Kunnen bacteriën kelpbossen van hun ondergang redden?

Emma
Gouwy

Kelp in de klimaatcrisis

Gouden kelp bij een zonsopgang

Ritmisch ruisende bladeren, uitgestrekt van bodem tot wateroppervlak, groeiend naar het zonlicht en golvend met het water rondom: dit vormt het uitzicht van een kelpbos. Het bestaat uit grote zeewieren die een enorme diversiteit aan marien leven ondersteunen, zoals vissen en kleine schelpdieren, door hen voedsel en een veilig onderkomen te bieden. Kelpbossen beschermen onze kusten tegen de impact van stormen en dragen in grote mate bij aan de globale zuurstofproductie. Door graduele opwarming van de oceanen maar in het bijzonder door langdurige hittegolven en hevige stormen verliezen ze echter hun stabiliteit in het ecosysteem en verdwijnen ze van de kustlijn. Gouden kelp (Laminaria ochroleuca) in het bijzonder is belangrijk voor onze Europese kust gezien dit de enige soort is die kan groeien in warm gematigde streken, zoals Spanje en Portugal. Nu ook deze soort aan het verdwijnen is, wordt er aan de alarmbel getrokken. Het belang van kelp is dan ook niet te onderschatten, het wordt niet voor niets een “ecosysteem ingenieur” genoemd. Zo sleutelt het aan de chemie van zijn omgeving en voedt het de organismen rondom zich. Als deze basis wegvalt, dreigt de hele habitat te imploderen.

Bacteriën die het tij doen keren

Bacteriën staan centraal in de overgang van jong naar volwassen kelp

Op het oppervlak van deze grote zeewieren leven echter bacteriën, microscopische eencellige organismen, die wetenschappers toch hoopvol stemmen voor de toekomst van deze cruciale soorten. Verschillende bacteriën staan in nauw verband met hun gastheer, waar ze instaan voor de groei en voeding van kelp alsook het beschermen tegen vele hittestress en ziektes. De intieme interactie tussen kelp en hun bacteriën lijkt dan ook cruciaal in de strijd tegen de klimaatcrisis.

In een poging tot herstel van gouden kelp populaties werd daarom in mijn thesis naar bacteriën gezocht die het kelp kunnen beschermen tegen hittegolven. Om dit te bereiken werden bacteriën geïsoleerd van kelp op verschillende plaatsen langs de Atlantische oceaan. In het laboratorium werden enkele bacteriën toegevoegd aan kelp, wat leidde tot een verbeterde groei en gezondheid, zelfs in verhoogde temperaturen. Dit bevestigt het belang van bacteriën voor de ontwikkeling van het kelp en is veelbelovend voor het ontwikkelen van bacteriële behandelingen van bedreigde kelpwouden in de Zuid-Europese kusten.

Aangepaste competitie: een veelbelovend duwtje in de rug

De grootste uitdaging om succes te boeken op vlak van restauratie van het kelp is echter competitie. Er is namelijk een continu veranderende balans van bacteriën die in competitie zijn met elkaar voor de succesvolle kolonisatie van de gastheer. De bacteriële samenstelling, ook wel het microbioom genoemd, verandert ook over verschillende locaties en levensstadia waardoor het een momentopname is in ruimte en tijd. De functies die de bacteriën aanbieden hebben een enorme invloed in hun competitie met anderen, zo heeft mijn thesis aangetoond dat elke regio op het kelp (stam, groeipunt en bladeren) een volledig ander microbioom vormt naargelang de functies die deze regio nodig heeft. Zo zullen er in de bladeren meer bacteriën voorkomen die goed zijn in het promoten van fotosynthese, terwijl er in de stam bacteriën groeien die de plant tegen virussen beschermt. Het proces van kolonisatie gebeurt echter ook door puur toeval en groeisnelheid. Wanneer andere bacteriën geïntroduceerd worden die sterker zijn en sneller groeien, verandert de samenstelling van het microbioom opnieuw.

Om die competitie in de juiste richting te kunnen duwen is het dus cruciaal om te beginnen met steriel kelp. Als nieuwe, hitte-resistente bacteriën succesvol geïntroduceerd kunnen worden aan het steriele kelp en snel kunnen koloniseren zou dit een microbioom vormen die voornamelijk instaat voor het promoten van hitte-resistentie. Op deze manier kunnen wetenschappers het kelp een duwtje in de rug geven om de klimaatcrisis te overleven.

Een blik op de toekomst

Met de kennis opgelopen door dit beginnend onderzoek wordt het project naarstig verder gezet in de hoop om volwassen kelp te kunnen kweken die net iets sterker in hun wortels staan. Zo wordt er in Portugal gestreefd naar restauratie van enkele verdwenen gouden kelpbossen met behulp van de bacteriën geselecteerd in dit onderzoek. Ze worden toegevoegd om het kelp beter te bewapenen tegen hittegolven. Dit soort onderzoek wordt niet alleen uitgevoerd voor kelp, maar ook voor zeegras en diepzee koralen door onderzoekers in andere Europese universiteiten. Zo streven we ernaar om uit te diepen hoe bacteriën gebruikt kunnen worden om die ecosystemen van hun ondergang te redden en de stabiliteit van de oceaan te verbeteren. 

Bibliografie

Alsuwaiyan, N. A., Filbee-Dexter, K., Vranken, S., Burkholz, C., Cambridge, M., Coleman, M. A., & Wernberg, T. (2022). Green gravel as a vector of dispersal for kelp restoration. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.910417

Alsuwaiyan, N. A., Vranken, S., Filbee-Dexter, K., Cambridge, M., Coleman, M. A., & Wernberg, T. (2021). Genotypic variation in response to extreme events may facilitate kelp adaptation under future climates. Marine Ecology Progress Series, 672, 111–121. https://doi.org/10.3354/meps13802

Andrews, S., Bennett, S., & Wernberg, T. (2014). Reproductive seasonality and early life temperature sensitivity reflect vulnerability of a seaweed undergoing range reduction. Marine Ecology Progress Series, 495, 119–129. https://doi.org/10.3354/meps10567

Arumugam, M., Raes, J., Pelletier, E., Paslier, D. Le, Yamada, T., Mende, D. R., Fernandes, G. R., Tap, J., Bruls, T., Batto, J. M., Bertalan, M., Borruel, N., Casellas, F., Fernandez, L., Gautier, L., Hansen, T., Hattori, M., Hayashi, T., Kleerebezem, M., … Zeller, G. (2011). Enterotypes of the human gut microbiome. Nature, 473(7346), 174–180. https://doi.org/10.1038/nature09944

Aylagas, E., Borja, Á., Muxika, I., & Rodríguez-Ezpeleta, N. (2018a). Adapting metabarcoding-based benthic biomonitoring into routine marine ecological status assessment networks. Ecological Indicators, 95, 194–202. https://doi.org/10.1016/j.ecolind.2018.07.044

Aylagas, E., Borja, Á., Muxika, I., & Rodríguez-Ezpeleta, N. (2018b). Adapting metabarcoding-based benthic biomonitoring into routine marine ecological status assessment networks. Ecological Indicators, 95, 194–202. https://doi.org/10.1016/j.ecolind.2018.07.044

Barret, M., Briand, M., Bonneau, S., Préveaux, A., Valière, S., Bouchez, O., Hunault, G., Simoneau, P., & Jacquesa, M. A. (2015). Emergence shapes the structure of the seed microbiota. Applied and Environmental Microbiology, 81(4), 1257–1266. https://doi.org/10.1128/AEM.03722-14

