Bacteriën in de vagina: Zo moeder zo dochter?

Margo
Hiel

De meeste kinderen komen ter wereld via het geboortekanaal van hun moeder, een omgeving die rijk is aan bacteriën. Maar vroeg jij je ooit al af of moeders vaginale bacteriën ook belangrijk zijn voor de latere gezondheid van haar kinderen? De afgelopen jaren werd er uitgebreid onderzoek verricht naar voordelige bacteriën in de vagina en hoe ze kunnen bijdragen aan het bevorderen van de gezondheid van vrouwen. Maar de exacte oorsprong van deze bacteriën – samen ook wel het vaginale microbioom genoemd - blijkt een groot mysterie. Wij onderzochten of het mogelijk is dat moeders vaginale bacteriën bij de geboorte worden doorgegeven en decennia later nog invloed hebben op de vaginale gezondheid van haar dochter. Bovendien weten we nog maar weinig over hoe de bacteriële gemeenschap in de vagina verandert tijdens de zwangerschap en hoe deze dynamiek een rol kan spelen bij zwangerschapscomplicaties zoals vroeggeboorte. Net omwille van deze mogelijke invloed op de volgende generaties is verder wetenschappelijk onderzoek cruciaal.

 

Vlaamse vagina’s, een goudmijn aan informatieVaginas voor de wetenschap, de Isala studie

Het laboratorium voor Toegepaste Microbiologie en Biotechnologie aan de Universiteit Antwerpen startte in 2020 een grootschalig burgerwetenschapsproject onder leiding van professor Sarah Lebeer. Het voornaamste doel was onderzoeken hoe het met de vaginale gezondheid in Vlaanderen gesteld is. Het project kreeg de naam ‘Isala’ en resulteerde in een ruime collectie van meer dan 3000 zelf-afgenomen vaginale stalen, en daarbovenop een schat aan gedetailleerde informatie over de persoonlijke hygiëne, het voedingspatroon, het seksleven en andere levensstijlgewoontes van de deelneemsters. De verzameling aan intieme stalen en vragenlijstdata maakten reeds heel wat wetenschappelijk onderzoek mogelijk in het Isala labo. Zo weten we nu dat bij de meeste deelneemsters voornamelijk melkzuurbacteriën aanwezig zijn in de vagina. Dat is goed nieuws, aangezien deze bacteriën de vagina beschermen tegen infecties en ontstekingen. Ook nu, drie jaar later, steekt een enthousiast team van wetenschappers nog dagelijks de handen uit de mouwen om nog meer mysteries rond vaginale bacteriën te ontrafelen. Dankzij de omvang van de studiegroep kon er recent ook een selectie van deelnemende moeders en dochters gemaakt worden. Zij bieden nu heel wat nieuwe en waardevolle inzichten in de oorsprong van vaginale bacteriën.

 

Bacteriën ‘geërfd’?

Vaginale bacteriën behoren samen met bacteriën uit de darmen, op de huid, in de mond en in de moedermelk tot de eerste bacteriën waarmee een baby in contact komt. Dit eerste contact is van groot belang voor de verdere ontwikkeling en gezondheid van het kind. Onderzoek toonde reeds aan dat darmbacteriën van een moeder de samenstelling van het darmmicrobioom van haar kind op latere leeftijd beïnvloeden. De oorsprong van het vaginale microbioom blijft echter tot op heden grotendeels onbekend. Om te bepalen of het vaginale microbioom van een moeder hierbij bepalend is, onderzochten we vaginale stalen van Isala moeder-dochter paren. Daaruit bleek reeds dat bepaalde moeders en dochters zeer nauw verwante vaginale bacteriën delen, die mogelijks bij de geboorte zijn doorgegeven van moeder op dochter. Verder onderzoek wordt nu uitgevoerd om dit te kunnen bevestigen en andere routes uit te sluiten. Het zou immers ook kunnen dat het eten van dezelfde voedingsmiddelen, het gebruik van dezelfde badkamer of het gezamenlijk wassen van kleding hierbij een rol spelen. Een studie naar het vaginale microbioom van andere vrouwelijke huisgenoten kan hierbij zeker helpen. Denk hierbij maar aan lesbische partners, schoonzussen, adoptiedochters, enzovoort. Daarom besliste het Isala team om binnenkort een nieuwe oproep te lanceren.

 

Het belang van moeders vaginale bacteriën

Afbeelding van zwangere vrouw met handen op de buik

Het is cruciaal om verder te onderzoeken welke factoren bijdragen aan de vorming van het vaginale microbioom. Deze nieuwe inzichten zijn van groot belang, niet alleen voor de vrouw in kwestie, maar ook voor haar eventuele partner en kind(eren). Een verstoorde bacteriële gemeenschap in de vagina kan namelijk niet enkel zorgen voor intieme ongemakken en infecties, maar kan ook bijdragen aan complicaties tijdens een zwangerschap. Vroeggeboorte komt naar schatting voor bij 7% van de zwangerschappen en behoort daarmee tot een van de meest voorkomende complicaties. Dit heeft ernstige gevolgen voor zowel kindersterfte, als de gezondheid van het kind op lange termijn. Op dit moment bestaan er enkele strategieën om het risico op vroeggeboorte te verminderen bij vrouwen met een hoog risico. Daarom is het essentieel om te zoeken naar indicatoren die wijzen op een zwangerschap met verhoogd risico. Om zulke indicatoren in het vaginale microbioom te vinden, moeten we eerst beter begrijpen hoe het verandert tijdens een zwangerschap. We hebben deze veranderingen onderzocht, op basis van vaginale stalen genomen tijdens elk trimester van de zwangerschap. Hieruit bleek dat de meeste vrouwen op de verschillende tijdstippen een stabiel microbioom hadden, dat voornamelijk bestond uit gezonde melkzuurbacteriën. Toch blijft er nood aan meer onderzoek bij zwangere vrouwen om veranderingen te herkennen die zouden kunnen wijzen op complicaties zoals vroeggeboorte. Hiervoor zijn er niet alleen meer stalen nodig van tijdens een zwangerschap, maar bij voorkeur ook van de periode ervoor en erna. In de komende jaren zullen wetenschappers in samenwerking met gynaecologen en hun patiëntes nog hard werken om deze dynamiek verder in kaart te brengen.

De toekomst

Hoewel er al veel werd ontdekt, blijven er nog heel wat mysteries rond het vaginale microbioom. De toekomst ziet er echter veelbelovend uit. Het monitoren van vaginale bacteriën tijdens een zwangerschap zou bijvoorbeeld niet enkel kunnen bijdragen aan het voorkomen van vroeggeboortes maar kan mogelijks ook verzekeren dat er goede bacteriën worden overgedragen naar de volgende generatie. 

 

 

Bibliografie

References

1.            Sender R, Fuchs S, Milo R. Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host             Cells in Humans. Cell. 2016;164(3):337-40.

2.           Requena T, Velasco M. The human microbiome in sickness and in health. Revista Clínica Española (English Edition). 2021;221(4):233-40.

3.           Berg G, Rybakova D, Fischer D, Cernava T, Vergès M-CC, Charles T, et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome. 2020;8(1):103.

4.           Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome medicine. 2016;8(1):51.

5.           Dominguez-Bello MG, Godoy-Vitorino F, Knight R, Blaser MJ. Role of the microbiome in human development. Gut. 2019;68(6):1108-14.

6.           Thomas S, Izard J, Walsh E, Batich K, Chongsathidkiet P, Clarke G, et al. The Host Microbiome Regulates and Maintains Human Health: A Primer and Perspective for Non-Microbiologists. Cancer research. 2017;77(8):1783-812.

