006 May;22(5):989–1000.

  4. Agrawal M, Shah S, Patel A, Pinotti R, Colombel JF, Burisch J. Changing epidemiology of immune- mediated inflammatory diseases in immigrants: A systematic review of population-based studies. J Autoimmun [Internet]. 2019 Dec 1 [cited 2021 Apr 1];105. Available from: https://pubmed.ncbi.nlm.nih.gov/31351784/

  5. Bellinger DL, Lorton D. Sympathetic nerve hyperactivity in the spleen: Causal for nonpathogenic-driven chronic immune-mediated inflammatory diseases (IMIDS)? Vol. 19, International Journal of Molecular Sciences. MDPI AG; 2018.

  6. Burisch J, Jess T, Egeberg A. Incidence of Immune-Mediated Inflammatory Diseases Among Patients With Inflammatory Bowel Diseases in Denmark. Clin Gastroenterol Hepatol. 2019 Dec 1;17(13):2704- 2712.e3.

  7. Marrie RA, Walld R, Bolton JM, Sareen J, Walker JR, Patten SB, et al. Physical comorbidities increase the risk of psychiatric comorbidity in immune-mediated inflammatory disease. Gen Hosp Psychiatry. 2018 Mar 1;51:71–8.

  8. Marrie RA, Walld R, Bolton JM, Sareen J, Walker JR, Patten SB, et al. Increased incidence of psychiatric disorders in immune-mediated inflammatory disease. J Psychosom Res. 2017 Oct 1;101:17–23.

  9. Rampton DS. The influence of stress on the development and severity of immune-mediated diseases [Internet]. Vol. 38, Journal of Rheumatology. J Rheumatol Suppl; 2011 [cited 2021 Mar 29]. p. 43–7. Available from: https://pubmed.ncbi.nlm.nih.gov/22045978/

  10. Marrie RA, Walld R, Bolton JM, Sareen J, Patten SB, Singer A, et al. Psychiatric comorbidity increases mortality in immune-mediated inflammatory diseases. Gen Hosp Psychiatry [Internet]. 2018 Jul 1 [cited 2021 Apr 11];53:65–72. Available from: https://doi.org/10.1016/j.genhosppsych.2018.06.001

  11. Atreja A, Otobo E, Ramireddy K, Deorocki A. Remote Patient Monitoring in IBD: Current State and Future Directions [Internet]. Vol. 20, Current Gastroenterology Reports. Current Medicine Group LLC 1; 2018 [cited 2021 Mar 30]. Available from: https://pubmed.ncbi.nlm.nih.gov/29516186/

  12. WHO | Monitoring and evaluating digital health interventions. WHO [Internet]. 2016 [cited 2021 Mar 31]; Available from: http://www.who.int/reproductivehealth/publications/mhealth/digital-heal…- interventions/en/

  13. Dang A, Arora D, Rane P. Role of digital therapeutics and the changing future of healthcare. J Fam Med Prim care [Internet]. 2020 May [cited 2020 Nov 3];9(5):2207–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32754475

  14. Fatehi F, Samadbeik M, Kazemi A. What is digital health? review of definitions. In: Studies in Health Technology and Informatics [Internet]. IOS Press BV; 2020 [cited 2021 Mar 31]. p. 67–71. Available from: https://osf.io/yfusw/.Total

  15. Van Deen WK, van der Meulen-de Jong AE, Parekh NK, Kane E, Zand A, DiNicola CA, et al. Development and Validation of an Inflammatory Bowel Diseases Monitoring Index for Use With Mobile Health Technologies. Clin Gastroenterol Hepatol [Internet]. 2016 Dec 1 [cited 2021 Apr 10];14(12):1742- 1750.e7. Available from: https://pubmed.ncbi.nlm.nih.gov/26598228/

  16. Tuckson R V., Edmunds M, Hodgkins ML. Telehealth. N Engl J Med [Internet]. 2017 Oct 19 [cited 2021 Mar 30];377(16):1585–92. Available from: http://www.nejm.org/doi/10.1056/NEJMsr1503323