Baselga-Cervera, B., Cordoba-Diaz, M., García-Balboa, C., Costas, E., López-Rodas, V., & Cordoba-Diaz, D. (2019). Assessing the effect of high doses of ampicillin on five marine and freshwater phytoplankton species: a biodegradation perspective. Journal of Applied Phycology, 31(5), 2999–3010. https://doi.org/10.1007/s10811-019-01823-8

Bashir, K. M. I., & Cho, M. G. (2016). The Effect of Kanamycin and Tetracycline on Growth and Photosynthetic Activity of Two Chlorophyte Algae. BioMed Research International, 2016. https://doi.org/10.1155/2016/5656304

Baweja, P., Sahoo, D., García-Jiménez, P., & Robaina, R. R. (2009). Review: Seaweed tissue culture as applied to biotechnology: Problems, achievements and prospects. In Phycological Research (Vol. 57, Issue 1, pp. 45–58). Blackwell Publishing. https://doi.org/10.1111/j.1440-1835.2008.00520.x

Bengtsson, M. M., Sjøtun, K., Lanzén, A., & Øvreås, L. (2012a). Bacterial diversity in relation to secondary production and succession on surfaces of the kelp Laminaria hyperborea. ISME Journal, 6(12), 2188–2198. https://doi.org/10.1038/ismej.2012.67

Bengtsson, M. M., Sjøtun, K., Lanzén, A., & Øvreås, L. (2012b). Bacterial diversity in relation to secondary production and succession on surfaces of the kelp Laminaria hyperborea. ISME Journal, 6(12), 2188–2198. https://doi.org/10.1038/ismej.2012.67

Bengtsson, M. M., Sjøtun, K., Storesund, J. E., & Øvreas, L. (2011). Utilization of kelp-derived carbon sources by kelp surface-associated bacteria. Aquatic Microbial Ecology, 62(2), 191–199. https://doi.org/10.3354/ame01477

Betlach And, M. R., & Tiedje, J. M. (1981). Kinetic Explanation for Accumulation of Nitrite, Nitric Oxide, and Nitrous Oxide During Bacterial Denitrificationt. In APPLIED AND ENVIRONMENTAL MICROBIOLOGY (Vol. 42, Issue 6). https://journals.asm.org/journal/aem

Biskup, S., Bertocci, I., Arenas, F., & Tuya, F. (2014). Functional responses of juvenile kelps, Laminaria ochroleuca and Saccorhiza polyschides, to increasing temperatures. Aquatic Botany, 113, 117–122. https://doi.org/10.1016/j.aquabot.2013.10.003

Blight, A. J., & Thompson, R. C. (2008). Epibiont species richness varies between holdfasts of a northern and a southerly distributed kelp species. Journal of the Marine Biological Association of the United Kingdom, 88(3), 469–475. https://doi.org/10.1017/S0025315408000994

Bullock, H. A., Luo, H., & Whitman, W. B. (2017). Evolution of dimethylsulfoniopropionate metabolism in marine phytoplankton and bacteria. In Frontiers in Microbiology (Vol. 8, Issue APR). Frontiers Research Foundation. https://doi.org/10.3389/fmicb.2017.00637

Burgess, S. C., Baskett, M. L., Grosberg, R. K., Morgan, S. G., & Strathmann, R. R. (2016). When is dispersal for dispersal? Unifying marine and terrestrial perspectives. In Biological reviews of the Cambridge Philosophical Society (Vol. 91, Issue 3, pp. 867–882). Blackwell Publishing Ltd. https://doi.org/10.1111/brv.12198

Burke, C., Steinberg, P., Rusch, D., Kjelleberg, S., & Thomas, T. (2011). Bacterial community assembly based on functional genes rather than species. Proceedings of the National Academy of Sciences of the United States of America, 108(34), 14288–14293. https://doi.org/10.1073/pnas.1101591108

Campbell, N., Reece, J., Urry, L. A., Cain, M. L., Wasserman, S. A., Minorsky, P. V., & Jackson, R. B. (2008). Biology Eighth Edition (8th ed.). Pearson Benjamin Cummings.

Carlström, C. I., Field, C. M., Bortfeld-Miller, M., Müller, B., Sunagawa, S., & Vorholt, J. A. (2019). Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nature Ecology and Evolution, 3(10), 1445–1454. https://doi.org/10.1038/s41559-019-0994-z

Clarke, L. J., Beard, J. M., Swadling, K. M., & Deagle, B. E. (2017). Effect of marker choice and thermal cycling protocol on zooplankton DNA metabarcoding studies. Ecology and Evolution, 7(3), 873–883. https://doi.org/10.1002/ece3.2667

Connell, S. D. (2003). Negative effects overpower the positive of kelp to exclude invertebrates from the understorey community. Oecologia, 137(1), 97–103. https://doi.org/10.1007/s00442-003-1312-6

Connell, S. D., & Irving, A. D. (2008). Integrating ecology with biogeography using landscape characteristics: A case study of subtidal habitat across continental Australia. Journal of Biogeography, 35(9), 1608–1621. https://doi.org/10.1111/j.1365-2699.2008.01903.x

Connell, S. D., Kroeker, K. J., Fabricius, K. E., Kline, D. I., & Russell, B. D. (2013). The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance. In Philosophical Transactions of the Royal Society B: Biological Sciences (Vol. 368, Issue 1627). https://doi.org/10.1098/rstb.2012.0442

Consalvey, M., Perkins, R. G., Paterson, D. M., & Underwood, G. J. C. (2005). Pam fluorescence: A beginners guide for benthic diatomists. Diatom Research, 20(1), 1–22. https://doi.org/10.1080/0269249X.2005.9705619

Damjanovic, K., Van Oppen, M. J. H., Menéndez, P., & Blackall, L. L. (2019). Experimental inoculation of coral recruits with marine bacteria indicates scope for microbiome manipulation in Acropora tenuis and Platygyra daedalea. Frontiers in Microbiology, 10(JULY). https://doi.org/10.3389/fmicb.2019.01702

Dang, H., Chen, R., Wang, L., Shao, S., Dai, L., Ye, Y., Guo, L., Huang, G., & Klotz, M. G. (2011). Molecular characterization of putative biocorroding microbiota with a novel niche detection of Epsilon- and Zetaproteobacteria in Pacific Ocean coastal seawaters. Environmental Microbiology, 13(11), 3059–3074. https://doi.org/10.1111/j.1462-2920.2011.02583.x

Davis, K. M., Zeinert, L., Byrne, A., Davis, J., Roemer, C., Wright, M., & Parfrey, L. W. (2023a). Successional dynamics of the cultivated kelp microbiome. Journal of Phycology. https://doi.org/10.1111/jpy.13329

Davis, K. M., Zeinert, L., Byrne, A., Davis, J., Roemer, C., Wright, M., & Parfrey, L. W. (2023b). Successional dynamics of the cultivated kelp microbiome. Journal of Phycology. https://doi.org/10.1111/jpy.13329

Dayton, P. K., & Tegner, M. J. (1984). Catastrophic Storms, El Niño, and Patch Stability in a Southern California Kelp Community. In New Series (Vol. 224, Issue 4646).

