Van restproducten tot nuttige chemische bouwstenen

Simon
Derveaux

"We are the first generation to feel the impact of climate change and the last generation that can do something about it."

Deze uitspraak opgetekend door voormalig president van de Verenigde Staten Barack Obama is duidelijk. Om de klimaatopwarming te stoppen moeten we zo snel mogelijk in actie komen, liever vandaag dan morgen. Wetenschappelijke innovaties om duurzamer te gaan leven zijn hierbij van groot belang.

Wat als we stoffen, die nu nog als afval worden beschouwd, efficiënt kunnen omzetten in bruikbare materialen? Het is een erg interessante route om te onderzoeken. Het kan leiden tot de productie van duurzamere, hernieuwbare producten, die essentieel zijn om onze ecologische voetafdruk te verkleinen. Door onderzoek naar rendabelere productieroutes worden deze steeds haalbaarder en zal de kostprijs in dalende lijn gaan. Deze producten kunnen op termijn zelfs goedkoper worden dan hun klassieke tegenhangers, aangezien de fossiele grondstoffen steeds schaarser en dus duurder zullen worden. Daarbovenop wordt er meer en meer getracht om de kostprijs van de uitstoot van producten mee te nemen in de uiteindelijke prijs. Duurzame producten zullen dus steeds competitiever worden tegenover hun klassieke tegenhangers.

Chemie is geen magie

Een component omzetten in een andere component met verschillende structuur gebeurt niet zomaar. De juiste omstandigheden zoals druk, temperatuur, concentraties van de stoffen... zijn nodig om de reactie te kunnen laten doorgaan. Het is echter mogelijk om de omzetting een (stevig) handje toe te steken met zogenaamde katalysatoren. Dat zijn stoffen die zelf niet verbruikt worden in het reactieproces maar wel dit reactieproces beïnvloeden. Zo kunnen bijvoorbeeld veel minder hoge temperaturen of drukken nodig zijn voor de omzetting, de opbrengst kan hoger zijn of er kunnen zelfs reacties doorgaan die voorheen niet mogelijk waren. Ze maken het gemakkelijker om de reactie te laten doorgaan door de benodigde energie te verlagen. Katalysatoren zijn vaak vaste stoffen die toegevoegd worden aan reactiemengsels. Ze zijn in de meeste chemische processen essentieel om efficiënt en goedkoop producten te verkrijgen.

Afvalproducten een nieuw leven geven

Deze thesis onderzocht twee veelbelovende routes uitgaande van restproducten die omgezet kunnen worden in nuttige componenten. De eerste route verbruikt lignine. Dit is een afvalstof die in grote hoeveelheden geproduceerd wordt bij het vervaardigen van papier. Het wordt momenteel vooral verbrand om er warmte-energie uit te halen, wat erg inefficiënt is. Deze grote component kan echter afgebroken worden in tal van kleinere componenten die op hun beurt kunnen dienen als bouwsteen voor het produceren van tal van nieuwe producten. Enkele voorbeelden zijn bioplastics, biobrandstof, additieven, textiel, smeermiddelen... Het opsplitsen van een grote molecule bestaande uit kleinere componenten noemt depolymerisatie. Deze eerste veelbelovende route noemt dan ook de depolymerisatie van lignine. Dit kan gestimuleerd worden met katalysatoren die bepaalde eigenschappen hebben, zoals zuurheid en metaalpartikels op het oppervlak. De focus in deze studie is het bepalen van het aantal metaalpartikels op het oppervlak van verschillende katalysatoren. In combinatie met andere studies kan dan meer inzicht verkregen worden in de efficiëntie van deze katalysatoren.

De tweede route die onderzocht werd verbruikt 1,3-butaandiol (BDO), wat verkregen kan worden uit de fermentatie van suikers in de aanwezigheid van bepaalde organismen. 1,3-BDO is een zogenaamd 'dubbel-alcohol', met twee alcohol groepen. Deze groepen kunnen afgesplitst worden waarbij water vrijkomt. Dit proces noemt dan ook de dehydratie van 1,3-BDO en wordt gestimuleerd door het gebruik van zure katalysatoren. Eerdere studies wezen uit dat een verlaagde zuursterkte van deze katalysatoren leidt tot een betere vorming van het gewenste product butadieen. De focus in dit onderzoek ligt in het analyseren van de zuurheid van een aantal katalysatoren, meer specifiek zeolieten, die veelbelovend bleken voor dit proces. Er werd getracht de zuurheid te verlagen door te variëren met de katalysatorsamenstelling. Het gevormde product na de dehydratie, butadieen, is erg reactief en kan gebruikt worden voor de productie van rubbers.

Meten is weten

Zoals eerder vermeld, wordt in deze thesis de reactie zelf niet getest. De focus ligt op het in kaart brengen van de eigenschappen van de verschillende katalysatoren met als doel verbanden tussen deze eigenschappen en hun werking bij de reacties te vinden. Hiervoor werden twee verschillende technieken gebruikt: puls chemisorptie en temperatuur geprogrammeerde desorptie. Deze eerste methode wordt gebruikt om de aanwezigheid van de metalen op het oppervlak van de katalysatoren te analyseren. Hiervoor wordt een bepaald gas, hier koolstofmonoxide, over het staal gestroomd in kleine hoeveelheden. Uit de hoeveelheid gas die op het materiaal blijft adsorberen bij elke puls kunnen besluiten getrokken worden omtrent de metaalpartikels op het oppervlak.

Bij de tweede methode, de temperatuur geprogrammeerde desorptie, wordt een gas over de stalen gestuurd tot deze volledig verzadigd is hiermee. Als hierna de temperatuur langzaam aan verhoogd wordt, komen deze gasmoleculen weer vrij. Hoe hoger deze temperatuur is, hoe sterker de gasmoleculen gebonden zijn op het oppervlak van de katalysatoren. Wanneer ammoniak als gas wordt gebruikt, kunnen besluiten over de zuurheid van de stalen worden getrokken. Bij het gebruik van koolstofdioxide als gas kan de basisheid geanalyseerd worden.