  17. Dorsey ER, Topol EJ. State of Telehealth. Campion EW, editor. N Engl J Med [Internet]. 2016 Jul 14 [cited 2021 Mar 30];375(2):154–61. Available from: http://www.nejm.org/doi/10.1056/NEJMra1601705

  18. Gokalp H, De Folter J, Verma V, Fursse J, Jones R, Clarke M. Integrated Telehealth and Telecare for Monitoring Frail Elderly with Chronic Disease [Internet]. Vol. 24, Telemedicine and e-Health. Mary Ann

Liebert Inc.; 2018 [cited 2020 Nov 3]. p. 940–57. Available from: https://pubmed.ncbi.nlm.nih.gov/30129884/

19. All apps - mHealthBELGIUM [Internet]. [cited 2021 May 6]. Available from: https://mhealthbelgium.be/apps

  1. Palanica A, Docktor MJ, Lieberman M, Fossat Y. The Need for Artificial Intelligence in Digital Therapeutics. Digit Biomarkers [Internet]. 2020 Apr 8 [cited 2021 Mar 30];4(1):21–5. Available from: /pmc/articles/PMC7204774/

  2. Dtxalliance. Digital Therapeutics Definition and Core Principles. 2019.

  3. Khan S, Dasrath F, Farghaly S, Otobo E, Riaz M, Rogers J, et al. Unmet Communication and Information Needs for Patients with IBD: Implications for Mobile Health Technology. Br J Med Med Res [Internet].

    2016 Jan 10 [cited 2021 Mar 31];12(3):1–11. Available from: /pmc/articles/PMC5312751/

  4. Baars JE, Markus T, Kuipers EJ, van der Woude CJ. Patients’ Preferences regarding Shared Decision- Making in the Treatment of Inflammatory Bowel Disease: Results from a Patient-Empowerment Study. Digestion [Internet]. 2010 Jan [cited 2021 Mar 31];81(2):113–9. Available from:

    https://www.karger.com/Article/FullText/253862

  5. Majumder S, Mondal T, Deen MJ. Wearable sensors for remote health monitoring [Internet]. Vol. 17, Sensors (Switzerland). MDPI AG; 2017 [cited 2021 Mar 30]. Available from:

    https://pubmed.ncbi.nlm.nih.gov/28085085/

  6. Dunn J, Runge R, Snyder M. Wearables and the medical revolution. Per Med [Internet]. 2018;(5):429–48.

    Available from: www.futuremedicine.com

  7. Bernstein CN. Psychological Stress and Depression: Risk Factors for IBD? In: Digestive Diseases

    [Internet]. S. Karger AG; 2016 [cited 2021 Mar 29]. p. 58–63. Available from:

    https://pubmed.ncbi.nlm.nih.gov/26983009/

  8. George LA, Cross RK. Remote Monitoring and Telemedicine in IBD: Are We There Yet? Vol. 22, Current Gastroenterology Reports. Springer; 2020.

  9. Marrie RA, Graff L, Walker JR, Fisk JD, Patten SB, Hitchon CA, et al. Effects of psychiatric comorbidity in immune-mediated inflammatory disease: Protocol for a prospective study. J Med Internet Res [Internet].

    2018 Jan 1 [cited 2021 Mar 30];20(1). Available from: https://pubmed.ncbi.nlm.nih.gov/29343461/

  10. Kellett J, Sebat F. Make vital signs great again – A call for action. Eur J Intern Med [Internet]. 2017 Nov 1 [cited 2021 Apr 4];45:13–9. Available from: http://dx.doi.org/10.1016/j.ejim.2017.09.018

  11. Meera Joshi, Hutan Ashrafian, Lisa Aufegger, Sadia Khan, Sonal Arora GC& AD. Wearable sensors to improve detection of patient deterioration. Expert Rev Med Devices. 2019;

  12. Leenen JPL, Leerentveld C, van Dijk JD, van Westreenen HL, Schoonhoven L, Patijn GA. Current evidence for continuous vital signs monitoring by wearable wireless devices in hospitalized adults:

    Systematic review. J Med Internet Res. 2020;22(6).