Dayton, P. K., Tegner, M. J., Parnell, P. E., & Edwards, P. B. (1992). Temporal and Spatial Patterns of Disturbance and Recovery in a Kelp Forest Community. Ecological Monographs, 62(3), 421–445.

del Olmo, A., Picon, A., & Nuñez, M. (2018). The microbiota of eight species of dehydrated edible seaweeds from North West Spain. Food Microbiology, 70, 224–231. https://doi.org/10.1016/j.fm.2017.10.009

Delva, S., De Baets, B., Baetens, J. M., De Clerck, O., & Stock, W. (2023). No bacterial-mediated alleviation of thermal stress in a brown seaweed suggests the absence of ecological bacterial rescue effects. Science of The Total Environment, 876, 162532. https://doi.org/10.1016/j.scitotenv.2023.162532

Deng, C. N., Zhang, D. Y., & Pan, X. L. (2014). Toxic effects of erythromycin on photosystem I and II in Microcystis aeruginosa. Photosynthetica, 52(4), 574–580. https://doi.org/10.1007/s11099-014-0063-4

Dharshini, R. S., Manickam, R., Curtis, W. R., Rathinasabapathi, P., & Ramya, M. (2021). Genome analysis of alginate synthesizing Pseudomonas aeruginosa strain SW1 isolated from degraded seaweeds. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 114(12), 2205–2217. https://doi.org/10.1007/s10482-021-01673-w

Dieck, T. (1992). North Pacific and North Atlantic digitate Laminaria species (Phaeophyta): hybridization experiments and temperature responses. In Phycologia (Vol. 31, Issue 2).

Dittami, S. M., Arboleda, E., Auguet, J. C., Bigalke, A., Briand, E., Cárdenas, P., Cardini, U., Decelle, J., Engelen, A. H., Eveillard, D., Gachon, C. M. M., Griffiths, S. M., Harder, T., Kayal, E., Kazamia, E., Lallier, F. H., Medina, M., Marzinelli, E. M., Morganti, T. M., … Not, F. (2021). A community perspective on the concept of marine holobionts: Current status, challenges, and future directions. PeerJ, 9. https://doi.org/10.7717/peerj.10911

Drenkard, E., & Ausubel, F. M. (2002). Competing interests statement Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. www.nature.com

Duarte Cardoso, M., Dias Gonçalves, V., Soffiatti Grael, A., Marques Pedroso, V., Rocha Pires, J., Eurico Pires Ferreira, C., Cruz, O., Oswaldo Cruz -Avenida Brasil, F., Rocha Lima, P., & Mársico Filho, F. (2023). Detection of Escherichia coli and other Enterobacteriales members in seabirds. https://ssrn.com/abstract=4333080

Eriksson, B. K., Johansson, G., & Snoeijs, P. (2002). Long-term changes in the macroalgal vegetation of the inner Gullmar Fjord, Swedish Skagerrak coast. Journal of Phycology, 38(2), 284–296. https://doi.org/10.1046/j.1529-8817.2002.00170.x

Florez, J. Z., Camus, C., Hengst, M. B., & Buschmann, A. H. (2021). A mesocosm study on bacteria-kelp interactions: Importance of nitrogen availability and kelp genetics. Journal of Phycology, 57(6), 1777–1791. https://doi.org/10.1111/jpy.13213

Fonseca, G., & Fehlauer-Ale, K. H. (2012). Three in one: Fixing marine nematodes for ecological, molecular, and morphological studies. Limnology and Oceanography: Methods, 10(JULY), 516–523. https://doi.org/10.4319/lom.2012.10.516

Fontaine, S. S., Novarro, A. J., & Kohl, K. D. (2018). Environmental temperature alters the digestive performance and gut microbiota of a terrestrial amphibian. Journal of Experimental Biology, 221(20). https://doi.org/10.1242/jeb.187559

Fries, L. (1980). AXENIC TISSUE CULTURES FROM THE SPOROPHYTES OF LAMINARIA DIGITATA AND LAMINARIA HYPERBOREA (PHAEOPHYTA). Journal of Phycology, 16(3), 475–477. https://doi.org/10.1111/j.1529-8817.1980.tb03062.x

Fujii, N., Kuroda, K., Narihiro, T., Aoi, Y., Ozaki, N., Ohashi, A., & Kindaichi, T. (2022). Metabolic Potential of the Superphylum Patescibacteria Reconstructed from Activated Sludge Samples from a Municipal Wastewater Treatment Plant. Microbes and Environments, 37(3). https://doi.org/10.1264/jsme2.ME22012

Fukami, T. (2015). Historical Contingency in Community Assembly: Integrating Niches, Species Pools, and Priority Effects. Annual Review of Ecology, Evolution, and Systematics, 46, 1–23. https://doi.org/10.1146/annurev-ecolsys-110411-160340

Gaither, M. R., Szabó, Z., Crepeau, M. W., Bird, C. E., & Toonen, R. J. (2011). Preservation of corals in salt-saturated DMSO buffer is superior to ethanol for PCR experiments. Coral Reefs, 30(2), 329–333. https://doi.org/10.1007/s00338-010-0687-1

Gao, X., Endo, H., Taniguchi, K., & Agatsuma, Y. (2013). Combined effects of seawater temperature and nutrient condition on growth and survival of juvenile sporophytes of the kelp Undaria pinnatifida (Laminariales; Phaeophyta) cultivated in northern Honshu, Japan. Journal of Applied Phycology, 25(1), 269–275. https://doi.org/10.1007/s10811-012-9861-x

Girão, M., Ribeiro, I., Ribeiro, T., Azevedo, I. C., Pereira, F., Urbatzka, R., Leão, P. N., & Carvalho, M. F. (2019). Actinobacteria isolated from laminaria ochroleuca: A source of new bioactive compounds. Frontiers in Microbiology, 10(APR). https://doi.org/10.3389/fmicb.2019.00683

Goodwin, K. D., Thompson, L. R., Duarte, B., Kahlke, T., Thompson, A. R., Marques, J. C., & Caçador, I. (2017). DNA sequencing as a tool to monitor marine ecological status. In Frontiers in Marine Science (Vol. 4, Issue MAY). Frontiers Media S. A. https://doi.org/10.3389/fmars.2017.00107

Gordon, B. R., & Leggat, W. (2010). Symbiodinium - Invertebrate symbioses and the role of metabolomics. In Marine Drugs (Vol. 8, Issue 10, pp. 2546–2568). MDPI AG. https://doi.org/10.3390/md8102546

Gorman, D., & Connell, S. D. (2009). Recovering subtidal forests in human-dominated landscapes. Journal of Applied Ecology, 46(6), 1258–1265. https://doi.org/10.1111/j.1365-2664.2009.01711.x

Grupstra, C. G. B., Howe-Kerr, L. I., van der Meulen, J. A., Veglia, A. J., Coy, S. R., & Correa, A. M. S. (2023). Consumer feces impact coral health in guild-specific ways. Frontiers in Marine Science, 10. https://doi.org/10.3389/fmars.2023.1110346

Guo, J., Selby, K., & Boxall, A. B. A. (2016). Comparing the sensitivity of chlorophytes, cyanobacteria, and diatoms to major-use antibiotics. Environmental Toxicology and Chemistry, 35(10), 2587–2596. https://doi.org/10.1002/etc.3430

Gusareva, E. S., Acerbi, E., Lau, K. J. X., Luhung, I., Premkrishnan, B. N. V., Kolundzija, S., Purbojati, R. W., Wong, A., Houghton, J. N. I., Miller, D., Gaultier, N. E., Heinle, C. E., Clare, M. E., Vettath, V. K., Kee, C., Lim, S. B. Y., Chénard, C., Phung, W. J., Kushwaha, K. K., … Schuster, S. C. (2019). Microbial communities in the tropical air ecosystem follow a precise diel cycle. Proceedings of the National Academy of Sciences of the United States of America, 116(46), 23299–23308. https://doi.org/10.1073/pnas.1908493116

