Is dit de sleutel tot kankergenezing? Gerichte mitochondriale afgifte!

Kato
D'Hauwe

Kanker - een woord dat we allemaal vrezen en respecteren. Het is momenteel een van de meest voorkomende oorzaken van vroegtijdige sterfte wereldwijd. Het vinden van effectieve behandelingen voor kanker kan levens redden en lijden verminderen. In deze voortdurende zoektocht naar effectieve therapieën tegen kanker, duikte ik in de complexe wereld van nanomedicijnen om een nieuwe benadering te ontwikkelen waarbij therapieën gericht toegediend worden op subcellulair niveau, met name op het niveau van de mitochondriën.

De link tussen mitochondriën en kanker

Je zou je kunnen afvragen waarom het belangrijk is om therapieën specifiek in de mitochondriën van de cel te krijgen voor de behandeling van kanker. Wel, mitochondriën functioneren (onder andere) als energiefabriek van de cel en spelen een rol bij de regulatie van zowel celdood als celoverleving. Als we deze subcellulaire organellen specifiek kunnen targetten in kankercellen, kunnen we hun energievoorziening verstoren en de ontwikkeling en groei van kankercellen remmen.

Hoe geraken we in de mitochondriën?

Geneesmiddelen op een gerichte manier in de mitochondriën van kankercellen brengen vormt een grote uitdaging gezien de complexe structuur van de cellen, maar ook van de subcellulair organellen. Naast vele barrières zoals weefselspecifieke barrières en cellulaire barrières zoals het celmembraan, moeten nu ook barrières op het niveau van de structuren binnen de cel worden overwonnen.

Nanomedicijnen vormen een veelbelovende oplossing voor de gerichte toediening van therapieën op het subcellulair niveau. Het zijn minuscule boodschappers, veel kleiner dan een cel, die geneesmiddelen kunnen dragen en ervoor zorgen dat ze op de juiste plek in ons lichaam terechtkomen. Nanomedicijnen zijn al jaren een ‘hot field’ vanwege hun vele voordelen, waaronder het vermogen om gerichter te werken, zoals uitsluitend op kankercellen, zonder schade aan gezonde cellen te veroorzaken. Wat resulteert in minder bijwerkingen in vergelijking met traditionele behandelingen.

In de wereld van nanogeneeskunde, zijn er nanogeneesmiddelen genaamd polymeer-geneesmiddel conjugaten. In deze gevallen wordt het geneesmiddel verbonden aan een polymeer via een chemische verbinding genaamd een "linker". Dit is anders dan sommige andere nanogeneesmiddelen waarbij het geneesmiddel niet chemisch gebonden is, maar iets eromheen is gewikkeld of wanneer het geneesmiddel zelf gereduceerd is tot nanoschaal. Een polymeer is eigenlijk een soort chemische structuur die is opgebouwd uit herhaalde eenheden, vergelijkbaar met LEGO-blokjes. Bijvoorbeeld, in het geval van polypeptide-geneesmiddel conjugaten, bestaat het polymeer uit een polypeptide, met herhaalde eenheden die aminozuren worden genoemd.

De kunst van het nanomedicijn: ontwerp en synthese

Een polypeptide-geneesmiddel conjugaat, dat bekend staat als ‘trivalent’ werd gedesignd en gesynthetiseerd. Het systeem is genaamd 'trivalent', omdat het bestaat uit drie belangrijke onderdelen. Ten eerste is er trifenylphophonium (TPP), dat als een soort richtpunt fungeert en zorgt voor accumulatie in de mitochondriën van kankercellen. Dan hebben we polyornithine (PLO), een soort drager die helpt bij het afleveren van het geneesmiddel in het cytosol (het binnenste gedeelte van de cel) nadat deze door de cel is opgenomen. Ten slotte is er het geneesmiddel zelf dat moet worden afgeleverd. Om deze componenten te verbinden, wordt een disulfidelinker gebruikt.

Het systeem werd gesynthetiseerd in een complex proces van acht stappen, waarbij een fluorescerende stof genaamd cy5 amine werd gebruikt als een substituut voor een mogelijk geneesmiddel, om visualisatie via microscopie mogelijk te maken. Na een uitgebreide karakterisering van het uiteindelijke trivalente systeem werd bevestigd dat de juiste structuur was gesynthetiseerd. Bovendien werd een geoptimaliseerde opzuiveringsmethode ontwikkeld aangezien er na opzuivering nog steeds nevenproducten aanwezig waren.