  13. Loncar-Turukalo T, Zdravevski E, Machado Da Silva J, Chouvarda I, Trajkovik V. Literature on Wearable Technology for Connected Health: Scoping Review of Research Trends, Advances, and Barriers. [cited

    2021 Apr 5]; Available from: https://www.jmir.org/2019/9/e14017/

  14. Feehan LM, Geldman J, Sayre EC, Park C, Ezzat AM, Ju M;, et al. Accuracy of Fitbit Devices: Systematic Review and Narrative Syntheses of Quantitative Data. [cited 2021 Apr 5]; Available from: http://mhealth.jmir.org/2018/8/e10527/

  15. Global Smartwatch Market Revenue up 20% in H1 2020 [Internet]. [cited 2021 May 6]. Available from: https://www.counterpointresearch.com/global-smartwatch-market-revenue-h…

  16. Dunn J, Kidzinski L, Runge R, Witt D, Hicks JL, Schüssler-Fiorenza Rose SM, et al. Wearable sensors enable personalized predictions of clinical laboratory measurements. Nat Med [Internet].

    2021;27(6):1105–12. Available from: https://doi.org/10.1038/s41591-021-01339-0

  17. King CE, Sarrafzadeh M. A Survey of Smartwatches in Remote Health Monitoring. J Healthc Informatics

    Res. 2018 Jun 1;2(1–2).

  18. Downey CL, Chapman S, Randell R, Brown JM, Jayne DG. The impact of continuous versus intermittent vital signs monitoring in hospitals_ A systematic review and narrative synthesis | Elsevier Enhanced Reader. Int J Nurs Stud [Internet]. 2018 [cited 2021 May 6];84:19–27. Available from: https://reader.elsevier.com/reader/sd/pii/S0020748918300981?token=6615B… 4E9A46963C8CBEDC076348D375A8228B8FDC60C630123062274A0A9EB1195503128B9B&origin Region=eu-west-1&originCreation=20210506211909

  19. Cardona-Morrell M, Prgomet M, Turner RM, Nicholson M, Hillman K. Effectiveness of continuous or intermittent vital signs monitoring in preventing adverse events on general wards: a systematic review and meta-analysis.

  20. Dix A. Respiratory rate 6: the benefits of continuous monitoring. Nurs Times [Internet]. 2018 [cited 2021 May 7]; Available from: https://cdn.ps.emap.com/wp-content/uploads/sites/3/2018/10/181031- Respiratory-rate-6-the-benefits-of-continuous-monitoring.pdf

  21. Cappon G, Vettoretti M, Sparacino G, Facchinetti A. Continuous glucose monitoring sensors for diabetes management: A review of technologies and applications. Diabetes Metab J [Internet]. 2019 Aug 1 [cited 2021 May 7];43(4):383–97. Available from: https://pubmed.ncbi.nlm.nih.gov/31441246/

  22. White WB, Ghuman N, Campbell P. Role of ambulatory and home blood pressure recording in clinical practice. Vol. 11, Current Cardiology Reports. 2009. p. 414–21.

  23. 24-Hour Ambulatory Blood Pressure Monitoring: Usage & Benefits [Internet]. [cited 2021 May 7].

    Available from: https://my.clevelandclinic.org/health/diagnostics/16330-24-hour-ambulat…

  24. Digital Health [Internet]. [cited 2021 Apr 26]. Available from: https://www.efpia.eu/about-medicines/development-of-medicines/digital-h…

  25. Kataria S, Ravindran V. Digital health: a new dimension in rheumatology patient care [Internet]. Vol. 38, Rheumatology International. Springer Verlag; 2018 [cited 2021 Apr 19]. p. 1949–57. Available from:

    https://link.springer.com/article/10.1007/s00296-018-4037-x

  26. Spierings J, Sloeserwij A, Vianen ME, de Boer JH, Sigurdsson V, van de Wijgert JHHM, et al. Health-related quality of life in patients with immune mediated inflammatory diseases: A cross-sectional, multidisciplinary study. Clin Immunol [Internet]. 2020 May 1 [cited 2021 Apr 1];214. Available from: https://pubmed.ncbi.nlm.nih.gov/32224157/

  27. Kosse LJ, Weits G, Vonkeman HE, Spuls PI, Van Den Bemt BJF, Tas SW, et al. Immune-mediated inflammatory disease patients’ preferences in adverse drug reaction information regarding biologics. Expert Opin Drug Saf. 2020;1–5.