Puzzelstukje richting duurzame chemicaliën

Deze methodes leidden tot een verscheidenheid aan geanalyseerde eigenschappen van de stalen, zoals de metaalverdeling op het oppervlak en de densiteit en sterkte van de zure en basische sites. De variatie in drager en de toevoeging van andere metalen toonden een grote invloed op de metaaleigenschappen in de reeks stalen voor de depolymerisatie reactie. Voor de dehydratie bleek het toevoegen van Boor of ceriumoxide en het veranderen van de samenstelling van de zeolieten de zuureigenschappen sterk te verlagen. De stalen met ceriumoxide toonden daarbij ook basische eigenschappen.

Maar wat leert ons dit nu? Het in kaart brengen van de eigenschappen is essentieel om efficiënte katalysatoren te kunnen produceren. Deze bevindingen zijn slechts een puzzelstukje in de grote zoektocht naar het duurzaam produceren van de besproken biomoleculen. De logische vervolgstap is de stalen te testen in de reacties zelf. Dit zal nog meer inzichten geven om uiteindelijk de meest efficiënte katalysatoren te kunnen selecteren. Zo komen duurzame, groene, én goedkope producten bij elk onderzocht puzzelstukje steeds dichterbij!Tree

Bibliografie

[1] D. Sun, Y. Li, C. Yang, Y. Su, Y. Yamada, and S. Sato, “Production of 1,3-butadiene from

biomass-derived C4 alcohols,” Fuel Processing Technology, vol. 197. Elsevier B.V., Jan.

01, 2020. doi: 10.1016/j.fuproc.2019.106193.

[2] BP Statistical Review of World Energy, “Years of fossil fuel reserves left,” 2020.

[3] G. Centi and S. Perathoner, “Catalysis and sustainable (green) chemistry,” Catal Today,

vol. 77, no. 4, pp. 287–297, Jan. 2003, doi: 10.1016/S0920-5861(02)00374-7.

[4] A. N. (viaf)4775102 Glazer and H. (viaf)21366932 Nikaido, Microbial biotechnology:

fundamentals of applied microbiology. New York (N.Y.) : Freeman, 1995. [Online].

Available: http://lib.ugent.be/catalog/rug01:000685407

[5] A. Margellou and K. S. Triantafyllidis, “Catalytic transfer hydrogenolysis reactions for

lignin valorization to fuels and chemicals,” Catalysts, vol. 9, no. 1. MDPI, Jan. 01, 2019.

doi: 10.3390/catal9010043.

[6] F. G. Calvo-Flores and J. A. Dobado, “Lignin as Renewable Raw Material,”

ChemSusChem, vol. 3, no. 11, pp. 1227–1235, Nov. 2010, doi:

https://doi.org/10.1002/cssc.201000157.

[7] Ł. Klapiszewski, T. J. Szalaty, and T. Jesionowski, “Depolymerization and Activation of

Lignin: Current State of Knowledge and Perspectives,” Lignin - Trends and

Applications, 2018, doi: 10.5772/intechopen.70376.

[8] I. Haq, P. Mazumder, and A. S. Kalamdhad, “Recent advances in removal of lignin from

paper industry wastewater and its industrial applications – A review,” Bioresour

Technol, vol. 312, p. 123636, Sep. 2020, doi: 10.1016/J.BIORTECH.2020.123636.

[9] J. Ralph et al., “Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenyl-

propanoids,” Phytochemistry Reviews, vol. 3, pp. 29–60, Jan. 2004, doi:

10.1023/B:PHYT.0000047809.65444.a4.

[10] C. Xu, R. A. D. Arancon, J. Labidi, and R. Luque, “Lignin depolymerisation strategies:

towards valuable chemicals and fuels,” Chem Soc Rev, vol. 43, no. 22, pp. 7485–7500,

Oct. 2014, doi: 10.1039/C4CS00235K.

[11] X. Erdocia, F. Hernández-Ramos, A. Morales, N. Izaguirre, P. L. de Hoyos-Martínez, and

J. Labidi, “Lignin extraction and isolation methods,” Lignin-based Materials for

Biomedical Applications: Preparation, Characterization, and Implementation, pp. 61–

104, Jan. 2021, doi: 10.1016/B978-0-12-820303-3.00004-7.

[12] D. Tian, R. P. Chandra, J. S. Lee, C. Lu, and J. N. Saddler, “A comparison of various

lignin-extraction methods to enhance the accessibility and ease of enzymatic

hydrolysis of the cellulosic component of steam-pretreated poplar,” Biotechnol

Biofuels, vol. 10, no. 1, pp. 1–10, Jun. 2017, doi: 10.1186/S13068-017-0846-

5/FIGURES/4.

[13] X. Liu, F. P. Bouxin, J. Fan, V. L. Budarin, C. Hu, and J. H. Clark, “Recent Advances in the

Catalytic Depolymerization of Lignin towards Phenolic Chemicals: A Review,”

ChemSusChem, vol. 13, no. 17, pp. 4296–4317, Sep. 2020, doi:

10.1002/CSSC.202001213.

[14] Virginia. M. Roberts, V. Stein, T. Reiner, A. Lemonidou, X. Li, and J. A. Lercher,

“Towards Quantitative Catalytic Lignin Depolymerization,” Chemistry – A European

Journal, vol. 17, no. 21, pp. 5939–5948, May 2011, doi:

https://doi.org/10.1002/chem.201002438.

[15] M. P. Pandey and C. S. Kim, “Lignin Depolymerization and Conversion: A Review of

Thermochemical Methods,” Chem Eng Technol, vol. 34, no. 1, pp. 29–41, Jan. 2011,

doi: https://doi.org/10.1002/ceat.201000270.

[16] M. Fache, B. Boutevin, and S. Caillol, “Vanillin Production from Lignin and Its Use as a

Renewable Chemical,” 2015, doi: 10.1021/acssuschemeng.5b01344.

[17] “Vanillin | C8H8O3 - PubChem.”

https://pubchem.ncbi.nlm.nih.gov/compound/Vanillin#section=Use-and-

Manufacturing (accessed Dec. 03, 2022).