Het verminderen van de toxiciteit is cruciaal

Vanwege de positieve ladingen, kan het trivalent systeem van nature schadelijk zijn voor alle cellen. Dit komt doordat deze ladingen de elektrische balans van de cel verstoren, wat schade kan veroorzaken aan de celmembraan structuur, normale cel processen kan verstoren en zelfs tot celdood kan leiden. Hierdoor is het testen en verminderen van de cel toxiciteit in borstkankercellen een belangrijk aspect in de ontwikkeling van een effectief nanomedicijn.

Om de schadelijke effecten van het trivalent systeem te verminderen, hebben we de positieve ladingen bedekt met een stof genaamd VLC3, die van nature negatief geladen is. Er is ook gebruik gemaakt van plasmide DNA om een soort stabiel "pakketje" te vormen met het trivalent nanosysteem, genaamd polyplexes.

Toekomst?

Als we erin slagen om de schade aan cellen met succes te verminderen toont het trivalente systeem potentieel voor het leveren van geneesmiddelen of zelf genetisch materiaal (aangezien plasmide DNA werd gebruikt in de polyplexes) in mitochondria van de kankercellen. Het is echter noodzakelijk om verder te testen hoe het trivalente systeem presteert wanneer het daadwerkelijk wordt gebruikt om geneesmiddelen in de mitochondria te krijgen in plaats van de fluorescerende stof.

Bovendien toont het trivalente systeem niet alleen potentieel voor kankerbehandeling, maar ook voor de behandeling van een breed scala aan ziekten die verband houden met mitochondriale disfuncties, zoals neurodegeneratieve aandoeningen (zoals Alzheimer en Parkinson), metabole ziekten (waaronder diabetes en obesitas), evenals degeneratieve aandoeningen (zoals hart- en nierfalen).

Bibliografie

1.       Webster TJ. Nanomedicine: what’s in a definition? Int J Nanomedicine [Internet]. 2006 [cited 2023 Mar 2];1(2):115. Available from: /pmc/articles/PMC2426787/

2.       Shan X, Gong X, Li J, Wen J, Li Y, Zhang Z. Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharm Sin B [Internet]. 2022 Jul 1 [cited 2023 Mar 2];12(7):3028. Available from: /pmc/articles/PMC9293719/

3.       Farjadian F, Ghasemi A, Gohari O, Roointan A, Karimi M, Hamblin MR. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. https://doi.org/102217/nnm-2018-0120 [Internet]. 2018 Nov 19 [cited 2023 Mar 2];14(1):93–126. Available from: https://www.futuremedicine.com/doi/10.2217/nnm-2018-0120

4.       Gadekar V, Borade Y, Kannaujia S, Rajpoot K, Anup N, Tambe V, et al. Nanomedicines accessible in the market for clinical interventions. Journal of Controlled Release. 2021 Feb 10;330:372–97.

5.       Poon W, Kingston BR, Ouyang B, Ngo W, Chan WCW. A framework for designing delivery systems. Nature Nanotechnology 2020 15:10 [Internet]. 2020 Sep 7 [cited 2023 Mar 2];15(10):819–29. Available from: https://www.nature.com/articles/s41565-020-0759-5

6.       Huang H, Feng W, Chen Y, Shi J. Inorganic nanoparticles in clinical trials and translations. Nano Today. 2020 Dec 1;35:100972.

7.       Melnyk T, Đorđević S, Conejos-Sánchez I, Vicent MJ. Therapeutic potential of polypeptide-based conjugates: Rational design and analytical tools that can boost clinical translation. Adv Drug Deliv Rev. 2020 Jan 1;160:136–69.

8.       Younis MA, Tawfeek HM, Abdellatif AAH, Abdel-Aleem JA, Harashima H. Clinical translation of nanomedicines: Challenges, opportunities, and keys. Adv Drug Deliv Rev. 2022 Feb 1;181:114083.

9.       Amaldoss MJN, Yang JL, Koshy P, Unnikrishnan A, Sorrell CC. Inorganic nanoparticle-based advanced cancer therapies: Promising combination strategies. Drug Discov Today. 2022 Dec 1;27(12):103386.