  28. Wiestler M, Kockelmann F, Uck MK ̈, Kerling A, Tegtbur U, Manns MP, et al. Quality of Life Is Associated With Wearable-Based Physical Activity in Patients With Inflammatory Bowel Disease: A Prospective, Observational Study. 2019 [cited 2021 Apr 10]; Available from: https://doi.org/10.14309/ctg.0000000000000094

  29. Davergne T, Rakotozafiarison A, Servy H, Gossec L. Wearable activity trackers in the management of rheumatic diseases: Where are we in 2020? Sensors (Switzerland) [Internet]. 2020 Sep 1 [cited 2021 Apr 10];20(17):1–18. Available from: https://pubmed.ncbi.nlm.nih.gov/32854412/

  30. Henderson J, Condell J, Connolly J, Kelly D, Curran K. Review of wearable sensor-based health monitoring glove devices for rheumatoid arthritis [Internet]. Vol. 21, Sensors. MDPI AG; 2021 [cited 2021 Apr 10]. p. 1–32. Available from: https://pubmed.ncbi.nlm.nih.gov/33668234/

  31. Santos-Moreno P, Burgos-Angulo G, Martinez-Ceballos MA, Pizano A, Echeverri D, Bautista-Niño PK, et al. Inflammaging as a link between autoimmunity and cardiovascular disease: The case of rheumatoid arthritis. Vol. 7, RMD Open. BMJ Publishing Group; 2021.

  32. Reinhorn IM, Bernstein CN, Graff LA, Patten SB, Sareen J, Fisk JD, et al. Social phobia in immune- mediated inflammatory diseases. J Psychosom Res [Internet]. 2020 Jan 1 [cited 2021 Mar 30];128. Available from: https://pubmed.ncbi.nlm.nih.gov/31816595/

  33. Fandino W. Formulating a good research question: Pearls and pitfalls. Indian J Anaesth [Internet]. 2019 Aug 1 [cited 2020 Nov 6];63(8):611–6. Available from: /pmc/articles/PMC6691636/?report=abstract

  34. Nguyen HT, Ghevondian N, Jones TW. Real-time detection of nocturnal hypoglycemic episodes using a novel non-invasive hypoglycemia monitor. Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Int Conf. 2009;2009:3822–5.

  35. Witt D, Kellogg R, Snyder M, Dunn J. Windows Into Human Health Through Wearables Data Analytics. Curr Opin Biomed Eng. 2019 Mar;9:28–46.

  36. Zarkogianni K, Mitsis K, Litsa E, Arredondo M-T, Ficο G, Fioravanti A, et al. Comparative assessment of glucose prediction models for patients with type 1 diabetes mellitus applying sensors for glucose and physical activity monitoring. Med Biol Eng Comput. 2015 Dec;53(12):1333–43.

  37. Deliver Healthcare at Home with Current Health [Internet]. [cited 2021 Nov 11]. Available from: https://currenthealth.com/

  38. Technische fiche Type indicator Klinische procesindicator. [cited 2021 Nov 11]; Available from: https://www.zorg-en-gezondheid.be/beleid/campagnes-en-projecten/vip2-zh

  39. De zorgtrajecten diabetes mellitus type 2 en chronische nierinsufficiëntie en kwaliteit van zorg. [cited 2021 Nov 11]; Available from: https://doi.org/10.25608/34ka-c432

  40. Proesmans T, Mortelmans C, Van Haelst R, Verbrugge F, Vandervoort P, Vaes B. Mobile Phone-Based Use of the Photoplethysmography Technique to Detect Atrial Fibrillation in Primary Care: Diagnostic Accuracy Study of the FibriCheck App. JMIR mHealth uHealth [Internet]. 2019 Mar 1 [cited 2021 Nov 16];7(3). Available from: https://pubmed.ncbi.nlm.nih.gov/30916656/

  41. Davergne T, Pallot A, Dechartres A, Fautrel B, Gossec L. Use of Wearable Activity Trackers to Improve Physical Activity Behavior in Patients With Rheumatic and Musculoskeletal Diseases: A Systematic Review and Meta-Analysis. Arthritis Care Res (Hoboken). 2019 Jun;71(6):758–67.