[18] M. Fache, B. Boutevin, and S. Caillol, “Vanillin Production from Lignin and Its Use as a

Renewable Chemical,” ACS Sustain Chem Eng, vol. 4, no. 1, pp. 35–46, Jan. 2016, doi:

10.1021/ACSSUSCHEMENG.5B01344/ASSET/IMAGES/MEDIUM/SC-2015-

01344P_0017.GIF.

[19] Erik. Dahlquist, “Biomass as energy source : resources, systems and applications,”

2013.

[20] F. Matos and P. Lima, “Lignin valorization through heterogeneous photocatalysis

towards a sustainable circular-economy mindful approach”.

[21] J. M. Ha et al., “Recent progress in the thermal and catalytic conversion of lignin,”

Renewable and Sustainable Energy Reviews, vol. 111, pp. 422–441, Sep. 2019, doi:

10.1016/J.RSER.2019.05.034.

[22] C. Cheng et al., “Catalytic Oxidation of Lignin in Solvent Systems for Production of

Renewable Chemicals: A Review,” Polymers 2017, Vol. 9, Page 240, vol. 9, no. 6, p.

240, Jun. 2017, doi: 10.3390/POLYM9060240.

[23] X. Meng et al., “Chemical Transformations of Poplar Lignin during Cosolvent Enhanced

Lignocellulosic Fractionation Process,” ACS Sustain Chem Eng, vol. 6, no. 7, pp. 8711–

8718, Jul. 2018, doi:

10.1021/ACSSUSCHEMENG.8B01028/SUPPL_FILE/SC8B01028_SI_001.PDF.

[24] S. G. Parto et al., “Solvent assisted catalytic conversion of beech wood and organosolv

lignin over NiMo/γ-Al2O3,” Sustain Energy Fuels, vol. 4, no. 4, pp. 1844–1854, Mar.

2020, doi: 10.1039/C9SE00375D.

[25] X. Liu, F. P. Bouxin, J. Fan, V. L. Budarin, C. Hu, and J. H. Clark, “Recent Advances in the

Catalytic Depolymerization of Lignin towards Phenolic Chemicals: A Review,”

ChemSusChem, vol. 13, no. 17, pp. 4296–4317, Sep. 2020, doi:

10.1002/CSSC.202001213.

[26] H. Ma et al., “Selective depolymerization of lignin catalyzed by nickel supported on

zirconium phosphate,” Green Chemistry, vol. 21, no. 3, pp. 658–668, Feb. 2019, doi:

10.1039/C8GC03617A.

[27] T. Renders et al., “Catalytic lignocellulose biorefining in n-butanol/water: a one-pot

approach toward phenolics, polyols, and cellulose,” Green Chemistry, vol. 20, no. 20,

pp. 4607–4619, Oct. 2018, doi: 10.1039/C8GC01031E.

[28] S. Wang, L. Shuai, B. Saha, D. G. Vlachos, and T. H. Epps, “From Tree to Tape: Direct

Synthesis of Pressure Sensitive Adhesives from Depolymerized Raw Lignocellulosic

Biomass,” ACS Cent Sci, vol. 4, no. 6, pp. 701–708, Jun. 2018, doi:

10.1021/ACSCENTSCI.8B00140.

[29] T. Zell and R. Langer, “Iron-catalyzed hydrogenation and dehydrogenation reactions

with relevance to reversible hydrogen storage applications,” Recyclable Catalysis, vol.

2, no. 1, Mar. 2016, doi: 10.1515/RECAT-2015-0010.

[30] A. Karnitski et al., “Roles of metal and acid sites in the reductive depolymerization of

concentrated lignin over supported Pd catalysts,” Catal Today, 2022, doi:

10.1016/J.CATTOD.2022.07.012.

[31] M. Kim et al., “Production of phenolic hydrocarbons using catalytic depolymerization

of empty fruit bunch (EFB)-derived organosolv lignin on Hβ-supported Ru,” Chemical

Engineering Journal, vol. 309, pp. 187–196, Feb. 2017, doi: 10.1016/J.CEJ.2016.10.011.

[32] S. An et al., “Efficient lignin depolymerization with Ru- and W- modified bi-functional

solid acid catalyst,” Bioresources, vol. 17, no. 1, pp. 1062–1089, Dec. 2021, doi:

10.15376/biores.17.1.1062-1089.

[33] F. Liu, G. Xuan, L. Ai, Q. Liu, and L. Yang, “Key factors that affect catalytic activity of

activated carbon-based catalyst in chemical looping methane decomposition for H2

production,” Fuel Processing Technology, vol. 215, p. 106745, May 2021, doi:

10.1016/J.FUPROC.2021.106745.

[34] Titin S. Fatimah, “Characterization of the γ,α-alumina and its adsorption capability to

adsorb nickel (ii) and magnesium (ii) from nickel sulfate as a result of solvent

differences,” Materials Science and Engineering, 2021, Accessed: Mar. 08, 2023.

[Online]. Available: https://iopscience.iop.org/article/10.1088/1757-

899X/1034/1/012151/pdf

[35] F. C. Hendriks, D. Valencia, P. C. A. Bruijnincx, and B. M. Weckhuysen, “Zeolite

molecular accessibility and host–guest interactions studied by adsorption of organic

probes of tunable size,” Physical Chemistry Chemical Physics, vol. 19, no. 3, pp. 1857–

1867, Jan. 2017, doi: 10.1039/C6CP07572J.

[36] G. Bergeret and P. Gallezot, “Particle Size and Dispersion Measurements,” vol. 2, p.

10, 2008, doi: 10.1002/9783527610044.hetcat0038ï.

[37] A. M. Robinson, J. E. Hensley, and J. Will Medlin, “Bifunctional Catalysts for Upgrading

of Biomass-Derived Oxygenates: A Review,” ACS Catalysis, vol. 6, no. 8. American

Chemical Society, pp. 5026–5043, Aug. 05, 2016. doi: 10.1021/acscatal.6b00923.