7.           Amabebe E, Anumba DOC. Female Gut and Genital Tract Microbiota-Induced Crosstalk and Differential Effects of Short-Chain Fatty Acids on Immune Sequelae. Frontiers in immunology. 2020;11:2184.

8.           Hornef M. Pathogens, Commensal Symbionts, and Pathobionts: Discovery and Functional Effects on the Host. ILAR Journal. 2015;56(2):159-62.

9.           Eloe-Fadrosh EA, Rasko DA. The human microbiome: from symbiosis to pathogenesis. Annual review of medicine. 2013;64:145-63.

10.         Curtis MM, Sperandio V. A complex relationship: the interaction among symbiotic microbes, invading pathogens, and their mammalian host. Mucosal Immunology. 2011;4(2):133-8.

11.         Manos J. The human microbiome in disease and pathology. APMIS : acta pathologica, microbiologica, et immunologica Scandinavica. 2022;130(12):690-705.

12.         Petersen C, Round JL. Defining dysbiosis and its influence on host immunity and disease. Cellular microbiology. 2014;16(7):1024-33.

13.         Malard F, Dore J, Gaugler B, Mohty M. Introduction to host microbiome symbiosis in health and disease. Mucosal Immunology. 2021;14(3):547-54.

14.         Chandra H, Sharma KK, Tuovinen OH, Sun X, Shukla P. Pathobionts: mechanisms of survival, expansion, and interaction with host with a focus on <i>Clostridioides difficile</i>. Gut Microbes. 2021;13(1).

15.         Hrncir T. Gut Microbiota Dysbiosis: Triggers, Consequences, Diagnostic and Therapeutic Options. Microorganisms. 2022;10(3).

16.         van de Wijgert JHHM, Verwijs MC, Gill AC, Borgdorff H, van der Veer C, Mayaud P. Pathobionts in the Vaginal Microbiota: Individual Participant Data Meta-Analysis of Three Sequencing Studies. Frontiers in cellular and infection microbiology. 2020;10.

17.         Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(34):13780-5.

18.         Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain, behavior, and immunity. 2015;48:186-94.

19.         Hufnagl K, Pali-Schöll I, Roth-Walter F, Jensen-Jarolim E. Dysbiosis of the gut and lung microbiome has a role in asthma. Seminars in immunopathology. 2020;42(1):75-93.

20.         Chen X, Lu Y, Chen T, Li R. The Female Vaginal Microbiome in Health and Bacterial Vaginosis. Frontiers in cellular and infection microbiology. 2021;11:631972.

21.         Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The Human Microbiome Project. Nature. 2007;449(7164):804-10.

22.         Proctor LM, Creasy HH, Fettweis JM, Lloyd-Price J, Mahurkar A, Zhou W, et al. The Integrative Human Microbiome Project. Nature. 2019;569(7758):641-8.

23.         Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, et al. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207-14.

24.         Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science (New York, NY). 2009;326(5960):1694-7.

25.         Vartoukian SR, Palmer RM, Wade WG. Strategies for culture of ‘unculturable’ bacteria. FEMS Microbiology Letters. 2010;309(1):1-7.

26.         Handelsman J. Metagenomics: application of genomics to uncultured microorganisms. Microbiology and molecular biology reviews : MMBR. 2004;68(4):669-85.

27.         Kim BS, Jeon YS, Chun J. Current status and future promise of the human microbiome. Pediatric gastroenterology, hepatology & nutrition. 2013;16(2):71-9.

28.         Marchesi JR, Ravel J. The vocabulary of microbiome research: a proposal. Microbiome. 2015;3(1):31.

29.         Thomas AM, Segata N. Multiple levels of the unknown in microbiome research. BMC Biology. 2019;17(1):48.

30.         Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, et al. The NIH Human Microbiome Project. Genome research. 2009;19(12):2317-23.

31.         Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59-65.

32.         Turnbaugh PJ, Gordon JI. The core gut microbiome, energy balance and obesity. J Physiol. 2009;587(Pt 17):4153-8.

33.         Zaura E, Keijser BJ, Huse SM, Crielaard W. Defining the healthy "core microbiome" of oral microbial communities. BMC microbiology. 2009;9:259.

34.         Shafquat A, Joice R, Simmons SL, Huttenhower C. Functional and phylogenetic assembly of microbial communities in the human microbiome. Trends in Microbiology. 2014;22(5):261-6.

35.         Sharon I, Quijada NM, Pasolli E, Fabbrini M, Vitali F, Agamennone V, et al. The Core Human Microbiome: Does It Exist and How Can We Find It? A Critical Review of the Concept. Nutrients. 2022;14(14).

36.         Gupta S, Kakkar V, Bhushan I. Crosstalk between Vaginal Microbiome and Female Health: A review. Microbial Pathogenesis. 2019;136:103696.

37.         Ma B, Forney LJ, Ravel J. Vaginal microbiome: rethinking health and disease. Annual review of microbiology. 2012;66:371-89.

38.         Saraf VS, Sheikh SA, Ahmad A, Gillevet PM, Bokhari H, Javed S. Vaginal microbiome: normalcy vs dysbiosis. Archives of Microbiology. 2021;203(7):3793-802.

39.         Mei Z, Li D. The role of probiotics in vaginal health. Frontiers in cellular and infection microbiology. 2022;12:963868.

40.         Amabebe E, Anumba DOC. The Vaginal Microenvironment: The Physiologic Role of Lactobacilli. Frontiers in medicine. 2018;5:181.

41.         Anderson DJ, Marathe J, Pudney J. The structure of the human vaginal stratum corneum and its role in immune defense. Am J Reprod Immunol. 2014;71(6):618-23.

42.         Lehtoranta L, Ala-Jaakkola R, Laitila A, Maukonen J. Healthy Vaginal Microbiota and Influence of Probiotics Across the Female Life Span. Frontiers in microbiology. 2022;13.

43.         Nunn KL, Clair GC, Adkins JN, Engbrecht K, Fillmore T, Forney LJ. Amylases in the Human Vagina. mSphere. 2020;5(6).

44.         France M, Alizadeh M, Brown S, Ma B, Ravel J. Towards a deeper understanding of the vaginal microbiota. Nature microbiology. 2022;7(3):367-78.

45.         Tester R, Al-Ghazzewi FH. Intrinsic and extrinsic carbohydrates in the vagina: A short review on vaginal glycogen. International Journal of Biological Macromolecules. 2018;112:203-6.

46.         Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, et al. Vaginal microbiome of reproductive-age women. Proceedings of the National Academy of Sciences of the United States of America. 2011;108 Suppl 1(Suppl 1):4680-7.

47.         Nunn KL, Forney LJ. Unraveling the Dynamics of the Human Vaginal Microbiome. The Yale journal of biology and medicine. 2016;89(3):331-7.

48.         Zhou X, Brown CJ, Abdo Z, Davis CC, Hansmann MA, Joyce P, et al. Differences in the composition of vaginal microbial communities found in healthy Caucasian and black women. The ISME journal. 2007;1(2):121-33.

49.         Lash AF, Kaplan B. A Study of Dörderlein's Vaginal Bacillus. The Journal of Infectious Diseases. 1926;38(4):333-40.

50.         Döderlein A. Das Scheidensekret und seine Bedeutung für das Puerperalfieber: BoD–Books on Demand; 2012.

51.         Miller EA, Beasley DE, Dunn RR, Archie EA. Lactobacilli Dominance and Vaginal pH: Why Is the Human Vaginal Microbiome Unique? Frontiers in microbiology. 2016;7:1936.