  42. LC L, LM F, H X, N L, C S, D G, et al. Efficacy of a Physical Activity Counseling Program With Use of a Wearable Tracker in People With Inflammatory Arthritis: A Randomized Controlled Trial. Arthritis Care Res (Hoboken) [Internet]. 2020 Dec 1 [cited 2021 Oct 25];72(12):1755–65. Available from: https://pubmed.ncbi.nlm.nih.gov/32248626/

  43. Valck D, Simulator R. Publications on sleep and drowsiness. 2020;

  44. Tanioka K, Castelnovo A, Tachibana N, Miano S, Zecca C, Gobbi C, et al. Framing multiple sclerosis under a polysomnographic perspective. Sleep. 2020 Mar;43(3).

  45. Ibrahim AA, Küderle A, Gaßner H, Klucken J, Eskofier BM, Kluge F. Inertial sensor-based gait parameters reflect patient-reported fatigue in multiple sclerosis. J Neuroeng Rehabil. 2020 Dec;17(1):165.

  46. T C, BI G, C G, BC H, TJ S, N S, et al. Quantifying neurologic disease using biosensor measurements in- clinic and in free-living settings in multiple sclerosis. NPJ Digit Med [Internet]. 2019 Dec [cited 2021 Oct 22];2(1). Available from: https://pubmed.ncbi.nlm.nih.gov/31840094/

  47. Mäcken J, Wiegand M, Müller M, Krawinkel A, Linnebank M. A Mobile App for Measuring Real Time Fatigue in Patients with Multiple Sclerosis: Introducing the Fimo Health App. Brain Sci [Internet]. 2021 Sep 1 [cited 2021 Oct 22];11(9):11. Available from: /pmc/articles/PMC8465979/

  48. Chinnadurai SA, Gandhirajan D, Pamidimukala V, Kesavamurthy B, Venkatesan SA. Analysing the relationship between polysomnographic measures of sleep with measures of physical and cognitive fatigue in people with multiple sclerosis. Mult Scler Relat Disord. 2018 Aug 1;24:32–7.

  49. BM M, LJ T, RD G, DA A, L A, D L, et al. Wearables and Deep Learning Classify Fall Risk From Gait in Multiple Sclerosis. IEEE J Biomed Heal informatics [Internet]. 2021 May 1 [cited 2021 Oct 25];25(5):1824–31. Available from: https://pubmed.ncbi.nlm.nih.gov/32946403/

  50. Cheng W-Y, Bourke AK, Lipsmeier F, Bernasconi C, Belachew S, Gossens C, et al. U-turn speed is a valid and reliable smartphone-based measure of multiple sclerosis-related gait and balance impairment. Gait Posture. 2021 Feb;84:120–6.

  51. Mosquera-Lopez C, Wan E, Shastry M, Folsom J, Leitschuh J, Condon J, et al. Automated Detection of Real-World Falls: Modeled From People With Multiple Sclerosis. IEEE J Biomed Heal informatics. 2021

    Jun;25(6):1975–84.

  52. Brichetto G, Pedullà L, Podda J, Tacchino A. Beyond center-based testing: Understanding and improving functioning with wearable technology in MS. Mult Scler. 2019 Sep;25(10):1402–11.

  53. Creagh AP, Lipsmeier F, Lindemann M, Vos M De. Interpretable deep learning for the remote characterisation of ambulation in multiple sclerosis using smartphones. Sci Rep. 2021 Jul;11(1):14301.

  54. Prochazka A, Dostal O, Cejnar P, Mohamed HI, Pavelek Z, Valis M, et al. Deep Learning for Accelerometric Data Assessment and Ataxic Gait Monitoring. IEEE Trans Neural Syst Rehabil Eng.

    2021;29:360–7.