Han, Q., Zhang, X., Chang, L., Xiao, L., Ahmad, R., Saha, M., Wu, H., & Wang, G. (2021). Dynamic shift of the epibacterial communities on commercially cultivated Saccharina japonica from mature sporophytes to sporelings and juvenile sporophytes. Journal of Applied Phycology, 33, 1171–1179. https://doi.org/10.1007/s10811-020-02329-4/Published

Harmsen, M., Yang, L., Pamp, S. J., & Tolker-Nielsen, T. (2010). An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. In FEMS Immunology and Medical Microbiology (Vol. 59, Issue 3, pp. 253–268). Blackwell Publishing Ltd. https://doi.org/10.1111/j.1574-695X.2010.00690.x

Haxo, F. T., & Blinks, L. (1949). PHOTOSYNTHETIC ACTION SPECTRA OF MARINE ALGAE*. http://rupress.org/jgp/article-pdf/33/4/389/1240492/389.pdf

Herrmann, M. N., Wang, Y., Hartung, J., Hartmann, T., Zhang, W., Nkebiwe, P. M., Chen, X., Müller, T., & Yang, H. (2022). A Global Network Meta-Analysis of the Promotion of Crop Growth, Yield, and Quality by Bioeffectors. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.816438

Hiscox, J., Savoury, M., Müller, C. T., Lindahl, B. D., Rogers, H. J., & Boddy, L. (2015). Priority effects during fungal community establishment in beech wood. ISME Journal, 9(10), 2246–2260. https://doi.org/10.1038/ismej.2015.38

Hitch, T. C. A., Hall, L. J., Walsh, S. K., Leventhal, G. E., Slack, E., de Wouters, T., Walter, J., & Clavel, T. (2022). Microbiome-based interventions to modulate gut ecology and the immune system. In Mucosal Immunology. Springer Nature. https://doi.org/10.1038/s41385-022-00564-1

Hoffmann, A. J., & Santelices, B. (1982). EFFECTS OF LIGHT INTENSITY AND NUTRIENTS ON GAMETOPHYTES AND GAMETOGENESIS OF LESSONIA NIGRESCENS (Phaeophyta). In Mar. Biol. Ecol (Vol. 60).

Holmström, C., & Kjelleberg, S. (2006). Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiology Ecology, 30(4), 285–293. https://doi.org/10.1111/j.1574-6941.1999.tb00656.x

Houwenhuyse, S., Stoks, R., Mukherjee, S., & Decaestecker, E. (2021). Locally adapted gut microbiomes mediate host stress tolerance. ISME Journal, 15(8), 2401–2414. https://doi.org/10.1038/s41396-021-00940-y

Ihua, M. W., FitzGerald, J. A., Guiheneuf, F., Jackson, S. A., Claesson, M. J., Stengel, D. B., & Dobson, A. D. W. (2020a). Diversity of bacteria populations associated with different thallus regions of the brown alga Laminaria digitata. PLoS ONE, 15(11 November). https://doi.org/10.1371/journal.pone.0242675

Ihua, M. W., FitzGerald, J. A., Guiheneuf, F., Jackson, S. A., Claesson, M. J., Stengel, D. B., & Dobson, A. D. W. (2020b). Diversity of bacteria populations associated with different thallus regions of the brown alga Laminaria digitata. PLoS ONE, 15(11 November). https://doi.org/10.1371/journal.pone.0242675

Izano, E. A., Sadovskaya, I., Vinogradov, E., Mulks, M. H., Velliyagounder, K., Ragunath, C., Kher, W. B., Ramasubbu, N., Jabbouri, S., Perry, M. B., & Kaplan, J. B. (2007). Poly-N-acetylglucosamine mediates biofilm formation and antibiotic resistance in Actinobacillus pleuropneumoniae. Microbial Pathogenesis, 43(1), 1–9. https://doi.org/10.1016/j.micpath.2007.02.004

Izquierdo, J. L., Pérez-Ruzafa, I. M., & Gallardo, T. (2002). Effect of temperature and photon fluence rate on gametophytes and young sporophytes of Laminaria ochroleuca Pylaie. Helgoland Marine Research, 55(4), 285–292. https://doi.org/10.1007/s10152-001-0087-6

Jackson, G. A. (1977). Nutrients and production of giant kelp, Macrocystis pyrifera, off southern California. Limnology and Oceanography, 22(6), 979–995. https://doi.org/10.4319/lo.1977.22.6.0979

Jackson, S. A., Flemer, B., McCann, A., Kennedy, J., Morrissey, J. P., O’Gara, F., & Dobson, A. D. W. (2013). Archaea appear to dominate the microbiome of Inflatella pellicula deep sea sponges. PLoS ONE, 8(12). https://doi.org/10.1371/journal.pone.0084438

Jiang, Y. F., Ling, J., Dong, J. De, Chen, B., Zhang, Y. Y., Zhang, Y. Z., & Wang, Y. S. (2015). Illumina-based analysis the microbial diversity associated with Thalassia hemprichii in Xincun Bay, South China Sea. Ecotoxicology, 24(7–8), 1548–1556. https://doi.org/10.1007/s10646-015-1511-z

Joint, I., Tait, K., & Wheeler, G. (2007). Cross-kingdom signalling: Exploitation of bacterial quorum sensing molecules by the green seaweed Ulva. In Philosophical Transactions of the Royal Society B: Biological Sciences (Vol. 362, Issue 1483, pp. 1223–1233). Royal Society. https://doi.org/10.1098/rstb.2007.2047

Jones, K., Rhodes, M. E., & Evans, S. C. (1973). The use of antibiotics to obtain axenic cultures of algae. British Phycological Journal, 8(2), 185–196. https://doi.org/10.1080/00071617300650211

Kang, I., Lim, Y., & Cho, J. C. (2018). Complete genome sequence of Granulosicoccus antarcticus type strain IMCC3135T, a marine gammaproteobacterium with a putative dimethylsulfoniopropionate demethylase gene. Marine Genomics, 37, 176–181. https://doi.org/10.1016/j.margen.2017.11.005

Kessler, R. W., Weiss, A., Kuegler, S., Hermes, C., & Wichard, T. (2018). Macroalgal–bacterial interactions: Role of dimethylsulfoniopropionate in microbial gardening by Ulva (Chlorophyta). Molecular Ecology, 27(8), 1808–1819. https://doi.org/10.1111/mec.14472

King, N. G., Moore, P. J., Thorpe, J. M., & Smale, D. A. (2022). Consistency and Variation in the Kelp Microbiota: Patterns of Bacterial Community Structure Across Spatial Scales. Microbial Ecology. https://doi.org/10.1007/s00248-022-02038-0

Kinlan, B. P., & Gaines, S. D. (2003). Propagule dispersal in marine and terrestrial environments: A community perspective. In Ecology (Vol. 84, Issue 8, pp. 2007–2020). Ecological Society of America. https://doi.org/10.1890/01-0622

Kohl, K. D., & Yahn, J. (2016). Effects of environmental temperature on the gut microbial communities of tadpoles. Environmental Microbiology, 18(5), 1561–1565. https://doi.org/10.1111/1462-2920.13255