[38] D. M. Alonso, S. G. Wettstein, and J. A. Dumesic, “Bimetallic catalysts for upgrading of

biomass to fuels and chemicals,” Chem Soc Rev, vol. 41, no. 24, p. 8075, 2012, doi:

10.1039/c2cs35188a.

[39] B. Jiang, J. Hu, Y. Qiao, X. Jiang, and P. Lu, “Depolymerization of Lignin over a Ni–Pd

Bimetallic Catalyst Using Isopropanol as an in Situ Hydrogen Source,” Energy & Fuels,

vol. 33, no. 9, pp. 8786–8793, Sep. 2019, doi: 10.1021/acs.energyfuels.9b01976.

[40] S. Sitthisa, T. Pham, T. Prasomsri, T. Sooknoi, R. G. Mallinson, and D. E. Resasco,

“Conversion of furfural and 2-methylpentanal on Pd/SiO2 and Pd–Cu/SiO2 catalysts,” J

Catal, vol. 280, no. 1, pp. 17–27, May 2011, doi: 10.1016/j.jcat.2011.02.006.

[41] Grub J and Loser E, “Butadiene,” in Ullmann’s Encyclopedia of Industrial Chemistry,

7th ed.New York: John Wiley & Sons, 2011.

[42] E. v. Makshina, M. Dusselier, W. Janssens, J. Degrève, P. A. Jacobs, and B. F. Sels,

“Review of old chemistry and new catalytic advances in the on-purpose synthesis of

butadiene,” Chemical Society Reviews, vol. 43, no. 22. Royal Society of Chemistry, pp.

7917–7953, Nov. 21, 2014. doi: 10.1039/c4cs00105b.

[43] F. Jing et al., “Direct dehydration of 1,3-butanediol into butadiene over

aluminosilicate catalysts,” Catal Sci Technol, vol. 6, no. 15, pp. 5830–5840, 2016, doi:

10.1039/c5cy02211h.

[44] N. Kataoka, A. S. Vangnai, T. Tajima, Y. Nakashimada, and J. Kato, “Improvement of

(R)-1,3-butanediol production by engineered Escherichia coli,” J Biosci Bioeng, vol.

115, no. 5, pp. 475–480, May 2013, doi: 10.1016/J.JBIOSC.2012.11.025.

[45] J. H. Lee and S. B. Hong, “Dehydration of 1,3-butanediol to butadiene over medium-

pore zeolites: Another example of reaction intermediate shape selectivity,” Appl Catal

B, vol. 280, Jan. 2021, doi: 10.1016/j.apcatb.2020.119446.

[46] B. Braida, V. Prana, and P. C. Hiberty, “The physical origin of saytzeff’s rule,”

Angewandte Chemie - International Edition, vol. 48, no. 31, pp. 5724–5728, Jul. 2009,

doi: 10.1002/ANIE.200901923.

[47] S. Sato, F. Sato, H. Gotoh, and Y. Yamada, “Selective dehydration of alkanediols into

unsaturated alcohols over rare earth oxide catalysts,” ACS Catalysis, vol. 3, no. 4. pp.

721–734, Apr. 05, 2013. doi: 10.1021/cs300781v.

[48] C. Woodford, “Zeolites,” Aug. 24, 2021.

https://www.explainthatstuff.com/zeolites.html (accessed Dec. 07, 2022).

[49] “mordenite | mineral | Britannica.” https://www.britannica.com/science/mordenite

(accessed Dec. 07, 2022).

[50] W. R. Grace, “Synthetic Non-fibrous Zeolites Product Stewardship Summary,” Grace.

[51] ExxonMobil, “Simple, scalable gasoline production. Produce transportation fuels with

low technical and project risk.”

[52] “The Zeolite Cage Structure on JSTOR.” https://www.jstor.org/stable/1696781

(accessed Dec. 07, 2022).

[53] Jiu Long, “Zeolite ZSM-5,” Jiulong Chemical, 2017.

[54] ACS Material LCC, “ZSM-5 - Zeolite Socony Mobil–5,” 2019.

https://www.acsmaterial.com/blog-detail/zsm-5-molecular-seive.html (accessed Dec.

07, 2022).

[55] R. Szostak, “Molecular Sieves for Use in Catalysis,” Molecular Sieves, pp. 1–50, 1989,

doi: 10.1007/978-94-010-9529-7_1.

[56] I. v. Kozhevnikov, “Heterogeneous acid catalysis by heteropoly acids: Approaches to

catalyst deactivation,” J Mol Catal A Chem, vol. 305, no. 1–2, pp. 104–111, Jun. 2009,

doi: 10.1016/J.MOLCATA.2008.11.029.

[57] D. T. Yazici and C. Bilgiç, “Determining the surface acidic properties of solid catalysts

by amine titration using Hammett indicators and FTIR-pyridine adsorption methods,”

in Surface and Interface Analysis, Jun. 2010, pp. 959–962. doi: 10.1002/sia.3474.

[58] M. B. Sayed, A. Auroux, and J. C. Védrine, “The effect of boron on ZSM-5 zeolite shape

selectivity and activity: II. Coincorporation of aluminium and boron in the zeolite

lattice,” J Catal, vol. 116, no. 1, pp. 1–10, Mar. 1989, doi: 10.1016/0021-

9517(89)90070-5.

[59] B. Imelik, Institut de recherches sur la catalyse (France), and Centre national de la

recherche scientifique (France), “Catalysis by acids and bases : proceedings of an

international symposium ...,” p. 445, 1985.

[60] G. Li, C. Wu, D. Ji, P. Dong, Y. Zhang, and Y. Yang, “Acidity and catalyst performance of

two shape-selective HZSM-5 catalysts for alkylation of toluene with methanol,”

Reaction Kinetics, Mechanisms and Catalysis, vol. 129, no. 2, pp. 963–974, Apr. 2020,

doi: 10.1007/S11144-020-01732-9/FIGURES/7.

[61] A. Igarashi, N. Ichikawa, S. Sato, R. Takahashi, and T. Sodesawa, “Dehydration of

butanediols over CeO2 catalysts with different particle sizes,” Appl Catal A Gen, vol.