  55. VJ B, C Z, JA H, JE O, GM M, MJ P, et al. Validation of a consumer-grade activity monitor for continuous daily activity monitoring in individuals with multiple sclerosis. Mult Scler J - Exp Transl Clin [Internet].

    2019 [cited 2021 Oct 25];5(4). Available from: https://pubmed.ncbi.nlm.nih.gov/31803492/

  56. Neuhaus A, Stellmann JP, Lederer C, Schimpl M, Heesen C, Daumer M. Ecological validity of the 6 minute walking test in MS patients (#21). Mult Scler [Internet]. 2012;18(5):S19–20. Available from: https://www.embase.com/search/results?subaction=viewrecord&id=L70762202…

  57. Vienne-Jumeau A, Oudre L, Moreau A, Quijoux F, Edmond S, Dandrieux M, et al. Personalized Template- Based Step Detection From Inertial Measurement Units Signals in Multiple Sclerosis. Front Neurol.

    2020;11:261.

  58. Atrsaei A, Dadashi F, Mariani B, Gonzenbach R, Aminian K. Toward a remote assessment of walking bout and speed: application in patients with multiple sclerosis. IEEE J Biomed Heal informatics. 2021

    Apr;PP.

  59. VJ B, R B, C Z, P G, J G, AR R, et al. Association of Continuous Assessment of Step Count by Remote Monitoring With Disability Progression Among Adults With Multiple Sclerosis. JAMA Netw open [Internet]. 2019 Mar 1 [cited 2021 Oct 25];2(3):e190570. Available from: https://pubmed.ncbi.nlm.nih.gov/30874777/

  60. Heale LD, Dover S, Goh YI, Maksymiuk VA, Wells GD, Feldman BM. A wearable activity tracker intervention for promoting physical activity in adolescents with juvenile idiopathic arthritis: A pilot study 11 Medical and Health Sciences 1117 Public Health and Health Services. Pediatr Rheumatol. 2018 Oct 22;16(1).

  61. McKenna S, Tierney M, O’Neill A, Fraser A, Kennedy N. Sleep and physical activity: a cross-sectional objective profile of people with rheumatoid arthritis. Rheumatol Int. 2018 May;38(5):845–53.

  62. Hamy V, Garcia-Gancedo L, Pollard A, Myatt A, Liu J, Howland A, et al. Developing Smartphone-Based Objective Assessments of Physical Function in Rheumatoid Arthritis Patients: The PARADE Study. Digit biomarkers. 2020;4(1):26–43.

  63. Clarke LL, Wilson S, Kirwan JR. Using actigraphy to measure sleep patterns in rheumatoid arthritis: a pilot study in patients taking night-time prednisone. Musculoskeletal Care. 2013 Sep;11(3):179–85.

  64. O’Brien CM, Duda JL, Kitas GD, Veldhuijzen van Zanten JJCS, Metsios GS, Fenton SAM. Measurement of sedentary time and physical activity in rheumatoid arthritis: an ActiGraph and activPALTM validation study. Rheumatol Int. 2020 Sep;40(9):1509–18.

  65. L G, F G, D L, T L, M S, C J, et al. Detection of Flares by Decrease in Physical Activity, Collected Using Wearable Activity Trackers in Rheumatoid Arthritis or Axial Spondyloarthritis: An Application of Machine Learning Analyses in Rheumatology. Arthritis Care Res (Hoboken) [Internet]. 2019 Oct 1 [cited 2021 Oct 25];71(10):1336–43. Available from: https://pubmed.ncbi.nlm.nih.gov/30242992/

  66. dorsaVi EMEA - Wearable Sensor Technology & Movement Assessment [Internet]. [cited 2021 Nov 13]. Available from: https://www.dorsavi.com/uk/en/

  67. SWORD Health | A better way to treat MSK pain [Internet]. [cited 2021 Nov 13]. Available from: https://swordhealth.com/

  68. The World’s First Digital Clinic for Back and Joint Pain - Hinge Health [Internet]. [cited 2021 Nov 13]. Available from: https://www.hingehealth.com/

  69. Li LC, Feehan LM, Xie H, Lu N, Shaw C, Gromala D, et al. Efficacy of a Physical Activity Counseling Program With Use of a Wearable Tracker in People With Inflammatory Arthritis: A Randomized Controlled Trial. Arthritis Care Res (Hoboken). 2020 Dec;72(12):1755–65.