10.     Elsharkasy OM, Nordin JZ, Hagey DW, de Jong OG, Schiffelers RM, Andaloussi S EL, et al. Extracellular vesicles as drug delivery systems: Why and how? Adv Drug Deliv Rev. 2020 Jan 1;159:332–43.

11.     Shah S, Dhawan V, Holm R, Nagarsenker MS, Perrie Y. Liposomes: Advancements and innovation in the manufacturing process. Adv Drug Deliv Rev. 2020 Jan 1;154–155:102–22.

12.     Barenholz Y. Doxil® — The first FDA-approved nano-drug: Lessons learned. Journal of Controlled Release. 2012 Jun 10;160(2):117–34.

13.     Suzuki Y, Ishihara H. Difference in the lipid nanoparticle technology employed in three approved siRNA (Patisiran) and mRNA (COVID-19 vaccine) drugs. Drug Metab Pharmacokinet [Internet]. 2021 Dec 1 [cited 2023 May 28];41. Available from: https://pubmed.ncbi.nlm.nih.gov/34757287/

14.     Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and Challenges of Liposome Assisted Drug Delivery. Front Pharmacol [Internet]. 2015 [cited 2023 May 27];6(DEC):286. Available from: /pmc/articles/PMC4664963/

15.     Cao J, Huang D, Peppas NA. Advanced engineered nanoparticulate platforms to address key biological barriers for delivering chemotherapeutic agents to target sites. Adv Drug Deliv Rev. 2020 Dec 1;167:170–88.

16.     Zhao M, Lei C, Yang Y, Bu X, Ma H, Gong H, et al. Abraxane, the Nanoparticle Formulation of Paclitaxel Can Induce Drug Resistance by Up-Regulation of P-gp. PLoS One [Internet]. 2015 Jul 16 [cited 2023 May 28];10(7). Available from: /pmc/articles/PMC4504487/

17.     Yildiz I, Shukla S, Steinmetz NF. Applications of viral nanoparticles in medicine. Curr Opin Biotechnol. 2011 Dec 1;22(6):901–8.

18.     Rohovie MJ, Nagasawa M, Swartz JR. Virus‐like particles: Next‐generation nanoparticles for targeted therapeutic delivery. Bioeng Transl Med [Internet]. 2017 Mar [cited 2023 May 28];2(1):43. Available from: /pmc/articles/PMC5689521/

19.     Chung YH, Cai H, Steinmetz NF. Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications. Adv Drug Deliv Rev [Internet]. 2020 Jan 1 [cited 2023 Apr 7];156:214. Available from: /pmc/articles/PMC7320870/

20.     Werner ME, Cummings ND, Sethi M, Wang EC, Sukumar R, Moore DT, et al. Preclinical Evaluation of Genexol-PM, a Nanoparticle Formulation of Paclitaxel, as a Novel Radiosensitizer for the Treatment of Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys [Internet]. 2013 Jul 7 [cited 2023 May 28];86(3):463. Available from: /pmc/articles/PMC3750707/

21.     Zagorodko O, Arroyo-Crespo JJ, Nebot VJ, Vicent MJ. Polypeptide-Based Conjugates as Therapeutics: Opportunities and Challenges. Macromol Biosci. 2017 Jan 1;17(1).

22.     Price CF, Tyssen D, Sonza S, Davie A, Evans S, Lewis GR, et al. SPL7013 gel (vivagel®) retains potent HIV-1 and HSV-2 inhibitory activity following vaginal administration in humans. PLoS One. 2011 Sep 15;6(9).

23.     Rodriguez-Otormin F, Duro-Castano A, Conejos-Sánchez I, Vicent MJ. Envisioning the future of polymer therapeutics for brain disorders. Wiley Interdiscip Rev Nanomed Nanobiotechnol [Internet]. 2019 Jan 1 [cited 2023 May 30];11(1):e1532. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/wnan.1532

24.     Asad S, Jacobsen AC, Teleki A. Inorganic nanoparticles for oral drug delivery: opportunities, barriers, and future perspectives. Curr Opin Chem Eng. 2022 Dec 1;38:100869.

25.     Tonga GY, Moyano DF, Kim CS, Rotello VM. Inorganic nanoparticles for therapeutic delivery: Trials, tribulations and promise. Curr Opin Colloid Interface Sci. 2014 Apr 1;19(2):49–55.