52.         Kovachev S. Defence factors of vaginal lactobacilli. Crit Rev Microbiol. 2018;44(1):31-9.

53.         Boris S, Suárez JE, Vázquez F, Barbés C. Adherence of human vaginal lactobacilli to vaginal epithelial cells and interaction with uropathogens. Infection and immunity. 1998;66(5):1985-9.

54.         Boskey ER, Telsch KM, Whaley KJ, Moench TR, Cone RA. Acid production by vaginal flora in vitro is consistent with the rate and extent of vaginal acidification. Infection and immunity. 1999;67(10):5170-5.

55.         Aldunate M, Srbinovski D, Hearps AC, Latham CF, Ramsland PA, Gugasyan R, et al. Antimicrobial and immune modulatory effects of lactic acid and short chain fatty acids produced by vaginal microbiota associated with eubiosis and bacterial vaginosis. Frontiers in physiology. 2015;6:164.

56.         Saravanan P, R P, Balachander N, K KRS, S S, S R. Anti-inflammatory and wound healing properties of lactic acid bacteria and its peptides. Folia Microbiol (Praha). 2023:1-17.

57.         Aroutcheva A, Gariti D, Simon M, Shott S, Faro J, Simoes JA, et al. Defense factors of vaginal lactobacilli. American Journal of Obstetrics and Gynecology. 2001;185(2):375-9.

58.         Cotter PD, Ross RP, Hill C. Bacteriocins — a viable alternative to antibiotics? Nature Reviews Microbiology. 2013;11(2):95-105.

59.         Lebeer S, Ahannach S, Wittouck S, Gehrmann T, Eilers T, Oerlemans E, et al. Citizen-science map of the vaginal microbiome2022.

60.         France MT, Ma B, Gajer P, Brown S, Humphrys MS, Holm JB, et al. VALENCIA: a nearest centroid classification method for vaginal microbial communities based on composition. Microbiome. 2020;8(1):166.

61.         Han Y, Liu Z, Chen T. Role of Vaginal Microbiota Dysbiosis in Gynecological Diseases and the Potential Interventions. Frontiers in microbiology. 2021;12:643422.

62.         Chee WJY, Chew SY, Than LTL. Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health. Microb Cell Fact. 2020;19(1):203.

63.         Machado A, Foschi C, Marangoni A. Editorial: Vaginal dysbiosis and biofilms. Frontiers in cellular and infection microbiology. 2022;12:976057.

64.         Peebles K, Velloza J, Balkus JE, McClelland RS, Barnabas RV. High Global Burden and Costs of Bacterial Vaginosis: A Systematic Review and Meta-Analysis. Sex Transm Dis. 2019;46(5):304-11.

65.         Gupta K, Stapleton AE, Hooton TM, Roberts PL, Fennell CL, Stamm WE. Inverse association of H2O2-producing lactobacilli and vaginal Escherichia coli colonization in women with recurrent urinary tract infections. J Infect Dis. 1998;178(2):446-50.

66.         Petrova MI, van den Broek M, Balzarini J, Vanderleyden J, Lebeer S. Vaginal microbiota and its role in HIV transmission and infection. FEMS microbiology reviews. 2013;37(5):762-92.

67.         Brotman RM. Vaginal microbiome and sexually transmitted infections: an epidemiologic perspective. Journal of Clinical Investigation. 2011;121(12):4610-7.

68.         Thorsen P, Vogel I, Olsen J, Jeune B, Westergaard JG, Jacobsson B, et al. Bacterial vaginosis in early pregnancy is associated with low birth weight and small for gestational age, but not with spontaneous preterm birth: a population-based study on Danish women. J Matern Fetal Neonatal Med. 2006;19(1):1-7.

69.         Bhakta V, Aslam S, Aljaghwani A. Bacterial vaginosis in pregnancy: prevalence and outcomes in a tertiary care hospital. Afr J Reprod Health. 2021;25(1):49-55.

70.         Toney JF. 61 - Related Syndromes and Less Common Sexually Transmitted Infections. In: Jong EC, Stevens DL, editors. Netter’s Infectious Diseases. Philadelphia: W.B. Saunders; 2012. p. 362-70.

71.         Muzny CA, Schwebke JR. Asymptomatic Bacterial Vaginosis: To Treat or Not to Treat? Current infectious disease reports. 2020;22(12).

72.         Petrova MI, Lievens E, Malik S, Imholz N, Lebeer S. Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health. Frontiers in physiology. 2015;6:81.

73.         Wissel E, Dunn A, Dunlop A. A Narrative Review on Factors Shaping the Vaginal Microbiome: Role of Health Behaviors, Clinical Treatments, and Social Factors. 2020.

74.         Fettweis JM, Brooks JP, Serrano MG, Sheth NU, Girerd PH, Edwards DJ, et al. Differences in vaginal microbiome in African American women versus women of European ancestry. Microbiology (Reading, England). 2014;160(Pt 10):2272-82.

75.         Holdcroft AM, Ireland DJ, Payne MS. The Vaginal Microbiome in Health and Disease-What Role Do Common Intimate Hygiene Practices Play? Microorganisms. 2023;11(2).

76.         Serrano MG, Parikh HI, Brooks JP, Edwards DJ, Arodz TJ, Edupuganti L, et al. Racioethnic diversity in the dynamics of the vaginal microbiome during pregnancy. Nature medicine. 2019;25(6):1001-11.

77.         Gupta VK, Paul S, Dutta C. Geography, Ethnicity or Subsistence-Specific Variations in Human Microbiome Composition and Diversity. Frontiers in microbiology. 2017;8.

78.         Gajer P, Brotman RM, Bai G, Sakamoto J, Schütte UM, Zhong X, et al. Temporal dynamics of the human vaginal microbiota. Science translational medicine. 2012;4(132):132ra52.

79.         Virtanen S, Rantsi T, Virtanen A, Kervinen K, Nieminen P, Kalliala I, et al. Vaginal Microbiota Composition Correlates Between Pap Smear Microscopy and Next Generation Sequencing and Associates to Socioeconomic Status. Scientific reports. 2019;9(1):7750.

80.         Auriemma RS, Scairati R, Del Vecchio G, Liccardi A, Verde N, Pirchio R, et al. The Vaginal Microbiome: A Long Urogenital Colonization Throughout Woman Life. Frontiers in cellular and infection microbiology. 2021;11:686167.

81.         Farage M, Maibach H. Lifetime changes in the vulva and vagina. Archives of Gynecology and Obstetrics. 2006;273(4):195-202.

82.         Srinivasan S, Liu C, Mitchell CM, Fiedler TL, Thomas KK, Agnew KJ, et al. Temporal variability of human vaginal bacteria and relationship with bacterial vaginosis. PloS one. 2010;5(4):e10197.

83.         Weinberg ED. Iron availability and infection. Biochimica et Biophysica Acta (BBA) - General Subjects. 2009;1790(7):600-5.

84.         Jarosik GP, Land CB, Duhon P, Chandler R, Jr., Mercer T. Acquisition of iron by Gardnerella vaginalis. Infection and immunity. 1998;66(10):5041-7.

85.         Gliniewicz K, Schneider GM, Ridenhour BJ, Williams CJ, Song Y, Farage MA, et al. Comparison of the Vaginal Microbiomes of Premenopausal and Postmenopausal Women. Frontiers in microbiology. 2019;10:193.

86.         Takahashi TA, Johnson KM. Menopause. Medical Clinics of North America. 2015;99(3):521-34.

87.         Brotman RM, Shardell MD, Gajer P, Fadrosh D, Chang K, Silver MI, et al. Association between the vaginal microbiota, menopause status, and signs of vulvovaginal atrophy. Menopause. 2014;21(5):450-8.