  70. Physical activity is associated with improved bone health in children with inflammatory bowel disease | Elsevier Enhanced Reader [Internet]. [cited 2021 Oct 29]. Available from: https://reader.elsevier.com/reader/sd/pii/S0261561419303000?token=EBCC7… F1DFCA442091814DAE396C731D75BFAF0B91D9FCBC4D74ABEF19340F3AE3C093B2E26088&o riginRegion=eu-west-1&originCreation=20211028233942

  71. Anna, Vlasáková M, Mužík J, Brož J. Customizing the Types of Technologies Used by Patients With Type 1 Diabetes Mellitus for Diabetes Treatment: Case Series on Patient Experience. JMIR Mhealth Uhealth 2019;7(7)e11527 https//mhealth.jmir.org/2019/7/e11527 [Internet]. 2019 Jul 9 [cited 2021 Oct 26];7(7):e11527. Available from: https://mhealth.jmir.org/2019/7/e11527

  72. Groat D, Kwon HJ, Grando MA, Cook CB, Thompson B. Comparing Real-Time Self-Tracking and Device-Recorded Exercise Data in Subjects with Type 1 Diabetes. Appl Clin Inform. 2018 Oct;9(4):919– 26.

  73. Witt D, Kellogg R, Snyder M, Dunn J. Windows Into Human Health Through Wearables Data Analytics. Curr Opin Biomed Eng. 2019 Mar;9:28–46.

  74. Zarkogianni K, Mitsis K, Litsa E, Arredondo M-T, Ficο G, Fioravanti A, et al. Comparative assessment of glucose prediction models for patients with type 1 diabetes mellitus applying sensors for glucose and physical activity monitoring. Med Biol Eng Comput. 2015 Dec;53(12):1333–43.

  75. Reddy R, El Youssef J, Winters-Stone K, Branigan D, Leitschuh J, Castle J, et al. The effect of exercise on sleep in adults with type 1 diabetes. Diabetes Obes Metab. 2018 Feb;20(2):443–7.

  76. Perfect MM, Patel PG, Scott RE, Wheeler MD, Patel C, Griffin K, et al. Sleep, glucose, and daytime functioning in youth with type 1 diabetes. Sleep. 2012 Jan;35(1):81–8.

  77. Elrokhsi SH, Bluez GP, Chin CN, Wheeler MD, Silva GE, Perfect MM. Differences in sleep architecture according to body mass index in children with type 1 diabetes. Pediatr Diabetes. 2020 Feb;21(1):98–105.

  78. Breton MD, Brown SA, Karvetski CH, Kollar L, Topchyan KA, Anderson SM, et al. Adding heart rate signal to a control-to-range artificial pancreas system improves the protection against hypoglycemia during exercise in type 1 diabetes. Diabetes Technol Ther. 2014 Aug;16(8):506–11.

  79. Fabris C, Ozaslan B, Breton MD. Continuous Glucose Monitors and Activity Trackers to Inform Insulin Dosing in Type 1 Diabetes: The University of Virginia Contribution. Sensors (Basel). 2019 Dec;19(24).

  80. DeBoer MD, Cherñavvsky DR, Topchyan K, Kovatchev BP, Francis GL, Breton MD. Heart rate informed artificial pancreas system enhances glycemic control during exercise in adolescents with T1D. Pediatr Diabetes. 2017 Nov;18(7):540–6.

  81. Hobbs N, Hajizadeh I, Rashid M, Turksoy K, Breton M, Cinar A. Improving Glucose Prediction Accuracy in Physically Active Adolescents With Type 1 Diabetes. J Diabetes Sci Technol. 2019 Jul;13(4):718–27.

  82. Faccioli S, Ozaslan B, Garcia-Tirado JF, Breton M, Del Favero S. Black-box Model Identification of Physical Activity in Type-l Diabetes Patients. Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Int Conf. 2018 Jul;2018:3910–3.