Korbie, D. J., & Mattick, J. S. (2008). Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nature Protocols, 3(9), 1452–1456. https://doi.org/10.1038/nprot.2008.133

Krause-Jensen, D., & Duarte, C. M. (2016). Substantial role of macroalgae in marine carbon sequestration. Nature Geoscience, 9(10), 737–742. https://doi.org/10.1038/ngeo2790

Le, V. Van, Tran, Q. G., Ko, S. R., Lee, S. A., Oh, H. M., Kim, H. S., & Ahn, C. Y. (2023). How do freshwater microalgae and cyanobacteria respond to antibiotics? In Critical Reviews in Biotechnology (Vol. 43, Issue 2, pp. 191–211). Taylor and Francis Ltd. https://doi.org/10.1080/07388551.2022.2026870

Lemay, M. A., Davis, K. M., Martone, P. T., & Parfrey, L. W. (2021a). Kelp-associated microbiota are structured by host anatomy. Journal of Phycology. https://doi.org/10.1111/jpy.13169-20-251

Lemay, M. A., Davis, K. M., Martone, P. T., & Parfrey, L. W. (2021b). KELP-ASSOCIATED MICROBIOTA ARE STRUCTURED BY HOST ANATOMY 1. https://doi.org/10.1111/jpy.13169-20-251

Lemay, M. A., Davis, K. M., Martone, P. T., & Parfrey, L. W. (2021c). KELP-ASSOCIATED MICROBIOTA ARE STRUCTURED BY HOST ANATOMY 1. https://doi.org/10.1111/jpy.13169-20-251

Lemay, M. A., Martone, P. T., Hind, K. R., Lindstrom, S. C., & Wegener Parfrey, L. (2018). Alternate life history phases of a common seaweed have distinct microbial surface communities. Molecular Ecology, 27(17), 3555–3568. https://doi.org/10.1111/mec.14815

Lewis, R. J., Green, M. K., & Afzal, M. E. (2013). Effects of chelated iron on oogenesis and vegetative growth of kelp gametophytes (Phaeophyceae). Phycological Research, 61(1), 46–51. https://doi.org/10.1111/j.1440-1835.2012.00667.x

Li, J., Majzoub, M. E., Marzinelli, E. M., Dai, Z., Thomas, T., & Egan, S. (2022). Bacterial controlled mitigation of dysbiosis in a seaweed disease. ISME Journal, 16(2), 378–387. https://doi.org/10.1038/s41396-021-01070-1

Li, J., Weinberger, F., de Nys, R., Thomas, T., & Egan, S. (2022). A pathway to improve seaweed aquaculture through microbiota manipulation. In Trends in Biotechnology. Elsevier Ltd. https://doi.org/10.1016/j.tibtech.2022.08.003

Li, Y. F., Yang, N., Liang, X., Yoshida, A., Osatomi, K., Power, D., Batista, F. M., & Yang, J. L. (2018). Elevated seawater temperatures decrease microbial diversity in the gut of Mytilus coruscus. Frontiers in Physiology, 9(JUL). https://doi.org/10.3389/fphys.2018.00839

Liesner, D., Pearson, G. A., Bartsch, I., Rana, S., Harms, L., Heinrich, S., Bischof, K., Glöckner, G., & Valentin, K. (2022). Increased Heat Resilience of Intraspecific Outbred Compared to Inbred Lineages in the Kelp Laminaria digitata: Physiology and Transcriptomics. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.838793

Lind, A. C., & Konar, B. (2017). Effects of abiotic stressors on kelp early life-history stages. Algae, 32(3), 223–233. https://doi.org/10.4490/algae.2017.32.8.7

Liu, B. yang, Nie, X. ping, Liu, W. qiu, Snoeijs, P., Guan, C., & Tsui, M. T. K. (2011). Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole on photosynthetic apparatus in Selenastrum capricornutum. Ecotoxicology and Environmental Safety, 74(4), 1027–1035. https://doi.org/10.1016/j.ecoenv.2011.01.022

Ludington, W. B. (2022). Higher-order microbiome interactions and how to find them. In Trends in Microbiology (Vol. 30, Issue 7, pp. 618–621). Elsevier Ltd. https://doi.org/10.1016/j.tim.2022.03.011

Lüning, K. (1980). CRITICAL LEVELS OF LIGHT AND TEMPERATURE REGULATING THE GAMETOGENESIS OF THREE LAMINARIA SPECIES (PHAEOPHYCEAE). Journal of Phycology, 16(1), 1–15. https://doi.org/10.1111/j.1529-8817.1980.tb02992.x

Lüning, K., & Dring, M. J. (1972). Reproduction Induced by Blue Light in Female Gametophytes of Laminaria saccharina. In Source: Planta (Vol. 104, Issue 3). https://www.jstor.org/stable/23369690?seq=1&cid=pdf-reference#reference…

Lüning, K., & Dring, M. J. (1975). Reproduction, Growth and Photosynthesis of Gametophytes of Laminaria saccharina Grown in Blue and Red Light. In Fmrine Biology (Vol. 29). Springer-Verlag.

Lüning, K., & tom Dieck, I. (1989). Environmental triggers in algal seasonality Environmental Triggers in Algal Seasonally. In Botanica Marina (Vol. 32).

MacKe, E., Callens, M., De Meester, L., & Decaestecker, E. (2017). Host-genotype dependent gut microbiota drives zooplankton tolerance to toxic cyanobacteria. Nature Communications, 8(1). https://doi.org/10.1038/s41467-017-01714-x

Malfatti, F., Kaleb, S., Saidi, A., Pallavicini, A., Agostini, L., Gionechetti, F., Natale, S., Balestra, C., Bevilacqua, S., & Falace, A. (2023). Microbe-assisted seedling crop improvement by a seaweed extract to address fucalean forest restoration. Frontiers in Marine Science, 10. https://doi.org/10.3389/fmars.2023.1181685

Martin-Platero, A. M., Cleary, B., Kauffman, K., Preheim, S. P., McGillicuddy, D. J., Alm, E. J., & Polz, M. F. (2018). High resolution time series reveals cohesive but short-lived communities in coastal plankton. Nature Communications, 9(1). https://doi.org/10.1038/s41467-017-02571-4

Martins, N., Tanttu, H., Pearson, G. A., Serrão, E. A., & Bartsch, I. (2017). Interactions of daylength, temperature and nutrients affect thresholds for life stage transitions in the kelp Laminaria digitata (Phaeophyceae). Botanica Marina, 60(2), 109–121. https://doi.org/10.1515/bot-2016-0094

Marzinelli, E. M., Campbell, A. H., Zozaya Valdes, E., Vergés, A., Nielsen, S., Wernberg, T., de Bettignies, T., Bennett, S., Caporaso, J. G., Thomas, T., & Steinberg, P. D. (2015). Continental-scale variation in seaweed host-associated bacterial communities is a function of host condition, not geography. Environmental Microbiology, 17(10), 4078–4088. https://doi.org/10.1111/1462-2920.12972

McMurdie, P. J., & Holmes, S. (2013). Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE, 8(4). https://doi.org/10.1371/journal.pone.0061217

Mehnaz, S. (2013). Microbes - friends and foes of sugarcane. In Journal of Basic Microbiology (Vol. 53, Issue 12, pp. 954–971). https://doi.org/10.1002/jobm.201200299

Miksch, S., Meiners, M., Meyerdierks, A., Probandt, D., Wegener, G., Titschack, J., Jensen, M. A., Ellrott, A., Amann, R., & Knittel, K. (2021). Bacterial communities in temperate and polar coastal sands are seasonally stable. ISME Communications, 1(1). https://doi.org/10.1038/s43705-021-00028-w