88.         Muhleisen AL, Herbst-Kralovetz MM. Menopause and the vaginal microbiome. Maturitas. 2016;91:42-50.

89.         Gupta P, Singh MP, Goyal K. Diversity of Vaginal Microbiome in Pregnancy: Deciphering the Obscurity. Frontiers in public health. 2020;8:326.

90.         Aagaard K, Riehle K, Ma J, Segata N, Mistretta TA, Coarfa C, et al. A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PloS one. 2012;7(6):e36466.

91.         Romero R, Hassan SS, Gajer P, Tarca AL, Fadrosh DW, Nikita L, et al. The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome. 2014;2(1):4.

92.         MacIntyre DA, Chandiramani M, Lee YS, Kindinger L, Smith A, Angelopoulos N, et al. The vaginal microbiome during pregnancy and the postpartum period in a European population. Scientific reports. 2015;5:8988.

93.         Freitas AC, Chaban B, Bocking A, Rocco M, Yang S, Hill JE, et al. The vaginal microbiome of pregnant women is less rich and diverse, with lower prevalence of Mollicutes, compared to non-pregnant women. Scientific reports. 2017;7(1):9212.

94.         DiGiulio DB, Callahan BJ, McMurdie PJ, Costello EK, Lyell DJ, Robaczewska A, et al. Temporal and spatial variation of the human microbiota during pregnancy. Proceedings of the National Academy of Sciences of the United States of America. 2015;112(35):11060-5.

95.         Romero R, Hassan SS, Gajer P, Tarca AL, Fadrosh DW, Bieda J, et al. The vaginal microbiota of pregnant women who subsequently have spontaneous preterm labor and delivery and those with a normal delivery at term. Microbiome. 2014;2:18.

96.         Li D, Chi XZ, Zhang L, Chen R, Cao JR, Sun XY, et al. Vaginal microbiome analysis of healthy women during different periods of gestation. Biosci Rep. 2020;40(7).

97.         Wang S, Ryan CA, Boyaval P, Dempsey EM, Ross RP, Stanton C. Maternal Vertical Transmission Affecting Early-life Microbiota Development. Trends in Microbiology. 2020;28(1):28-45.

98.         Bayar E, Bennett PR, Chan D, Sykes L, MacIntyre DA. The pregnancy microbiome and preterm birth. Seminars in immunopathology. 2020;42(4):487-99.

99.         Nunn KL, Witkin SS, Schneider GM, Boester A, Nasioudis D, Minis E, et al. Changes in the Vaginal Microbiome during the Pregnancy to Postpartum Transition. Reproductive sciences (Thousand Oaks, Calif). 2021;28(7):1996-2005.

100.       Li K, Li F, Jaspan H, Nyemba D, Myer L, Aldrovandi G, et al. Changes in the vaginal microbiome during pregnancy and the postpartum period in South African women: a longitudinal study. Res Sq. 2023.

101.       Hendrick V, Altshuler LL, Suri R. Hormonal Changes in the Postpartum and Implications for Postpartum Depression. Psychosomatics. 1998;39(2):93-101.

102.       DiGiulio DB, Callahan BJ, McMurdie PJ, Costello EK, Lyell DJ, Robaczewska A, et al. Temporal and spatial variation of the human microbiota during pregnancy. Proceedings of the National Academy of Sciences. 2015;112(35):11060-5.

103.       Xiao L, Zhao F. Microbial transmission, colonisation and succession: from pregnancy to infancy. Gut. 2023;72(4):772-86.

104.       Ferretti P, Pasolli E, Tett A, Asnicar F, Gorfer V, Fedi S, et al. Mother-to-Infant Microbial Transmission from Different Body Sites Shapes the Developing Infant Gut Microbiome. Cell host & microbe. 2018;24(1):133-45.e5.

105.       Gudnadottir U, Debelius JW, Du J, Hugerth LW, Danielsson H, Schuppe-Koistinen I, et al. The vaginal microbiome and the risk of preterm birth: a systematic review and network meta-analysis. Scientific reports. 2022;12(1):7926.

106.       Hillier SL, Nugent RP, Eschenbach DA, Krohn MA, Gibbs RS, Martin DH, et al. Association between bacterial vaginosis and preterm delivery of a low-birth-weight infant. The Vaginal Infections and Prematurity Study Group. N Engl J Med. 1995;333(26):1737-42.

107.       Hay PE. Bacterial vaginosis and miscarriage. Curr Opin Infect Dis. 2004;17(1):41-4.

108.       Mania-Pramanik J, Kerkar SC, Salvi VS. Bacterial vaginosis: a cause of infertility? Int J STD AIDS. 2009;20(11):778-81.

109.       Vitale SG, Ferrari F, Ciebiera M, Zgliczyńska M, Rapisarda AMC, Vecchio GM, et al. The Role of Genital Tract Microbiome in Fertility: A Systematic Review. International journal of molecular sciences. 2021;23(1).

110.       Venneri MA, Franceschini E, Sciarra F, Rosato E, D'Ettorre G, Lenzi A. Human genital tracts microbiota: dysbiosis crucial for infertility. J Endocrinol Invest. 2022;45(6):1151-60.

111.       Maroufizadeh S, Karimi E, Vesali S, Omani Samani R. Anxiety and depression after failure of assisted reproductive treatment among patients experiencing infertility. International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics. 2015;130(3):253-6.

112.       France MT, Brown SE, Rompalo AM, Brotman RM, Ravel J. Identification of shared bacterial strains in the vaginal microbiota of related and unrelated reproductive-age mothers and daughters using genome-resolved metagenomics. PloS one. 2022;17(10):e0275908.

113.       Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(26):11971-5.

114.       Korpela K, Costea P, Coelho LP, Kandels-Lewis S, Willemsen G, Boomsma DI, et al. Selective maternal seeding and environment shape the human gut microbiome. Genome research. 2018;28(4):561-8.

115.       Hou K, Wu Z-X, Chen X-Y, Wang J-Q, Zhang D, Xiao C, et al. Microbiota in health and diseases. Signal transduction and targeted therapy. 2022;7(1):135.

116.       Gomez de Agüero M, Ganal-Vonarburg SC, Fuhrer T, Rupp S, Uchimura Y, Li H, et al. The maternal microbiota drives early postnatal innate immune development. Science (New York, NY). 2016;351(6279):1296-302.

117.       Stout MJ, Zhou Y, Wylie KM, Tarr PI, Macones GA, Tuuli MG. Early pregnancy vaginal microbiome trends and preterm birth. Am J Obstet Gynecol. 2017;217(3):356.e1-.e18.

118.       WHO: recommended definitions, terminology and format for statistical tables related to the perinatal period and use of a new certificate for cause of perinatal deaths. Modifications recommended by FIGO as amended October 14, 1976. Acta Obstet Gynecol Scand. 1977;56(3):247-53.

119.       van de Wijgert JHHM, Jespers V. The global health impact of vaginal dysbiosis. Research in Microbiology. 2017;168(9):859-64.

120.       Fettweis JM, Serrano MG, Brooks JP, Edwards DJ, Girerd PH, Parikh HI, et al. The vaginal microbiome and preterm birth. Nature medicine. 2019;25(6):1012-21.

121.       WHO. Newborn mortality 2022 [updated 28/02/2022. Available from: https://www.who.int/news-room/fact-sheets/detail/levels-and-trends-in-child-mortality-report-2021.

122.       Walani SR. Global burden of preterm birth. International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics. 2020;150(1):31-3.