  83. Laguna Sanz AJ, Díez JL, Giménez M, Bondia J. Enhanced Accuracy of Continuous Glucose Monitoring

    during Exercise through Physical Activity Tracking Integration. Sensors (Basel). 2019 Aug;19(17).

  84. Bertachi A, Viñals C, Biagi L, Contreras I, Vehí J, Conget I, et al. Prediction of Nocturnal Hypoglycemia in Adults with Type 1 Diabetes under Multiple Daily Injections Using Continuous Glucose Monitoring and Physical Activity Monitor. Sensors (Basel). 2020 Mar;20(6).

  85. Zheng M, Ni B, Kleinberg S. Automated meal detection from continuous glucose monitor data through simulation and explanation. J Am Med Inform Assoc. 2019 Dec;26(12):1592–9.

  86. Elvebakk O, Tronstad C, Birkeland KI, Jenssen TG, Bjørgaas MR, Gulseth HL, et al. A multiparameter model for non-invasive detection of hypoglycemia. Physiol Meas. 2019 Sep;40(8):85004.

  87. Schechter A, Eyal O, Zuckerman-Levin N, Amihai-Ben-Yaacov V, Weintrob N, Shehadeh N. A prototype of a new noninvasive device to detect nocturnal hypoglycemia in adolescents with type 1 diabetes--a pilot study. Diabetes Technol Ther. 2012 Aug;14(8):683–9.

Sensors to manage Immune Mediated Inflammatory Diseases 48

  1. Elsborg R, Remvig L, Beck-Nielsen H, Juhl C. Detecting hypoglycemia by using the brain as a biosensor. In 2011.

  2. Juhl CB, Højlund K, Elsborg R, Poulsen MK, Selmar PE, Holst JJ, et al. Automated detection of hypoglycemia-induced EEG changes recorded by subcutaneous electrodes in subjects with type 1 diabetes--the brain as a biosensor. Diabetes Res Clin Pract. 2010 Apr;88(1):22–8.

  3. Larsen A, Højlund K, Poulsen MK, Madsen RE, Juhl CB. Hypoglycemia-associated electroencephalogram and electrocardiogram changes appear simultaneously. J Diabetes Sci Technol. 2013 Jan;7(1):93–9.

  4. Ming A, Walter I, Alhajjar A, Leuckert M, Mertens PR. Study protocol for a randomized controlled trial to test for preventive effects of diabetic foot ulceration by telemedicine that includes sensor-equipped insoles combined with photo documentation. Trials. 2019 Aug;20(1):521.

  5. Theilade S, Lajer M, Hansen TW, Joergensen C, Persson F, Andrésdottir G, et al. 24-hour central aortic systolic pressure and 24-hour central pulse pressure are related to diabetic complications in type 1 diabetes - a cross-sectional study. Cardiovasc Diabetol. 2013 Aug;12:122.

  6. Machač S, Procházka M, Radvanský J, Slabý K. Validation of physical activity monitors in individuals with diabetes: energy expenditure estimation by the multisensor SenseWear Armband Pro3 and the step counter Omron HJ-720 against indirect calorimetry during walking. Diabetes Technol Ther. 2013 May;15(5):413–8.

  7. Luo H, Wei J, Yasin Y, Wu SJ, Barszczyk A, Feng Z-P, et al. Stress Determined through Heart Rate Variability Predicts Immune Function. 2019 [cited 2021 Nov 16]; Available from: www.karger.com/nim

  8. Mamedova Emily Pawlowski S, Hudson L. A Description of U.S.Adults Who Are Not Digitally Literate. 2018;

  9. Linkous L, Zohrabi N, Abdelwahed S. Health Monitoring in Smart Homes Utilizing Internet of Things. Proceedings - 4th IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies, CHASE 2019. 2019.

Download scriptie (2.01 MB)
Universiteit of Hogeschool
Universiteit Gent
Thesis jaar
2022
Promotor(en)
Prof. dr. Koen Kas, Dr. Luc Krols
Thema('s)
Kernwoorden