Miller, R. J., Lafferty, K. D., Lamy, T., Kui, L., Rassweiler, A., & Reed, D. C. (2018). Giant kelp, Macrocystis pyrifera, increases faunal diversity through physical engineering. Proceedings of the Royal Society B: Biological Sciences, 285(1874). https://doi.org/10.1098/rspb.2017.2571

Morris, M. M., Haggerty, J. M., Papudeshi, B. N., Vega, A. A., Edwards, M. S., & Dinsdale, E. A. (2016). Nearshore pelagic microbial community abundance affects recruitment success of giant kelp, Macrocystis pyrifera. Frontiers in Microbiology, 7(NOV). https://doi.org/10.3389/fmicb.2016.01800

Morrissey, K. L., Çavas, L., Willems, A., & De Clerck, O. (2019). Disentangling the influence of environment, host specificity and thallus differentiation on bacterial communities in siphonous green seaweeds. Frontiers in Microbiology, 10(APR). https://doi.org/10.3389/fmicb.2019.00717

Muth, A. F. (2012). Effects of Zoospore Aggregation and Substrate Rugosity on Kelp Recruitment Success. Journal of Phycology, 48(6), 1374–1379. https://doi.org/10.1111/j.1529-8817.2012.01211.x

Muth, A. F., Graham, M. H., Lane, C. E., & Harley, C. D. G. (2019). Recruitment tolerance to increased temperature present across multiple kelp clades. Ecology, 100(3). https://doi.org/10.1002/ecy.2594

Mystkowska, A. A., Robb, C., Vidal-Melgosa, S., Vanni, C., Fernandez-Guerra, A., Höhne, M., & Hehemann, J. H. (2018). Molecular recognition of the beta-glucans laminarin and pustulan by a SusD-like glycan-binding protein of a marine Bacteroidetes. FEBS Journal, 285(23), 4465–4481. https://doi.org/10.1111/febs.14674

Nappi, J., Goncalves, P., Khan, T., Majzoub, M. E., Grobler, A. S., Marzinelli, E. M., Thomas, T., & Egan, S. (2022). Differential priority effects impact taxonomy and functionality of host-associated microbiomes. Molecular Ecology. https://doi.org/10.1111/mec.16336

Österblom, H., Hansson, S., Larsson, U., Hjerne, O., Wulff, F., Elmgren, R., & Folke, C. (2007). Human-induced trophic cascades and ecological regime shifts in the baltic sea. Ecosystems, 10(6), 877–889. https://doi.org/10.1007/s10021-007-9069-0

Pang, S. J., Jin, Z. H., Sun, J. Z., & Gao, S. Q. (2007). Temperature tolerance of young sporophytes from two populations of Laminaria japonica revealed by chlorophyll fluorescence measurements and short-term growth and survival performances in tank culture. Aquaculture, 262(2–4), 493–503. https://doi.org/10.1016/j.aquaculture.2006.11.018

Pfeizer. (2013). Material Safety data sheet Penicillin G potassium for injection.

Porter, T. M., & Hajibabaei, M. (2018). Scaling up: A guide to high-throughput genomic approaches for biodiversity analysis. In Molecular Ecology (Vol. 27, Issue 2, pp. 313–338). Blackwell Publishing Ltd. https://doi.org/10.1111/mec.14478

Provost, E. J., Kelaher, B. P., Dworjanyn, S. A., Russell, B. D., Connell, S. D., Ghedini, G., Gillanders, B. M., Figueira, W. I., & Coleman, M. A. (2017). Climate-driven disparities among ecological interactions threaten kelp forest persistence. Global Change Biology, 23(1), 353–361. https://doi.org/10.1111/gcb.13414

Qiu, Z., Coleman, M. A., Provost, E., Campbell, A. H., Kelaher, B. P., Dalton, S. J., Thomas, T., Steinberg, P. D., & Marzinelli, E. M. (2019). Future climate change is predicted to affect the microbiome and condition of habitat-forming kelp. Proceedings of the Royal Society B: Biological Sciences, 286(1896). https://doi.org/10.1098/rspb.2018.1887

Radboud University Nijmegen. (2013, September 23). Brown algae (Laminaria, Fucus): Characteristics of the life cycle of Brown algae.

Ranjan, A., Townsley, B. T., Ichihashi, Y., Sinha, N. R., & Chitwood, D. H. (2015). An Intracellular Transcriptomic Atlas of the Giant Coenocyte Caulerpa taxifolia. PLoS Genetics, 11(1). https://doi.org/10.1371/journal.pgen.1004900

Ransome, E., Geller, J. B., Timmers, M., Leray, M., Mahardini, A., Sembiring, A., Collins, A. G., & Meyer, C. P. (2017). The importance of standardization for biodiversity comparisons: A case study using autonomous reef monitoring structures (ARMS) and metabarcoding to measure cryptic diversity on Mo’orea coral reefs, French Polynesia. PLoS ONE, 12(4). https://doi.org/10.1371/journal.pone.0175066

Ratcliff, J. J., Soler-Vila, A., Hanniffy, D., Johnson, M. P., & Edwards, M. D. (2017). Optimisation of kelp (Laminaria digitata) gametophyte growth and gametogenesis: effects of photoperiod and culture media. Journal of Applied Phycology, 29(4), 1957–1966. https://doi.org/10.1007/s10811-017-1070-1

Redmond, S., Green, L., Yarish, C., Kim, J., & Neefus, C. (2014). New England Seaweed Culture Handbook Nursery Systems. http://seagrant.uconn.edu

Reed, D. C., Neushul, M., & Ebeling, A. W. (1991). ROLE OF SETTLEMENT DENSITY ON GAMETOPHYTE GROWTH AND REPRODUCTION IN THE KELPS PTERYGOPHORA CALIFORNICA AND MACROCYSTIS PYRIFERA (PHAEOPHYCEAE). Journal of Phycology, 27(3), 361–366. https://doi.org/10.1111/j.0022-3646.1991.00361.x

Rosman, J. H., Koseff, J. R., Monismith, S. G., & Grover, J. (2007). A field investigation into the effects of a kelp forest (Macrocystis pyrifera) on coastal hydrodynamics and transport. Journal of Geophysical Research: Oceans, 112(2). https://doi.org/10.1029/2005JC003430

Roth GmbH, C. (2021a). Safety data sheet Marine Broth.