123.       Platt MJ. Outcomes in preterm infants. Public Health. 2014;128(5):399-403.

124.       Beam AL, Fried I, Palmer N, Agniel D, Brat G, Fox K, et al. Estimates of healthcare spending for preterm and low-birthweight infants in a commercially insured population: 2008–2016. Journal of Perinatology. 2020;40(7):1091-9.

125.       Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371(9606):75-84.

126.       Romero R, Dey SK, Fisher SJ. Preterm labor: One syndrome, many causes. Science (New York, NY). 2014;345(6198):760-5.

127.       Romero R, Gomez R, Chaiworapongsa T, Conoscenti G, Cheol Kim J, Mee Kim Y. The role of infection in preterm labour and delivery. Paediatric and Perinatal Epidemiology. 2001;15(s2):41-56.

128.       Romero R, Espinoza J, Gonçalves LF, Kusanovic JP, Friel L, Hassan S. The role of inflammation and infection in preterm birth. Semin Reprod Med. 2007;25(1):21-39.

129.       Lamont RF. Infection in the prediction and antibiotics in the prevention of spontaneous preterm labour and preterm birth. BJOG: An International Journal of Obstetrics & Gynaecology. 2003;110(s20):71-5.

130.       Thinkhamrop J, Hofmeyr GJ, Adetoro O, Lumbiganon P, Ota E. Antibiotic prophylaxis during the second and third trimester to reduce adverse pregnancy outcomes and morbidity. Cochrane Database Syst Rev. 2015;2015(6):Cd002250.

131.       Flenady V, Hawley G, Stock OM, Kenyon S, Badawi N. Prophylactic antibiotics for inhibiting preterm labour with intact membranes. Cochrane Database Syst Rev. 2013(12):Cd000246.

132.       Brocklehurst P, Gordon A, Heatley E, Milan SJ. Antibiotics for treating bacterial vaginosis in pregnancy. Cochrane Database Syst Rev. 2013(1):Cd000262.

133.       Hantoushzadeh S, Anvari Aliabad R, Norooznezhad AH. Antibiotics, Inflammation, and Preterm Labor: A Missed Conclusion. J Inflamm Res. 2020;13:245-54.

134.       Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology. 2014;11(8):506-14.

135.       Jarde A, Lewis-Mikhael AM, Moayyedi P, Stearns JC, Collins SM, Beyene J, et al. Pregnancy outcomes in women taking probiotics or prebiotics: a systematic review and meta-analysis. BMC Pregnancy Childbirth. 2018;18(1):14.

136.       Petricevic L, Domig KJ, Nierscher FJ, Sandhofer MJ, Fidesser M, Krondorfer I, et al. Characterisation of the vaginal Lactobacillus microbiota associated with preterm delivery. Scientific reports. 2014;4:5136.

137.       Goodfellow L, Verwijs M, Care A, Sharp A, Ivandic J, Poljak B, et al. Vaginal bacterial load in the second trimester is associated with early preterm birth recurrence: a nested case–control study. BJOG: An International Journal of Obstetrics & Gynaecology. 2021;128(13):2061-72.

138.       Di Simone N, Santamaria Ortiz A, Specchia M, Tersigni C, Villa P, Gasbarrini A, et al. Recent Insights on the Maternal Microbiota: Impact on Pregnancy Outcomes. Frontiers in immunology. 2020;11:528202.

139.       Hourigan SK, Dominguez-Bello MG. Microbial seeding in early life. Cell host & microbe. 2023;31(3):331-3.

140.       Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Bäckhed HK, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012;150(3):470-80.

141.       Codagnone MG, Spichak S, O'Mahony SM, O'Leary OF, Clarke G, Stanton C, et al. Programming Bugs: Microbiota and the Developmental Origins of Brain Health and Disease. Biol Psychiatry. 2019;85(2):150-63.

142.       Perez-Muñoz ME, Arrieta MC, Ramer-Tait AE, Walter J. A critical assessment of the "sterile womb" and "in utero colonization" hypotheses: implications for research on the pioneer infant microbiome. Microbiome. 2017;5(1):48.

143.       Kennedy KM, de Goffau MC, Perez-Muñoz ME, Arrieta M-C, Bäckhed F, Bork P, et al. Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies. Nature. 2023;613(7945):639-49.

144.       Asnicar F, Manara S, Zolfo M, Truong DT, Scholz M, Armanini F, et al. Studying Vertical Microbiome Transmission from Mothers to Infants by Strain-Level Metagenomic Profiling. mSystems. 2017;2(1).

145.       Biasucci G, Rubini M, Riboni S, Morelli L, Bessi E, Retetangos C. Mode of delivery affects the bacterial community in the newborn gut. Early Hum Dev. 2010;86 Suppl 1:13-5.

146.       Tamburini S, Shen N, Wu HC, Clemente JC. The microbiome in early life: implications for health outcomes. Nature medicine. 2016;22(7):713-22.

147.       Bassis CM, Bullock KA, Sack DE, Saund K, Pirani A, Snitkin ES, et al. Vaginal microbiota of adolescents and their mothers: A preliminary study of vertical transmission and persistence. bioRxiv. 2022:768598.

148.       Xiaoming W, Jing L, Yuchen P, Huili L, Miao Z, Jing S. Characteristics of the vaginal microbiomes in prepubertal girls with and without vulvovaginitis. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology. 2021;40(6):1253-61.

149.       Baud A, Hillion K-H, Plainvert C, Tessier V, Tazi A, Mandelbrot L, et al. Microbial diversity in the vaginal microbiota and its link to pregnancy outcomes. Scientific reports. 2023;13(1):9061.

150.       Forney LJ, Foster JA, Ledger W. The Vaginal Flora of Healthy Women Is Not Always Dominated by Lactobacillus Species. The Journal of Infectious Diseases. 2006;194(10):1468-9.

151.       Nygren P, Fu R, Freeman M, Bougatsos C, Klebanoff M, Guise JM. Evidence on the benefits and harms of screening and treating pregnant women who are asymptomatic for bacterial vaginosis: an update review for the U.S. Preventive Services Task Force. Ann Intern Med. 2008;148(3):220-33.

152.       The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell host & microbe. 2014;16(3):276-89.

153.       Verstraelen H, Verhelst R, Claeys G, De Backer E, Temmerman M, Vaneechoutte M. Longitudinal analysis of the vaginal microflora in pregnancy suggests that L. crispatus promotes the stability of the normal vaginal microflora and that L. gasseri and/or L. iners are more conducive to the occurrence of abnormal vaginal microflora. BMC microbiology. 2009;9(1):116.

154.       Yeruva T, Rajkumar H, Donugama V. Vaginal lactobacilli profile in pregnant women with normal & abnormal vaginal flora. Indian J Med Res. 2017;146(4):534-40.

155.       Hernández-Rodríguez C, Romero-González R, Albani-Campanario M, Figueroa-Damián R, Meraz-Cruz N, Hernández-Guerrero C. Vaginal microbiota of healthy pregnant Mexican women is constituted by four Lactobacillus species and several vaginosis-associated bacteria. Infect Dis Obstet Gynecol. 2011;2011:851485.

156.       Roy EJ, Mackay R. The concentration of oestrogens in blood during pregnancy. J Obstet Gynaecol Br Emp. 1962;69:13-7.

157.       Greenbaum S, Greenbaum G, Moran-Gilad J, Weintraub AY. Ecological dynamics of the vaginal microbiome in relation to health and disease. American Journal of Obstetrics and Gynecology. 2019;220(4):324-35.

158.       Son M, Miller ES. Predicting preterm birth: Cervical length and fetal fibronectin. Semin Perinatol. 2017;41(8):445-51.