26.     Khalid K, Tan X, Mohd Zaid HF, Tao Y, Lye Chew C, Chu DT, et al. Advanced in developmental organic and inorganic nanomaterial: a review. Bioengineered [Internet]. 2020 Jan 1 [cited 2023 May 30];11(1):328. Available from: /pmc/articles/PMC7161543/

27.     Paul W, Sharma CP. Inorganic nanoparticles for targeted drug delivery. Biointegration of Medical Implant Materials: Science and Design. 2010 Jan 1;204–35.

28.     Shan X, Gong X, Li J, Wen J, Li Y, Zhang Z. Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharm Sin B. 2022 Jul 1;12(7):3028–48.

29.     (PDF) A REVIEW ON SIGNIFICANCE OF NANOCRYSTALS IN DRUG DELIVERY [Internet]. [cited 2023 May 30]. Available from: https://www.researchgate.net/publication/330193781_A_REVIEW_ON_SIGNIFIC…

30.     Haeri A, Osouli M, Bayat F, Alavi S, Dadashzadeh S. Nanomedicine approaches for sirolimus delivery: a review of pharmaceutical properties and preclinical studies. Artif Cells Nanomed Biotechnol [Internet]. 2018 Oct 31 [cited 2023 May 28];46(sup1):1–14. Available from: https://pubmed.ncbi.nlm.nih.gov/29186990/

31.     Dadwal A, Garg A, Kumar B, Narang RK, Mishra N. Polymer-drug conjugates: Origins, progress to date, and future directions. In: Smart Polymeric Nano-Constructs in Drug Delivery [Internet]. Elsevier; 2023 [cited 2023 Apr 11]. p. 221–48. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780323912488000155

32.     Haag R, Kratz F. Polymer Therapeutics: Concepts and Applications. Angewandte Chemie International Edition [Internet]. 2006 Feb 13 [cited 2023 Mar 28];45(8):1198–215. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/anie.200502113

33.     Abioye AO, George ;, Chi T, Adeola ;, Kola-Mustapha T, Ketan Ruparelia ;, et al. Polymer-drug nanoconjugate-an innovative nanomedicine: challenges and recent advancements in rational formulation design for effective delivery of poorly soluble drugs.

34.     Ekladious I, Colson YL, Grinstaff MW. Polymer-drug conjugate therapeutics: advances, insights and prospects. Nat Rev Drug Discov [Internet]. 2019 Apr 1 [cited 2023 May 29];18(4):273–94. Available from: https://pubmed.ncbi.nlm.nih.gov/30542076/

35.     Javia A, Vanza J, Bardoliwala D, Ghosh S, Misra LA, Patel M, et al. Polymer-drug conjugates: Design principles, emerging synthetic strategies and clinical overview. Int J Pharm. 2022 Jul 25;623.

36.     Gong L, Zhao H, Liu Y, Wu H, Liu C, Chang S, et al. Research advances in peptide‒drug conjugates. Acta Pharm Sin B [Internet]. 2023 Feb 28 [cited 2023 Mar 6]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S2211383523000606

37.     Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery 2020 20:2 [Internet]. 2020 Dec 4 [cited 2023 Apr 18];20(2):101–24. Available from: https://www.nature.com/articles/s41573-020-0090-8

38.     Valkenburg KC, De Groot AE, Pienta KJ. Targeting the tumour stroma to improve cancer therapy. Nat Rev Clin Oncol. 2018 Jun 1;15(6):366–81.

39.     Polypeptide‐Based Conjugates as Therapeutics: Opportunities and Challenges | Enhanced Reader.

40.     Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. Journal of Pharmacy and Pharmacology [Internet]. 2019 Aug 1 [cited 2023 Apr 22];71(8):1185–98. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/jphp.13098

41.     Chen Z, Kankala RK, Long L, Xie S, Chen A, Zou L. Current understanding of passive and active targeting nanomedicines to enhance tumor accumulation. Coord Chem Rev [Internet]. 2023 Apr 15 [cited 2023 Mar 28];481:215051. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0010854523000401

42.     Nagpure G, RB Singh K, Singh J, Singh RP. Passive and active targeted drug delivery strategies. Nanotechnology for Drug Delivery and Pharmaceuticals. 2023 Jan 1;225–34.