300, no. 1, pp. 50–57, Jan. 2006, doi: 10.1016/J.APCATA.2005.10.054.

[62] S. Ohtsuka et al., “Vapor-phase catalytic dehydration of butanediols to unsaturated

alcohols over yttria-stabilized zirconia catalysts,” Appl Catal A Gen, vol. 575, pp. 48–

57, Apr. 2019, doi: 10.1016/J.APCATA.2019.02.013.

[63] S. Tsunekawa, T. Fukuda, and A. Kasuya, “X-ray photoelectron spectroscopy of

monodisperse CeO2−x nanoparticles,” Surf Sci, vol. 457, no. 3, pp. L437–L440, Jun.

2000, doi: 10.1016/S0039-6028(00)00470-2.

[64] S. Sato, R. Takahashi, T. Sodesawa, and N. Honda, “Dehydration of diols catalyzed by

CeO2,” J Mol Catal A Chem, vol. 221, no. 1–2, pp. 177–183, Nov. 2004, doi:

10.1016/J.MOLCATA.2004.07.004.

[65] S. Sato, R. Takahashi, T. Sodesawa, and N. Honda, “Dehydration of diols catalyzed by

CeO2,” J Mol Catal A Chem, vol. 221, no. 1–2, pp. 177–183, Nov. 2004, doi:

10.1016/J.MOLCATA.2004.07.004.

[66] D. Sun, S. Arai, H. Duan, Y. Yamada, and S. Sato, “Vapor-phase dehydration of C4

unsaturated alcohols to 1,3-butadiene,” Appl Catal A Gen, vol. 531, pp. 21–28, Feb.

2017, doi: 10.1016/J.APCATA.2016.11.035.

[67] L. Fang, F. Jing, J. Lu, B. Hu, and M. Pera-Titus, “Supporting Information Nano-

flowered Ce@MOR hybrids with modulated acid properties for the vapor-phase

dehydration of 1,3-butanediol into butadiene,” 2017.

[68] S. Prabhu et al., “Synthesis and characterization of CeO2 supported ZSM-5 zeolite for

organic dye degradation,” Journal of Materials Science: Materials in Electronics, vol.

33, no. 12, pp. 9211–9223, Apr. 2022, doi: 10.1007/S10854-021-07216-3/FIGURES/12.

[69] M. A. Reiche, M. Maciejewski, and A. Baiker, “Characterization by temperature

programmed reduction,” Catal Today, vol. 56, no. 4, pp. 347–355, 2000, doi:

10.1016/S0920-5861(99)00294-1.

[70] Micromeritics, “Temperature-Programmed Reduction Using the AutoChem,” One

Micromeritics Drive, no. 770, pp. 2–3.

[71] S. Bhatia, J. Beltramini, and D. D. Do, “Temperature programmed analysis and its

applications in catalytic systems,” Catal Today, vol. 7, no. 3, pp. 309–438, 1990, doi:

10.1016/0920-5861(90)87001-J.

[72] Hiden Analytical, “What is TPR?,” 2018. hidenanalytical.com/blog/what-is-tpr/

[73] “Notes - EFFECT OF SOME EXPERIMENTAL PARAMETERS ON TPR PROFILES | Altamira

Instruments.” https://www.altamirainstruments.com/notes/13-effect-of-some-

experimental-parameters-on-tpr-profiles.html (accessed Dec. 17, 2022).

[74] Hiden Analytical, “Temperature Programmed Oxidation - A Guide,” 2018.

Temperature Programmed Oxidation - A Guide

[75] C. A. Querini and S. C. Fung, “Temperature-programmed oxidation technique: kinetics

of coke-O2 reaction on supported metal catalysts,” Appl Catal A Gen, vol. 117, no. 1,

pp. 53–74, 1994, doi: 10.1016/0926-860X(94)80158-4.

[76] R. J. Cvetanović and Y. Amenomiya, “A Temperature Programmed Desorption

Technique for Investigation of Practical Catalysts,” Catalysis Reviews, vol. 6, no. 1, pp.

21–48, Jan. 1972, doi: 10.1080/01614947208078690.

[77] T. Ishii and T. Kyotani, Temperature Programmed Desorption. Tsinghua University

Press Limited, 2016. doi: 10.1016/B978-0-12-805256-3.00014-3.

[78] B. Mozgawa et al., “Analysis of NH3-TPD Profiles for CuSSZ-13 SCR Catalyst of

Controlled Al Distribution – Complexity Resolved by First Principles Thermodynamics

of NH3 Desorption, IR and EPR Insight into Cu Speciation**,” Chemistry – A European

Journal, vol. 27, no. 68, pp. 17159–17180, Dec. 2021, doi:

https://doi.org/10.1002/chem.202102790.

[79] P. Kuśtrowski, L. Chmielarz, E. Bozek, M. Sawalha, and F. Roessner, “Acidity and

basicity of hydrotalcite derived mixed Mg-Al oxides studied by test reaction of MBOH

conversion and temperature programmed desorption of NH3 and CO2,” Mater Res

Bull, vol. 39, no. 2, pp. 263–281, 2004, doi: 10.1016/j.materresbull.2003.09.032.

[80] K. Leistner, K. Xie, A. Kumar, K. Kamasamudram, and L. Olsson, “Ammonia Desorption

Peaks Can Be Assigned to Different Copper Sites in Cu/SSZ-13,” Catal Letters, vol. 147,

no. 8, pp. 1882–1890, 2017, doi: 10.1007/s10562-017-2083-8.

[81] M. Niwa and N. Katada, “Measurements of acidic property of zeolites by temperature

programmed desorption of ammonia”.

[82] P. Kuśtrowski, L. Chmielarz, E. Bozek, M. Sawalha, and F. Rößner, “Acidity and basicity

of hydrotalcite derived mixed Mg–Al oxides studied by test reaction of MBOH

conversion and temperature programmed desorption of NH3 and CO2,” Mater Res

Bull, vol. 39, pp. 263–281, Feb. 2004, doi: 10.1016/j.materresbull.2003.09.032.