Roth GmbH, C. (2021b). Voluntary safety information following the Safety Data Sheet format according to Regulation (EC) on Erythromycin. www.carlroth.de

Roth GmbH, C. (2022a). Safety data sheet 1-Propanol. www.carlroth.de

Roth GmbH, C. (2022b). Safety data sheet Rifampicin. www.carlroth.de

Rudi, K., Angell, I. L., Pope, P. B., Vik, J. O., Sandve, S. R., & Snipen, L. G. (2018). Stable core gut microbiota across the freshwater-to-saltwater transition for farmed Atlantic salmon. Applied and Environmental Microbiology, 84(2). https://doi.org/10.1128/AEM.01974-17

Rusch, D. B., Halpern, A. L., Sutton, G., Heidelberg, K. B., Williamson, S., Yooseph, S., Wu, D., Eisen, J. A., Hoffman, J. M., Remington, K., Beeson, K., Tran, B., Smith, H., Baden-Tillson, H., Stewart, C., Thorpe, J., Freeman, J., Andrews-Pfannkoch, C., Venter, J. E., … Venter, J. C. (2007). The Sorcerer II Global Ocean Sampling expedition: Northwest Atlantic through eastern tropical Pacific. PLoS Biology, 5(3), 0398–0431. https://doi.org/10.1371/journal.pbio.0050077

Saha, M., Barboza, F. R., Somerfield, P. J., Al-Janabi, B., Beck, M., Brakel, J., Ito, M., Pansch, C., Nascimento-Schulze, J. C., Jakobsson Thor, S., Weinberger, F., & Sawall, Y. (2020a). Response of foundation macrophytes to near-natural simulated marine heatwaves. Global Change Biology, 26(2), 417–430. https://doi.org/10.1111/gcb.14801

Saha, M., Barboza, F. R., Somerfield, P. J., Al-Janabi, B., Beck, M., Brakel, J., Ito, M., Pansch, C., Nascimento-Schulze, J. C., Jakobsson Thor, S., Weinberger, F., & Sawall, Y. (2020b). Response of foundation macrophytes to near-natural simulated marine heatwaves. Global Change Biology, 26(2), 417–430. https://doi.org/10.1111/gcb.14801

Saha, M., Ferguson, R. M. W., Dove, S., Künzel, S., Meichssner, R., Neulinger, S. C., Petersen, F. O., & Weinberger, F. (2020). Salinity and Time Can Alter Epibacterial Communities of an Invasive Seaweed. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.02870

Schoenrock, K. M., O’ Connor, A. M., Mauger, S., Valero, M., Neiva, J., Serrão, E., & Krueger-Hadfield, S. A. (2020). Genetic diversity of a marine foundation species, Laminaria hyperborea (Gunnerus) Foslie, along the coast of Ireland. European Journal of Phycology, 55(3), 310–326. https://doi.org/10.1080/09670262.2020.1724338

Schütz, L., Gattinger, A., Meier, M., Müller, A., Boller, T., Mäder, P., & Mathimaran, N. (2018). Improving crop yield and nutrient use efficiency via biofertilization—A global meta-analysis. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.02204

Selvarajan, R., Sibanda, T., Venkatachalam, S., Ogola, H. J. O., Christopher Obieze, C., & Msagati, T. A. (2019). Distribution, Interaction and Functional Profiles of Epiphytic Bacterial Communities from the Rocky Intertidal Seaweeds, South Africa. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-56269-2

Serebryakova, A., Aires, T., Viard, F., Serrão, E. A., & Engelen, A. H. (2018). Summer shifts of bacterial communities associated with the invasive brown seaweed Sargassum muticum are location and tissue dependent. PLoS ONE, 13(12). https://doi.org/10.1371/journal.pone.0206734

Sigma-Aldrich. (2023a). Safety data sheet Nystatin.

Sigma-Aldrich. (2023b). Safety data sheet Streptomycin sulfate salt.

Singh, R. P., & Reddy, C. R. K. (2014a). Seaweed-microbial interactions: Key functions of seaweed-associated bacteria. FEMS Microbiology Ecology, 88(2), 213–230. https://doi.org/10.1111/1574-6941.12297

Singh, R. P., & Reddy, C. R. K. (2014b). Seaweed-microbial interactions: Key functions of seaweed-associated bacteria. FEMS Microbiology Ecology, 88(2), 213–230. https://doi.org/10.1111/1574-6941.12297

Smale, D. A., & Moore, P. J. (2017). Variability in kelp forest structure along a latitudinal gradient in ocean temperature. Journal of Experimental Marine Biology and Ecology, 486, 255–264. https://doi.org/10.1016/j.jembe.2016.10.023

Smale, D. A., Wernberg, T., Yunnie, A. L. E., & Vance, T. (2015a). The rise of Laminaria ochroleuca in the Western English Channel (UK) and comparisons with its competitor and assemblage dominant Laminaria hyperborea. Marine Ecology, 36(4), 1033–1044. https://doi.org/10.1111/maec.12199

Smale, D. A., Wernberg, T., Yunnie, A. L. E., & Vance, T. (2015b). The rise of Laminaria ochroleuca in the Western English Channel (UK) and comparisons with its competitor and assemblage dominant Laminaria hyperborea. Marine Ecology, 36(4), 1033–1044. https://doi.org/10.1111/maec.12199

Spoerner, M., Wichard, T., Bachhuber, T., Stratmann, J., & Oertel, W. (2012). Growth and Thallus Morphogenesis of Ulva mutabilis (Chlorophyta) Depends on A Combination of Two Bacterial Species Excreting Regulatory Factors. Journal of Phycology, 48(6), 1433–1447. https://doi.org/10.1111/j.1529-8817.2012.01231.x

Sprockett, D., Fukami, T., & Relman, D. A. (2018). Role of priority effects in the early-life assembly of the gut microbiota. In Nature Reviews Gastroenterology and Hepatology (Vol. 15, Issue 4, pp. 197–205). Nature Publishing Group. https://doi.org/10.1038/nrgastro.2017.173

Srinivas, G., Möller, S., Wang, J., Künzel, S., Zillikens, D., Baines, J. F., & Ibrahim, S. M. (2013). Genome-wide mapping of gene-microbiota interactions in susceptibility to autoimmune skin blistering. Nature Communications, 4. https://doi.org/10.1038/ncomms3462

Steneck, R. S., Leland, A., McNaught, D. C., & Vavrinec, J. (2013). Ecosystem flips, locks, and feedbacks: The lasting effects of fisheries on Maine’s kelp forest ecosystem. Bulletin of Marine Science, 89(1), 31–55. https://doi.org/10.5343/bms.2011.1148

Stock, W., Callens, M., Houwenhuyse, S., Schols, R., Goel, N., Coone, M., Theys, C., Delnat, V., Boudry, A., Eckert, E. M., Laspoumaderes, C., Grossart, H. P., De Meester, L., Stoks, R., Sabbe, K., & Decaestecker, E. (2021a). Human impact on symbioses between aquatic organisms and microbes. In Aquatic Microbial Ecology (Vol. 87, pp. 113–138). Inter-Research. https://doi.org/10.3354/AME01973

Stock, W., Callens, M., Houwenhuyse, S., Schols, R., Goel, N., Coone, M., Theys, C., Delnat, V., Boudry, A., Eckert, E. M., Laspoumaderes, C., Grossart, H. P., De Meester, L., Stoks, R., Sabbe, K., & Decaestecker, E. (2021b). Human impact on symbioses between aquatic organisms and microbes. In Aquatic Microbial Ecology (Vol. 87, pp. 113–138). Inter-Research. https://doi.org/10.3354/AME01973

Strasser, F. E., Barreto, L. M., Kaidi, S., Sabour, B., Serrão, E. A., Pearson, G. A., & Martins, N. (2022). Population level variation in reproductive development and output in the golden kelp Laminaria ochroleuca under marine heat wave scenarios. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.943511

Stratil, S. B., Neulinger, S. C., Knecht, H., Friedrichs, A. K., & Wahl, M. (2013). Temperature-driven shifts in the epibiotic bacterial community composition of the brown macroalga Fucus vesiculosus. MicrobiologyOpen, 2(2), 338–349. https://doi.org/10.1002/mbo3.79

Svoboda, P., Lindström, E. S., Ahmed Osman, O., & Langenheder, S. (2018). Dispersal timing determines the importance of priority effects in bacterial communities. ISME Journal, 12(2), 644–646. https://doi.org/10.1038/ismej.2017.180

Teagle, H., Hawkins, S. J., Moore, P. J., & Smale, D. A. (2017). The role of kelp species as biogenic habitat formers in coastal marine ecosystems. In Journal of Experimental Marine Biology and Ecology (Vol. 492, pp. 81–98). Elsevier B.V. https://doi.org/10.1016/j.jembe.2017.01.017

ThermoFisher Scientific. (2021a). Safety data sheet Ampicillin Sodium Salt.