43.     Golombek SK, May JN, Theek B, Appold L, Drude N, Kiessling F, et al. Tumor targeting via EPR: Strategies to enhance patient responses. Adv Drug Deliv Rev. 2018 May 1;130:17–38.

44.     Pearce AK, O’Reilly RK. Insights into Active Targeting of Nanoparticles in Drug Delivery: Advances in Clinical Studies and Design Considerations for Cancer Nanomedicine. Bioconjug Chem [Internet]. 2019 Sep 18 [cited 2023 Apr 12];30(9):2300–11. Available from: https://pubs.acs.org/doi/full/10.1021/acs.bioconjchem.9b00456

45.     BAZAK R, HOURI M, ACHY S EL, HUSSEIN W, REFAAT T. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature. Mol Clin Oncol [Internet]. 2014 Nov [cited 2023 Apr 19];2(6):904. Available from: /pmc/articles/PMC4179822/

46.     Fraguas-Sánchez AI, Lozza I, Torres-Suárez AI. Actively Targeted Nanomedicines in Breast Cancer: From Pre-Clinal Investigation to Clinic. Cancers (Basel) [Internet]. 2022 Mar 1 [cited 2023 Apr 12];14(5). Available from: /pmc/articles/PMC8909490/

47.     Saminathan A, Zajac M, Anees P, Krishnan Y. Organelle-level precision with next-generation targeting technologies. Nature Reviews Materials 2021 7:5 [Internet]. 2021 Nov 23 [cited 2023 May 29];7(5):355–71. Available from: https://www.nature.com/articles/s41578-021-00396-8

48.     Sakhrani NM, Padh H. Organelle targeting: third level of drug targeting. Drug Des Devel Ther [Internet]. 2013 [cited 2023 May 29];7:585. Available from: /pmc/articles/PMC3718765/

49.     Yang J, Griffin A, Qiang Z, Ren J. Organelle-targeted therapies: a comprehensive review on system design for enabling precision oncology. Signal Transduct Target Ther [Internet]. 2022 Dec 1 [cited 2023 May 29];7(1). Available from: https://pubmed.ncbi.nlm.nih.gov/36402753/

50.     Khan AA, Allemailem KS, Almatroudi A, Almatroodi SA, Alsahli MA, Rahmani AH. Novel strategies of third level (Organelle-specific) drug targeting: An innovative approach of modern therapeutics. J Drug Deliv Sci Technol. 2021 Feb 1;61.

51.     Smith SA, Selby LI, Johnston APR, Such GK. The Endosomal Escape of Nanoparticles: Toward More Efficient Cellular Delivery. Bioconjug Chem [Internet]. 2019 Feb 20 [cited 2023 Apr 16];30(2):263–72. Available from: https://pubs.acs.org/doi/full/10.1021/acs.bioconjchem.8b00732

52.     Sahay G, Alakhova DY, Kabanov A V. Endocytosis of nanomedicines. Journal of Controlled Release. 2010 Aug 3;145(3):182–95.

53.     Patel S, Kim J, Herrera M, Mukherjee A, Kabanov A V., Sahay G. Brief update on endocytosis of nanomedicines. Adv Drug Deliv Rev. 2019 Apr 1;144:90–111.

54.     Selby LI, Cortez-Jugo CM, Such GK, Johnston APR. Nanoescapology: progress toward understanding the endosomal escape of polymeric nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol [Internet]. 2017 Sep 1 [cited 2023 Apr 16];9(5):e1452. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/wnan.1452

55.     Iversen TG, Skotland T, Sandvig K. Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano Today. 2011 Apr 1;6(2):176–85.

56.     Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, et al. Cellular Uptake of Nanoparticles: Journey Inside the Cell. Chem Soc Rev [Internet]. 2017 Jul 7 [cited 2023 May 29];46(14):4218. Available from: /pmc/articles/PMC5593313/

57.     Sousa De Almeida M, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev [Internet]. 2021 May 11 [cited 2023 May 29];50(9):5397–434. Available from: https://pubs.rsc.org/en/content/articlehtml/2021/cs/d0cs01127d

58.     Pei D, Buyanova M. Overcoming Endosomal Entrapment in Drug Delivery. Bioconjug Chem [Internet]. 2019 Feb 20 [cited 2023 Apr 12];30(2):273–83. Available from: https://pubs.acs.org/doi/full/10.1021/acs.bioconjchem.8b00778