[83] A. S. Al-Fatesh et al., “Combined magnesia, ceria and nickel catalyst supported over γ-

alumina doped with titania for dry reforming of methane,” Catalysts, vol. 9, no. 2, Feb.

2019, doi: 10.3390/CATAL9020188.

[84] J. Friedland, B. Kreitz, H. Grimm, T. Turek, and R. Güttel, “Measuring Adsorption

Capacity of Supported Catalysts with a Novel Quasi-Continuous Pulse Chemisorption

Method,” ChemCatChem, vol. 12, no. 17, pp. 4373–4386, 2020, doi:

10.1002/cctc.202000278.

[85] M. A. Fortunato et al., “Dispersion measurement of platinum supported on Yttria-

Stabilised Zirconia by pulse H2 chemisorption,” Appl Catal A Gen, vol. 403, no. 1, pp.

18–24, 2011, doi: https://doi.org/10.1016/j.apcata.2011.06.005.

[86] Altamira Instruments, “Pulse Chemisorption,” Altamira Notes vol 1.5.

https://www.altamirainstruments.com/notes/7-pulse-chemisorption.html

[87] Micromeritics, “Pulse Chemisorption Analysis,” AutoChem II 2920, 2000.

[88] G. Bergeret and P. Gallezot, “Particle Size and Dispersion Measurements,” in

Handbook of Heterogeneous Catalysis, 2008, pp. 738–765. doi:

https://doi.org/10.1002/9783527610044.hetcat0038.

[89] T. Ge, B. Zhu, Y. Sun, W. Song, Q. Fang, and Y. Zhong, “Investigation of low-

temperature selective catalytic reduction of NOx with ammonia over Cr-promoted

Fe/AC catalysts,” Environmental Science and Pollution Research, vol. 26, no. 32, pp.

33067–33075, Nov. 2019, doi: 10.1007/S11356-019-06301-9.

[90] M. Gnanamani, R. Garcia, and G. Jacobs, “Effect of pretreatment conditions on acidity

and dehydration activity of CeO2-MeOx catalysts.” Accessed: Apr. 16, 2023. [Online].

Available: https://www.osti.gov/servlets/purl/1756860

[91] B. Kraushaar-Czarnetzki and S. P. Müller, “Shaping of Solid Catalysts Objectives of

Catalyst Shaping,” Synthesis of Solid Catalysts, pp. 173–199, 2009, Accessed: Jan. 16,

2023. [Online]. Available:

https://books.google.com/books/about/Synthesis_of_Solid_Catalysts.html?…

5ejCa9HGf2oC

[92] W. Samoy, “Characterization of catalytic active sites via temperature-programmed

techniques,” Ghent, 2022.

[93] “Inductively Coupled Plasma Atomic Emission Spectroscopy - an overview |

ScienceDirect Topics.” https://www.sciencedirect.com/topics/materials-

science/inductively-coupled-plasma-atomic-emission-spectroscopy (accessed Feb. 08,

2023).

[94] A. de Reviere, T. Vandevyvere, M. K. Sabbe, and A. Verberckmoes, “Renewable Butene

Production through Dehydration Reactions over Nano-HZSM-5/γ-Al2O3 Hybrid

Catalysts,” Catalysts 2020, Vol. 10, Page 879, vol. 10, no. 8, p. 879, Aug. 2020, doi:

10.3390/CATAL10080879.

[95] T. De Saegher et al., “Monometallic Cerium Layered Double Hydroxide Supported Pd-

Ni Nanoparticles as High Performance Catalysts for Lignin Hydrogenolysis,” Materials

2020, Vol. 13, Page 691, vol. 13, no. 3, p. 691, Feb. 2020, doi: 10.3390/MA13030691.

[96] Z. Di, H. Wang, R. Zhang, H. Chen, Y. Wei, and J. Jia, “ZSM-5 core–shell structured

catalyst for enhancing low-temperature NH3-SCR efficiency and poisoning resistance,”

Appl Catal A Gen, vol. 630, p. 118438, Jan. 2022, doi: 10.1016/J.APCATA.2021.118438.

[97] “PubChem.” https://pubchem.ncbi.nlm.nih.gov/ (accessed Apr. 09, 2023).

[98] “AutoChem II 2920 Operator Manual,” Jan. 2018.

[99] “Thermal Conductivity Detector (TCD) Principle - Inst Tools.”

https://instrumentationtools.com/thermal-conductivity-detector-tcd-prin…

(accessed Apr. 06, 2023).

[100] “Thermal conductivity detector (TCD) | HiQ.” http://hiq.linde-

gas.com/en/analytical_methods/gas_chromatography/thermal_conductivity_detecto

r.html (accessed Apr. 06, 2023).

[101] T. Adamo, “Thermal Conductivity Detector (TCD).” Accessed: Apr. 06, 2023. [Online].

Available: https://www.utsc.utoronto.ca/~traceslab/PDFs/GC%20TCD.pdf

[102] X. Yang, M. v. Pereira, B. Neupane, G. C. Miller, S. R. Poulson, and H. Lin, “Upgrading

Biocrude of Grindelia Squarrosa to Jet Fuel Precursors by Aqueous Phase

Hydrodeoxygenation,” Energy Technology, vol. 6, no. 9, pp. 1832–1843, Sep. 2018,

doi: 10.1002/ente.201700977.

[103] G. R. Heal and L. L. Mkayula, “The preparation of palladium metal catalysts supported

on carbon part II: Deposition of palladium and metal area measurements,” Carbon N

Y, vol. 26, no. 6, pp. 815–823, 1988, doi: 10.1016/0008-6223(88)90104-2.

[104] T. A. Dorling and R. L. Moss, “The structure and activity of supported metal catalysts:

II. Crystallite size and CO chemisorption on platinum/silica catalysts,” J Catal, vol. 7,

no. 4, pp. 378–385, Apr. 1967, doi: 10.1016/0021-9517(67)90166-2.

[105] P. Canton, G. Fagherazzi, M. Battagliarin, F. Menegazzo, F. Pinna, and N. Pernicone,

“Pd/CO Average Chemisorption Stoichiometry in Highly Dispersed Supported Pd/γ-

Al2O3 Catalysts,” Langmuir, vol. 18, no. 17, pp. 6530–6535, Aug. 2002, doi:

10.1021/LA015650A.