ThermoFisher Scientific. (2021b). Safety Data Sheet RNAlater Solution. www.thermofisher.com

Thomsen, M. S., Mondardini, L., Alestra, T., Gerrity, S., Tait, L., South, P. M., Lilley, S. A., & Schiel, D. R. (2019). Local Extinction of bull kelp (Durvillaea spp.) due to a marine heatwave. Frontiers in Marine Science, 6(MAR). https://doi.org/10.3389/fmars.2019.00084

Toohey, B. D., & Kendrick, G. A. (2007). Survival of juvenile Ecklonia radiata sporophytes after canopy loss. Journal of Experimental Marine Biology and Ecology, 349(1), 170–182. https://doi.org/10.1016/j.jembe.2007.05.008

van der Loos, L. M., & Nijland, R. (2021). Biases in bulk: DNA metabarcoding of marine communities and the methodology involved. Molecular Ecology, 30(13), 3270–3288. https://doi.org/10.1111/mec.15592

Vanderklift, M. A., Doropoulos, C., Gorman, D., Leal, I., Minne, A. J. P., Statton, J., Steven, A. D. L., & Wernberg, T. (2020). Using Propagules to Restore Coastal Marine Ecosystems. In Frontiers in Marine Science (Vol. 7). Frontiers Media S.A. https://doi.org/10.3389/fmars.2020.00724

Vass, M., & Langenheder, S. (2017). The legacy of the past: Effects of historical processes on microbial metacommunities. In Aquatic Microbial Ecology (Vol. 79, Issue 1, pp. 13–19). Inter-Research. https://doi.org/10.3354/ame01816

Walsh, C. M., Becker-Uncapher, I., Carlson, M., & Fierer, N. (2021). Variable influences of soil and seed-associated bacterial communities on the assembly of seedling microbiomes. ISME Journal, 15(9), 2748–2762. https://doi.org/10.1038/s41396-021-00967-1

Wang, G., Chang, L., Zhang, R., Wang, S., Wei, X., Rickert, E., Krost, P., Xiao, L., & Weinberger, F. (2019). Can targeted defense elicitation improve seaweed aquaculture? Journal of Applied Phycology, 31(3), 1845–1854. https://doi.org/10.1007/s10811-018-1709-6

Wang, Z., Chen, Q., Hu, L., & Wang, M. (2018). Combined effects of binary antibiotic mixture on growth, microcystin production, and extracellular release of Microcystis aeruginosa: application of response surface methodology. Environmental Science and Pollution Research, 25(1), 736–748. https://doi.org/10.1007/s11356-017-0475-3

Webster, N. S., Soo, R., Cobb, R., & Negri, A. P. (2011). Elevated seawater temperature causes a microbial shift on crustose coralline algae with implications for the recruitment of coral larvae. ISME Journal, 5(4), 759–770. https://doi.org/10.1038/ismej.2010.152

Weigel, B. L., & Pfister, C. A. (2021). Oxygen metabolism shapes microbial settlement on photosynthetic kelp blades compared to artificial kelp substrates. Environmental Microbiology Reports, 13(2), 176–184. https://doi.org/10.1111/1758-2229.12923

Wernberg, T., Kendrick, G. A., & Toohey, B. D. (2005). Modification of the physical environment by an Ecklonia radiata (Laminariales) canopy and implications for associated foliose algae. Aquatic Ecology, 39(4), 419–430. https://doi.org/10.1007/s10452-005-9009-z

Wernberg, T., Smale, D. A., Tuya, F., Thomsen, M. S., Langlois, T. J., De Bettignies, T., Bennett, S., & Rousseaux, C. S. (2013). An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nature Climate Change, 3(1), 78–82. https://doi.org/10.1038/nclimate1627

Wernberg, T., Thomsen, M. S., Tuya, F., Kendrick, G. A., Staehr, P. A., & Toohey, B. D. (2010). Decreasing resilience of kelp beds along a latitudinal temperature gradient: Potential implications for a warmer future. Ecology Letters, 13(6), 685–694. https://doi.org/10.1111/j.1461-0248.2010.01466.x

Wichard, T. (2023). From model organism to application: Bacteria-induced growth and development of the green seaweed Ulva and the potential of microbe leveraging in algal aquaculture. In Seminars in Cell and Developmental Biology (Vol. 134, pp. 69–78). Elsevier Ltd. https://doi.org/10.1016/j.semcdb.2022.04.007

Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. In ggplot2. Springer New York. https://doi.org/10.1007/978-0-387-98141-3

Williams, P. (2007). Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology, 153(12), 3923–3938. https://doi.org/10.1099/mic.0.2007/012856-0

Wood, G., Marzinelli, E. M., Coleman, M. A., Campbell, A. H., Santini, N. S., Kajlich, L., Verdura, J., Wodak, J., Steinberg, P. D., & Vergés, A. (2019). Restoring subtidal marine macrophytes in the Anthropocene: Trajectories and future-proofing. Marine and Freshwater Research, 70(7), 936–951. https://doi.org/10.1071/MF18226

Wood, G., Steinberg, P. D., Campbell, A. H., Vergés, A., Coleman, M. A., & Marzinelli, E. M. (2022). Host genetics, phenotype and geography structure the microbiome of a foundational seaweed. Molecular Ecology, 31(7), 2189–2206. https://doi.org/10.1111/mec.16378

Wright, L. S., & Foggo, A. (2021). Photosynthetic pigments of co-occurring Northeast Atlantic Laminaria spp. are unaffected by decomposition. Marine Ecology Progress Series, 678, 227–232. https://doi.org/10.3354/meps13886

Wu, Q. L., Zwart, G., Schauer, M., Kamst-Van Agterveld, M. P., & Hahn, M. W. (2006). Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau, China. Applied and Environmental Microbiology, 72(8), 5478–5485. https://doi.org/10.1128/AEM.00767-06

Xu, D., Brennan, G., Xu, L., Zhang, X. W., Fan, X., Han, W. T., Mock, T., McMinn, A., Hutchins, D. A., & Ye, N. (2019). Ocean acidification increases iodine accumulation in kelp-based coastal food webs. Global Change Biology, 25(2), 629–639. https://doi.org/10.1111/gcb.14467

Xu, D., Wang, D., Li, B., Fan, X., Zhang, X. W., Ye, N. H., Wang, Y., Mou, S., & Zhuang, Z. (2015). Effects of CO2 and seawater acidification on the early stages of saccharina japonica development. Environmental Science and Technology, 49(6), 3548–3556. https://doi.org/10.1021/es5058924

Zimmerman, R. C., & Kremer, J. N. (1984). Episodic nutrient supply to a kelp forest ecosystem in Southern California. Journal of Marine Research, 42(3), 591–604. https://doi.org/10.1357/002224084788506031

 

Download scriptie (3.45 MB)
Genomineerde shortlist NBN Sustainability Award
Universiteit of Hogeschool
KU Leuven
Thesis jaar
2023
Promotor(en)
Willem Stock, Ellen Decaestecker, Olivier De Clerck
Thema('s)