159.       Kramer MS, Papageorghiou A, Culhane J, Bhutta Z, Goldenberg RL, Gravett M, et al. Challenges in defining and classifying the preterm birth syndrome. Am J Obstet Gynecol. 2012;206(2):108-12.

160.       Kyrklund-Blomberg NB, Cnattingius S. Preterm birth and maternal smoking: risks related to gestational age and onset of delivery. Am J Obstet Gynecol. 1998;179(4):1051-5.

161.       Statbel. Daling van het geboortecijfer in 2020 2022 [updated 19/09/2022. Available from: https://statbel.fgov.be/nl/nieuws/daling-van-het-geboortecijfer-2020.

162.       Rolnik DL, Matheson A, Liu Y, Chu S, McGannon C, Mulcahy B, et al. Impact of COVID-19 pandemic restrictions on pregnancy duration and outcome in Melbourne, Australia. Ultrasound Obstet Gynecol. 2021;58(5):677-87.

163.       Klumper J, Kazemier BM, Been JV, Bloemenkamp KWM, de Boer MA, Erwich J, et al. Association between COVID-19 lockdown measures and the incidence of iatrogenic versus spontaneous very preterm births in the Netherlands: a retrospective study. BMC Pregnancy Childbirth. 2021;21(1):767.

164.       Dehaene I, Van Holsbeke C, Roelens K, van Oostrum NNVH, Nulens K, Smets K, et al. Preterm birth during the COVID-19 pandemic: more, less, or just the same? Acta Clinica Belgica. 2023;78(2):140-59.

165.       Dench D, Joyce T, Minkoff H. United States Preterm Birth Rate and COVID-19. Pediatrics. 2022;149(5).

166.       Yao XD, Zhu LJ, Yin J, Wen J. Impacts of COVID-19 pandemic on preterm birth: a systematic review and meta-analysis. Public Health. 2022;213:127-34.

167.       Been JV, Burgos Ochoa L, Bertens LCM, Schoenmakers S, Steegers EAP, Reiss IKM. Impact of COVID-19 mitigation measures on the incidence of preterm birth: a national quasi-experimental study. Lancet Public Health. 2020;5(11):e604-e11.

168.       Arun Babu T, Sharmila V, Vishnu Bhat B. Curious scenario of changes in incidence of preterm births during COVID-19 pandemic. Pointers for future research? European journal of obstetrics, gynecology, and reproductive biology. 2020;253:333-4.

169.       Wood R, Sinnott C, Goldfarb I, Clapp M, McElrath T, Little S. Preterm Birth During the Coronavirus Disease 2019 (COVID-19) Pandemic in a Large Hospital System in the United States. Obstet Gynecol. 2021;137(3):403-4.

170.       Arnaez J, Ochoa-Sangrador C, Caserío S, Gutiérrez EP, Jiménez MDP, Castañón L, et al. Lack of changes in preterm delivery and stillbirths during COVID-19 lockdown in a European region. Eur J Pediatr. 2021;180(6):1997-2002.

171.       Kc A, Gurung R, Kinney MV, Sunny AK, Moinuddin M, Basnet O, et al. Effect of the COVID-19 pandemic response on intrapartum care, stillbirth, and neonatal mortality outcomes in Nepal: a prospective observational study. Lancet Glob Health. 2020;8(10):e1273-e81.

172.       Bennett PR, Brown RG, MacIntyre DA. Vaginal Microbiome in Preterm Rupture of Membranes. Obstet Gynecol Clin North Am. 2020;47(4):503-21.

173.       Donders GG, Van Calsteren K, Bellen G, Reybrouck R, Van den Bosch T, Riphagen I, et al. Predictive value for preterm birth of abnormal vaginal flora, bacterial vaginosis and aerobic vaginitis during the first trimester of pregnancy. Bjog. 2009;116(10):1315-24.

174.       Abou Chacra L, Fenollar F, Diop K. Bacterial Vaginosis: What Do We Currently Know? Frontiers in cellular and infection microbiology. 2021;11:672429.

175.       Nugent RP, Krohn MA, Hillier SL. Reliability of diagnosing bacterial vaginosis is improved by a standardized method of gram stain interpretation. J Clin Microbiol. 1991;29(2):297-301.

176.       Bhujel R, Mishra SK, Yadav SK, Bista KD, Parajuli K. Comparative study of Amsel’s criteria and Nugent scoring for diagnosis of bacterial vaginosis in a tertiary care hospital, Nepal. BMC Infectious Diseases. 2021;21(1):825.

177.       Amsel R, Totten PA, Spiegel CA, Chen KC, Eschenbach D, Holmes KK. Nonspecific vaginitis. Diagnostic criteria and microbial and epidemiologic associations. Am J Med. 1983;74(1):14-22.

178.       Ceccarani C, Foschi C, Parolin C, D'Antuono A, Gaspari V, Consolandi C, et al. Diversity of vaginal microbiome and metabolome during genital infections. Scientific reports. 2019;9(1):14095.

179.       Hauth JC, MacPherson C, Carey JC, Klebanoff MA, Hillier SL, Ernest JM, et al. Early pregnancy threshold vaginal pH and Gram stain scores predictive of subsequent preterm birth in asymptomatic women. American Journal of Obstetrics and Gynecology. 2003;188(3):831-5.

180.       Foroozanfard F, Tabasi Z, Mesdaghinia E, Sehat M, Mehrdad M. Cervical length versus vaginal PH in the second trimester as preterm birth predictor. Pak J Med Sci. 2015;31(2):374-8.

181.       Liu B, Xu G, Sun Y, Du Y, Gao R, Snetselaar LG, et al. Association between maternal pre-pregnancy obesity and preterm birth according to maternal age and race or ethnicity: a population-based study. Lancet Diabetes Endocrinol. 2019;7(9):707-14.

182.       Waldenström U, Cnattingius S, Vixner L, Norman M. Advanced maternal age increases the risk of very preterm birth, irrespective of parity: a population-based register study. BJOG: An International Journal of Obstetrics & Gynaecology. 2017;124(8):1235-44.

183.       Fuchs F, Monet B, Ducruet T, Chaillet N, Audibert F. Effect of maternal age on the risk of preterm birth: A large cohort study. PloS one. 2018;13(1):e0191002.

184.       Saccone G, Gragnano E, Ilardi B, Marrone V, Strina I, Venturella R, et al. Maternal and perinatal complications according to maternal age: A systematic review and meta-analysis. International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics. 2022;159(1):43-55.

185.       Iams JD, Goldenberg RL, Meis PJ, Mercer BM, Moawad A, Das A, et al. The length of the cervix and the risk of spontaneous premature delivery. National Institute of Child Health and Human Development Maternal Fetal Medicine Unit Network. N Engl J Med. 1996;334(9):567-72.

186.       Hassan SS, Romero R, Vidyadhari D, Fusey S, Baxter JK, Khandelwal M, et al. Vaginal progesterone reduces the rate of preterm birth in women with a sonographic short cervix: a multicenter, randomized, double-blind, placebo-controlled trial. Ultrasound Obstet Gynecol. 2011;38(1):18-31.

187.       Fonseca EB, Celik E, Parra M, Singh M, Nicolaides KH. Progesterone and the risk of preterm birth among women with a short cervix. N Engl J Med. 2007;357(5):462-9.

188.       van Zijl MD, Koullali B, Kleinrouweler EC, Mol BW, Kazemier BM, Pajkrt E. Uniform International Method to Measure Cervical Length: Are We There Yet? Fetal Diagnosis and Therapy. 2022;49(4):159-67.