[106] G. Bergeret and P. Gallezot, “Particle Size and Dispersion Measurements,” vol. 2, p.

10, 2008, doi: 10.1002/9783527610044.hetcat0038ï.

[107] Micromeritics, “ammonia TPD for zeolite characterization on the autochem III.”

Accessed: Mar. 02, 2023. [Online]. Available: https://www.micromeritics.com/wp-

content/uploads/20220527-AutoChem-III-app-note.pdf

[108] “Help Online - Origin Help - Algorithms (Smooth).”

https://www.originlab.com/doc/Origin-Help/Smooth-Algorithm (accessed Apr. 08,

2023).

[109] “Origin: Data Analysis and Graphing Software.” https://www.originlab.com/origin

(accessed Apr. 08, 2023).

[110] L. Rodríguez-González, F. Hermes, M. Bertmer, E. Rodríguez-Castellón, A. Jiménez-

López, and U. Simon, “The acid properties of H-ZSM-5 as studied by NH3-TPD and

27Al-MAS-NMR spectroscopy,” Appl Catal A Gen, vol. 328, no. 2, pp. 174–182, Sep.

2007, doi: 10.1016/J.APCATA.2007.06.003.

[111] J. G. Post and J. H. C. Van Hooff, “Acidity and activity of H-ZSM-5 measured with NH3-

TPD and n-hexane cracking Acidity and activity of H-ZSM-5 measured with NHa-t.p.d.

and n-hexane cracking”, doi: 10.1016/0144-2449(84)90065-4.

[112] M. Niwa and N. Katada, “New Method for the Temperature- Programmed Desorption

(TPD) of Ammonia Experiment for Characterization of Zeolite Acidity: A Review,” The

Chemical Record, vol. 13, no. 5, pp. 432–455, Oct. 2013, doi: 10.1002/TCR.201300009.

[113] K. Yoshikawa, M. Kaneeda, and H. Nakamura, “Development of Novel CeO2-based

CO2 adsorbent and analysis on its CO2 adsorption and desorption mechanism,”

Energy Procedia, vol. 114, pp. 2481–2487, 2017, doi:

10.1016/J.EGYPRO.2017.03.1400.

[114] H. Jin, C. Miao, Y. Yue, C. Tian, W. Hua, and Z. Gao, “Sm-CeO2/Zeolite Bifunctional

Catalyst for Direct and Highly Selective Conversion of Bioethanol to Propylene,”

Catalysts, vol. 12, no. 4, p. 407, Apr. 2022, doi: 10.3390/CATAL12040407/S1.

[115] C. C. Ilie et al., “Activated water desorption from poly(methylvinylidene cyanide),”

Journal of Physical Chemistry B, vol. 111, no. 27, pp. 7742–7746, Jul. 2007, doi:

10.1021/JP071661M.

[116] R. S. Smith and B. D. Kay, “Desorption Kinetics of Benzene and Cyclohexane from a

Graphene Surface,” 2017, doi: 10.1021/acs.jpcb.7b05102.

[117] P. A. Webb, “Introduction to Chemical Adsorption Analytical Techniques and their

Applications to Catalysis,” 2003.

[118] M. Y. Byun, J. S. Kim, D. W. Park, and M. S. Lee, “Influence of calcination temperature

on the structure and properties of Al2O3 as support for Pd catalyst,” Korean Journal of

Chemical Engineering, vol. 35, no. 5, pp. 1083–1088, May 2018, doi: 10.1007/s11814-

018-0015-y.

[119] M. K. Van Der Lee, A. Van Jos Dillen, J. H. Bitter, and K. P. De Jong, “Deposition

precipitation for the preparation of carbon nanofiber supported nickel catalysts,” J Am

Chem Soc, vol. 127, no. 39, pp. 13573–13582, Oct. 2005, doi: 10.1021/ja053038q.

[120] B. A. T. Mehrabadi, S. Eskandari, U. Khan, R. D. White, and J. R. Regalbuto, “A Review

of Preparation Methods for Supported Metal Catalysts,” in Advances in Catalysis,

Academic Press Inc., 2017, pp. 1–35. doi: 10.1016/bs.acat.2017.10.001.

[121] M. N. S. C. Roma, D. S. Cunha, G. M. Cruz, and A. J. G. Cobo, “Effects of Cu over Pd

based catalysts supported on silica or niobia,” Brazilian Journal of Chemical

Engineering, vol. 17, no. 4–7, pp. 937–946, Dec. 2000, doi: 10.1590/S0104-

66322000000400058.

[122] J. S. Kwon, “The Pd/SiO2 catalysts for hydrogenation of D-glucose,” University of

Ulsan, Ulsan, 2018.

[123] P. M. Carraro, A. A. García Blanco, C. Chanquía, K. Sapag, M. I. Oliva, and G. A. Eimer,

“Hydrogen adsorption of nickel-silica materials: Role of the SBA-15 porosity,”

Microporous and Mesoporous Materials, vol. 248, pp. 62–71, 2017, doi:

10.1016/J.MICROMESO.2017.03.057.

[124] B. D. Zdravkov, J. J. Čermák, M. Šefara, and J. Janků, “Pore classification in the

characterization of porous materials: A perspective,” Central European Journal of

Chemistry, vol. 5, no. 2, pp. 385–395, Jun. 2007, doi: 10.2478/S11532-007-0017-

9/MACHINEREADABLECITATION/RIS.

[125] D. J. Macquarrie, D. B. Jackson, S. Tailland, and K. A. Utting, “Organically modified

hexagonal mesoporous silicas (HMS)—remarkable effect of preparation solvent on

physical and chemical properties,” J Mater Chem, vol. 11, no. 7, pp. 1843–1849, Jan.

2001, doi: 10.1039/B100957P.

[126] R. Lamber, N. Jaeger, and G. Schulz-Ekloff, “Metal-support interaction in the Pd/SiO2

system: Influence of the support pretreatment,” J Catal, vol. 123, no. 2, pp. 285–297,

1990, doi: 10.1016/0021-9517(90)90128-7.

[127] K. V. R. Chary, D. Naresh, V. Vishwanathan, M. Sadakane, and W. Ueda, “Vapour phase

hydrogenation of phenol over Pd/C catalysts: A relationship between dispersion,

metal area and hydrogenation activity,” Catal Commun, vol. 8, no. 3, pp. 471–477,

Mar. 2007, doi: 10.1016/j.catcom.2006.07.017.

[128] Y. T. Kim, E. D. Park, M. Kang, and J. E. Yie, “The effect of physicochemical treatment

on Pd dispersion of carbon-supported Pd catalysts,” in Solid State Phenomena, Trans

Tech Publications Ltd, 2008, pp. 57–60. doi: 10.4028/www.scientific.net/SSP.135.57.

[129] J. H. Baek, J. S. Kim, M. J. Moon, and M. S. Lee, “Improvements of Pd/C catalyst

support characteristics by various physical dispersion methods,” J Nanosci

Nanotechnol, vol. 15, no. 7, pp. 5314–5317, Jul. 2015, doi: 10.1166/jnn.2015.10399.

[130] P. Insorn and B. Kitiyanan, “Selective hydrogenation of concentrated vinyl acetylene

mixed C4 by modified Pd catalysts: Effect of Cu,” Catalysts, vol. 6, no. 12, Dec. 2016,

doi: 10.3390/catal6120199.

[131] F. Skoda, M. P. Astier, M. Paj, and M. Primet, “Surface characterization of palladium-

copper bimetallic catalysts by FTIR spectroscopy and test reactions,” 1994.

[132] L. Guczi, Z. Schay, G. Stefler, L. F. Liotta, G. Deganello, and A. M. Venezia, “Pumice-

Supported Cu-Pd Catalysts: Influence of Copper on the Activity and Selectivity of

Palladium in the Hydrogenation of Phenylacetylene and But-1-ene,” 1999. [Online].

Available: http://www.idealibrary.comon

[133] Y. Cai and R. R. Adzic, “Platinum monolayer electrocatalysts for the oxygen reduction

reaction: Improvements induced by surface and subsurface modifications of cores,”

Advances in Physical Chemistry, vol. 2011. 2011. doi: 10.1155/2011/530397.

[134] W. J. Kim and S. H. Moon, “Modified Pd catalysts for the selective hydrogenation of

acetylene,” in Catalysis Today, May 2012, pp. 2–16. doi:

10.1016/j.cattod.2011.09.037.

[135] N. Barrabés et al., “Catalytic reduction of nitrate on Pt-Cu and Pd-Cu on active carbon

using continuous reactor: The effect of copper nanoparticles,” Appl Catal B, vol. 62,

no. 1–2, pp. 77–85, Jan. 2006, doi: 10.1016/j.apcatb.2005.06.015.

[136] J. A. Conkling and C. Mocella, Chemistry of pyrotechnics : basic principles and theory,

3rd ed. Boca Raton FL: CRC Press Taylor & Francis Group, 2019.

[137] G. Ertl, H. Knözinger, and J. Weitkamp, Preparation of Solid Catalysts. Wiley, 1999. doi:

10.1002/9783527619528.

[138] M. Argyle and C. Bartholomew, “Heterogeneous Catalyst Deactivation and

Regeneration: A Review,” Catalysts, vol. 5, no. 1, pp. 145–269, Feb. 2015, doi:

10.3390/catal5010145.

[139] “Characterization of Copper Catalysts Using Pulse Reactions and a Mass Spectrometer

on the AutoChem 2910.”

[140] “Characterizing Copper Catalysts Using Pulsed Chemisorption.”

https://www.azom.com/article.aspx?ArticleID=14562 (accessed May 17, 2023).

[141] D. Gunst, M. Sabbe, M. F. Reyniers, and A. Verberckmoes, “Study of n-butanol

conversion to butenes: Effect of Si/Al ratio on activity, selectivity and kinetics,” Appl

Catal A Gen, vol. 582, Jul. 2019, doi: 10.1016/J.APCATA.2019.05.035.

[142] K. Yoshikawa, M. Kaneeda, and H. Nakamura, “Development of Novel CeO2-based

CO2 adsorbent and analysis on its CO2 adsorption and desorption mechanism,”

Energy Procedia, vol. 114, pp. 2481–2487, Jul. 2017, doi:

10.1016/J.EGYPRO.2017.03.1400.

[143] “Green Chemistry: How Does it Work? - Scientific Pakistan.”

https://scientificpakistan.com/chemistry/what-is-green-chemistry/ (accessed Apr. 20,

2023).

[144] “Basics of Green Chemistry | US EPA.” https://www.epa.gov/greenchemistry/basics-

green-chemistry (accessed Apr. 20, 2023).

[145] “12 Principles of Green Chemistry - American Chemical Society.”

https://www.acs.org/greenchemistry/principles/12-principles-of-green-

chemistry.html (accessed Apr. 20, 2023).

[146] “Sustainable Development Goals | United Nations Development Programme.”

https://www.undp.org/sustainable-development-goals (accessed Apr. 20, 2023).

[147] “Sustainable Development Goals.”

https://www.who.int/data/gho/data/themes/sustainable-development-goals

(accessed Apr. 19, 2023).

[148] “UNESCO and Sustainable Development Goals.”

https://en.unesco.org/sustainabledevelopmentgoals (accessed Apr. 19, 2023).

[149] “Chemicals - Fuels & Technologies - IEA.” https://www.iea.org/fuels-and-

technologies/chemicals (accessed Apr. 19, 2023).

[150] R. A. Sheldon, “Green and sustainable manufacture of chemicals from biomass: state

of the art,” Green Chemistry, vol. 16, no. 3, pp. 950–963, Feb. 2014, doi:

10.1039/C3GC41935E.

Download scriptie (5.43 MB)
Universiteit of Hogeschool
Universiteit Gent
Thesis jaar
2023
Promotor(en)
Prof. dr. ir. Philippe Heynderickx, Prof. dr. An Verberckmoes