189.       Delcroix MH, Delcroix-Gomez C, Marquet P, Gauthier T, Thomas D, Aubard Y. Active or passive maternal smoking increases the risk of low birth weight or preterm delivery: Benefits of cessation and tobacco control policies. Tob Induc Dis. 2023;21:72.

190.       Ko TJ, Tsai LY, Chu LC, Yeh SJ, Leung C, Chen CY, et al. Parental smoking during pregnancy and its association with low birth weight, small for gestational age, and preterm birth offspring: a birth cohort study. Pediatr Neonatol. 2014;55(1):20-7.

191.       Soneji S, Beltrán-Sánchez H. Association of Maternal Cigarette Smoking and Smoking Cessation With Preterm Birth. JAMA Netw Open. 2019;2(4):e192514.

192.       Wagenknecht LE, Burke GL, Perkins LL, Haley NJ, Friedman GD. Misclassification of smoking status in the CARDIA study: a comparison of self-report with serum cotinine levels. Am J Public Health. 1992;82(1):33-6.

193.       Klesges RC, Debon M, Ray JW. Are self-reports of smoking rate biased? Evidence from the Second National Health and Nutrition Examination Survey. Journal of Clinical Epidemiology. 1995;48(10):1225-33.

194.       Gustavson K, Ystrom E, Stoltenberg C, Susser E, Surén P, Magnus P, et al. Smoking in Pregnancy and Child ADHD. Pediatrics. 2017;139(2).

195.       Mackenbach JP, Damhuis RA, Been JV. [The effects of smoking on health: growth of knowledge reveals even grimmer picture]. Ned Tijdschr Geneeskd. 2017;160:D869.

196.       Qiu J, He X, Cui H, Zhang C, Zhang H, Dang Y, et al. Passive smoking and preterm birth in urban China. Am J Epidemiol. 2014;180(1):94-102.

197.       Faber T, Been JV, Reiss IK, Mackenbach JP, Sheikh A. Smoke-free legislation and child health. NPJ Prim Care Respir Med. 2016;26:16067.

198.       Yeh C-C, Tsui K-H, Wang P-H. Group B streptococci screening. Journal of the Chinese Medical Association. 2016;79(3):103-4.

199.       Daniel Johannes Rönnqvist P, Birgitta Forsgren-Brusk U, Elisabeth Grahn-Håkansson E. Lactobacilli in the female genital tract in relation to other genital microbes and vaginal pH. Acta Obstetricia et Gynecologica Scandinavica. 2006;85(6):726-35.

200.       Kohli-Lynch M, Russell NJ, Seale AC, Dangor Z, Tann CJ, Baker CJ, et al. Neurodevelopmental Impairment in Children After Group B Streptococcal Disease Worldwide: Systematic Review and Meta-analyses. Clin Infect Dis. 2017;65(suppl_2):S190-s9.

201.       Gonçalves BP, Procter SR, Paul P, Chandna J, Lewin A, Seedat F, et al. Group B streptococcus infection during pregnancy and infancy: estimates of regional and global burden. Lancet Glob Health. 2022;10(6):e807-e19.

202.       Shabayek S, Spellerberg B. Acid Stress Response Mechanisms of Group B Streptococci. Frontiers in cellular and infection microbiology. 2017;7:395.

203.       Khalil MR, Uldbjerg N, Møller JK, Thorsen PB. Group B streptococci cultured in urine during pregnancy associated with preterm delivery: a selection problem? J Matern Fetal Neonatal Med. 2019;32(19):3176-84.

204.       Rick AM, Aguilar A, Cortes R, Gordillo R, Melgar M, Samayoa-Reyes G, et al. Group B Streptococci Colonization in Pregnant Guatemalan Women: Prevalence, Risk Factors, and Vaginal Microbiome. Open Forum Infect Dis. 2017;4(1):ofx020.

205.       Starc M, Lučovnik M, Eržen Vrlič P, Jeverica S. Protective Effect of Lactobacillus crispatus against Vaginal Colonization with Group B Streptococci in the Third Trimester of Pregnancy. Pathogens. 2022;11(9).

206.       Kubota T, Nojima M, Itoh S. Vaginal bacterial flora of pregnant women colonized with group B streptococcus. J Infect Chemother. 2002;8(4):326-30.

207.       Rogosa M, Mitchell JA, Wiseman RF. A selective medium for the isolation and enumeration of oral and fecal lactobacilli. J Bacteriol. 1951;62(1):132-3.

208.       Pendharkar S, Magopane T, Larsson PG, de Bruyn G, Gray GE, Hammarström L, et al. Identification and characterisation of vaginal lactobacilli from South African women. BMC Infect Dis. 2013;13:43.

209.       Srinivasan S, Munch MM, Sizova MV, Fiedler TL, Kohler CM, Hoffman NG, et al. More Easily Cultivated Than Identified: Classical Isolation With Molecular Identification of Vaginal Bacteria. J Infect Dis. 2016;214 Suppl 1(Suppl 1):S21-8.

210.       Mendonça AA, de Morais MA, Cabrera MZ. Cysteine induces resistance of lactobacilli to erythromycin and azithromycin. International Journal of Antimicrobial Agents. 2019;53(3):352-3.

211.       DeMarco AL, Rabe LK, Austin MN, Stoner KA, Avolia HA, Meyn LA, et al. Survival of vaginal microorganisms in three commercially available transport systems. Anaerobe. 2017;45:44-9.

212.       Medina-Colorado AA, Vincent KL, Miller AL, Maxwell CA, Dawson LN, Olive T, et al. Vaginal ecosystem modeling of growth patterns of anaerobic bacteria in microaerophilic conditions. Anaerobe. 2017;45:10-8.

213.       Valero A, Pérez-Rodríguez F, Carrasco E, Fuentes-Alventosa JM, García-Gimeno RM, Zurera G. Modelling the growth boundaries of Staphylococcus aureus: Effect of temperature, pH and water activity. International Journal of Food Microbiology. 2009;133(1):186-94.

214.       Pishchany G, Haley KP, Skaar EP. Staphylococcus aureus growth using human hemoglobin as an iron source. J Vis Exp. 2013(72).

215.       Cross JH, Bradbury RS, Fulford AJ, Jallow AT, Wegmüller R, Prentice AM, et al. Oral iron acutely elevates bacterial growth in human serum. Scientific reports. 2015;5:16670.

216.       Mubarak Z, Soraya C. The acid tolerance response and pH adaptation of Enterococcus faecalis in extract of lime Citrus aurantiifolia from Aceh Indonesia. F1000Res. 2018;7:287.

217.       Wang Y, Wu J, Lv M, Shao Z, Hungwe M, Wang J, et al. Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Frontiers in Bioengineering and Biotechnology. 2021;9.

218.       Tettamanti Boshier FA, Srinivasan S, Lopez A, Hoffman NG, Proll S, Fredricks DN, et al. Complementing 16S rRNA Gene Amplicon Sequencing with Total Bacterial Load To Infer Absolute Species Concentrations in the Vaginal Microbiome. mSystems. 2020;5(2).

219.       Williamson BD, Hughes JP, Willis AD. A multiview model for relative and absolute microbial abundances. Biometrics. 2022;78(3):1181-94.

220.       Barlow JT, Bogatyrev SR, Ismagilov RF. A quantitative sequencing framework for absolute abundance measurements of mucosal and lumenal microbial communities. Nature communications. 2020;11(1):2590.

221.       Galazzo G, van Best N, Benedikter BJ, Janssen K, Bervoets L, Driessen C, et al. How to Count Our Microbes? The Effect of Different Quantitative Microbiome Profiling Approaches. Frontiers in cellular and infection microbiology. 2020;10:403.

222.       Duar RM, Lin XB, Zheng J, Martino ME, Grenier T, Pérez-Muñoz ME, et al. Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS microbiology reviews. 2017;41(Supp_1):S27-S48.

223.       Johnson JS, Spakowicz DJ, Hong B-Y, Petersen LM, Demkowicz P, Chen L, et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nature communications. 2019;10(1):5029.

224.       Brumfield KD, Huq A, Colwell RR, Olds JL, Leddy MB. Microbial resolution of whole genome shotgun and 16S amplicon metagenomic sequencing using publicly available NEON data. PloS one. 2020;15(2):e0228899.

225.       Martino ME, Bayjanov JR, Caffrey BE, Wels M, Joncour P, Hughes S, et al. Nomadic lifestyle of Lactobacillus plantarum revealed by comparative genomics of 54 strains isolated from different habitats. Environ Microbiol. 2016;18(12):4974-89.

226.       Zhang S, Oh JH, Alexander LM, Özçam M, van Pijkeren JP. d-Alanyl-d-Alanine Ligase as a Broad-Host-Range Counterselection Marker in Vancomycin-Resistant Lactic Acid Bacteria. J Bacteriol. 2018;200(13).

227.       Campedelli I, Mathur H, Salvetti E, Clarke S, Rea MC, Torriani S, et al. Genus-Wide Assessment of Antibiotic Resistance in Lactobacillus spp. Appl Environ Microbiol. 2019;85(1).

228.       Owen DH, Katz DF. A vaginal fluid simulant. Contraception. 1999;59(2):91-5.

229.       Pan M, Hidalgo-Cantabrana C, Goh YJ, Sanozky-Dawes R, Barrangou R. Comparative Analysis of Lactobacillus gasseri and Lactobacillus crispatus Isolated From Human Urogenital and Gastrointestinal Tracts. Frontiers in microbiology. 2019;10:3146.

230.       Diop K, Diop A, Michelle C, Richez M, Rathored J, Bretelle F, et al. Description of three new Peptoniphilus species cultured in the vaginal fluid of a woman diagnosed with bacterial vaginosis: Peptoniphilus pacaensis sp. nov., Peptoniphilus raoultii sp. nov., and Peptoniphilus vaginalis sp. nov. Microbiologyopen. 2019;8(3):e00661.

231.       Lithgow KV, Buchholz VCH, Ku E, Konschuh S, D’Aubeterre A, Sycuro LK. Protease activities of vaginal Porphyromonas species disrupt coagulation and extracellular matrix in the cervicovaginal niche. npj Biofilms and Microbiomes. 2022;8(1):8.

232.       Rosca AS, Castro J, Cerca N. Evaluation of different culture media to support in vitro growth and biofilm formation of bacterial vaginosis-associated anaerobes. PeerJ. 2020;8:e9917.

233.       Vaneechoutte M. Lactobacillus iners, the unusual suspect. Research in Microbiology. 2017;168(9):826-36.

234.       Falsen E, Pascual C, Sjödén B, Ohlén M, Collins MD. Phenotypic and phylogenetic characterization of a novel Lactobacillus species from human sources: description of Lactobacillus iners sp. nov. International Journal of Systematic and Evolutionary Microbiology. 1999;49(1):217-21.

235.       Petrova MI, Reid G, Vaneechoutte M, Lebeer S. Lactobacillus iners: Friend or Foe? Trends in Microbiology. 2017;25(3):182-91.

236.       Walker RW, Clemente JC, Peter I, Loos RJF. The prenatal gut microbiome: are we colonized with bacteria in utero? Pediatr Obes. 2017;12 Suppl 1(Suppl 1):3-17.

237.       Mackie RI, Sghir A, Gaskins HR. Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr. 1999;69(5):1035s-45s.

238.       Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science translational medicine. 2016;8(343):343ra82.

239.       Feehily C, O’Neill IJ, Walsh CJ, Moore RL, Killeen SL, Geraghty AA, et al. Detailed mapping of Bifidobacterium strain transmission from mother to infant via a dual culture-based and metagenomic approach. Nature communications. 2023;14(1):3015.

240.       Milani C, Mancabelli L, Lugli GA, Duranti S, Turroni F, Ferrario C, et al. Exploring Vertical Transmission of Bifidobacteria from Mother to Child. Applied and Environmental Microbiology. 2015;81(20):7078-87.

241.       Dos Santos SJ, Pakzad Z, Albert AYK, Elwood CN, Grabowska K, Links MG, et al. Maternal vaginal microbiome composition does not affect development of the infant gut microbiome in early life. Frontiers in cellular and infection microbiology. 2023;13.

242.       Rahman MM, Lim SJ, Park YC. Development of Single Nucleotide Polymorphism (SNP)-Based Triplex PCR Marker for Serotype-specific Escherichia coli Detection. Pathogens. 2022;11(2).

243.       Lehtinen S, Chewapreecha C, Lees J, Hanage WP, Lipsitch M, Croucher NJ, et al. Horizontal gene transfer rate is not the primary determinant of observed antibiotic resistance frequencies in Streptococcus pneumoniae. Sci Adv. 2020;6(21):eaaz6137.

244.       Hoang DM, Levy EI, Vandenplas Y. The impact of Caesarean section on the infant gut microbiome. Acta Paediatrica. 2021;110(1):60-7.

245.       Branche T, Pouppirt N, Nelson LD, Khan JY. Potential Implications of Emerging Non-Traditional Childbirth Practices on Neonatal Health. The Journal of Pediatrics. 2023.

246.       Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, Cox LM, Amir A, Gonzalez A, et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nature medicine. 2016;22(3):250-3.

247.       Mueller NT, Dominguez-Bello MG, Appel LJ, Hourigan SK. 'Vaginal seeding' after a caesarean section provides benefits to newborn children: FOR: Does exposing caesarean-delivered newborns to the vaginal microbiome affect their chronic disease risk? The critical need for trials of 'vaginal seeding' during caesarean section. Bjog. 2020;127(2):301.

248.       Chen YY, Zhao X, Moeder W, Tun HM, Simons E, Mandhane PJ, et al. Impact of Maternal Intrapartum Antibiotics, and Caesarean Section with and without Labour on Bifidobacterium and Other Infant Gut Microbiota. Microorganisms. 2021;9(9):1847.

249.       Grönlund MM, Lehtonen OP, Eerola E, Kero P. Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. J Pediatr Gastroenterol Nutr. 1999;28(1):19-25.

250.       Valles-Colomer M, Blanco-Míguez A, Manghi P, Asnicar F, Dubois L, Golzato D, et al. The person-to-person transmission landscape of the gut and oral microbiomes. Nature. 2023.

251.       Brito IL, Gurry T, Zhao S, Huang K, Young SK, Shea TP, et al. Transmission of human-associated microbiota along family and social networks. Nature microbiology. 2019;4(6):964-71.

252.       Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G, Berg-Lyons D, et al. Cohabiting family members share microbiota with one another and with their dogs. Elife. 2013;2:e00458.

253.       Hassler HB, Probert B, Moore C, Lawson E, Jackson RW, Russell BT, et al. Phylogenies of the 16S rRNA gene and its hypervariable regions lack concordance with core genome phylogenies. Microbiome. 2022;10(1):104.

254.       Priya S, Blekhman R. Population dynamics of the human gut microbiome: change is the only constant. Genome Biol. 2019;20(1):150.

 

Download scriptie (3.31 MB)
Universiteit of Hogeschool
Universiteit Antwerpen
Thesis jaar
2023
Promotor(en)
Professor Sarah Lebeer