59.     Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Transport into the Cell from the Plasma Membrane: Endocytosis. 2002 [cited 2023 Apr 20]; Available from: https://www.ncbi.nlm.nih.gov/books/NBK26870/

60.     Xu ZPG. Strategy for Cytoplasmic Delivery Using Inorganic Particles. Pharm Res [Internet]. 2022 Jun 1 [cited 2023 May 29];39(6):1035. Available from: /pmc/articles/PMC9197872/

61.     Plaza-Ga I, Manzaneda-González V, Kisovec M, Almendro-Vedia V, Muñoz-Úbeda M, Anderluh G, et al. PH-triggered endosomal escape of pore-forming Listeriolysin O toxin-coated gold nanoparticles. J Nanobiotechnology [Internet]. 2019 Oct 17 [cited 2023 May 29];17(1):1–10. Available from: https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-01…

62.     Serulla M, Anees P, Hallaj A, Trofimenko E, Kalia T, Krishnan Y, et al. Plasma membrane depolarization reveals endosomal escape incapacity of cell-penetrating peptides. European Journal of Pharmaceutics and Biopharmaceutics. 2023 Mar 1;184:116–24.

63.     Lorents A, Kodavali PK, Oskolkov N, Langel Ü, Hällbrink M, Pooga M. Cell-penetrating Peptides Split into Two Groups Based on Modulation of Intracellular Calcium Concentration. J Biol Chem [Internet]. 2012 May 5 [cited 2023 Apr 19];287(20):16880. Available from: /pmc/articles/PMC3351292/

64.     Mitochondria: Form, function, and disease [Internet]. [cited 2023 Feb 16]. Available from: https://www.medicalnewstoday.com/articles/320875

65.     Liew SS, Qin X, Zhou J, Li L, Huang W, Yao SQ. Smart Design of Nanomaterials for Mitochondria-Targeted Nanotherapeutics. Angewandte Chemie - International Edition. 2021 Feb 1;60(5):2232–56.

66.     Dong L, Neuzil J. Targeting mitochondria as an anticancer strategy. Cancer Commun [Internet]. 2019 Oct 25 [cited 2023 Apr 21];39(1). Available from: /pmc/articles/PMC6815053/

67.     Koklesova L, Samec M, Liskova A, Zhai K, Büsselberg D, Giordano FA, et al. Mitochondrial impairments in aetiopathology of multifactorial diseases: common origin but individual outcomes in context of 3P medicine. EPMA J [Internet]. 2021 Mar 1 [cited 2023 Apr 23];12(1):27. Available from: /pmc/articles/PMC7931170/

68.     Bottje W. Mitochondrial Physiology. Sturkie’s Avian Physiology: Sixth Edition. 2015 Jan 1;39–51.

69.     Mitochondria - The Cell - NCBI Bookshelf [Internet]. [cited 2023 Apr 16]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK9896/

70.     Tabish TA, Hamblin MR. Mitochondria-targeted nanoparticles (mitoNANO): An emerging therapeutic shortcut for cancer. Biomaterials and Biosystems. 2021 Sep 1;3:100023.

71.     Klein K, He K, Younes AI, Barsoumian HB, Chen D, Ozgen T, et al. Role of Mitochondria in Cancer Immune Evasion and Potential Therapeutic Approaches. Front Immunol. 2020 Oct 16;11:2622.

72.     Ribas V, García‐Ruiz C, Fernández‐Checa JC. Mitochondria, cholesterol and cancer cell metabolism. Clin Transl Med. 2016 Dec;5(1).

73.     Liberti M V., Locasale JW. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem Sci [Internet]. 2016 Mar 1 [cited 2023 Apr 21];41(3):211. Available from: /pmc/articles/PMC4783224/

74.     Yamada Y, Satrialdi, Hibino M, Sasaki D, Abe J, Harashima H. Power of mitochondrial drug delivery systems to produce innovative nanomedicines. Adv Drug Deliv Rev. 2020 Jan 1;154–155:187–209.

75.     Wang JY, Li JQ, Xiao YM, Fu B, Qin ZH. Triphenylphosphonium (TPP)-Based Antioxidants: A New Perspective on Antioxidant Design. ChemMedChem [Internet]. 2020 Mar 5 [cited 2023 May 27];15(5):404–10. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/cmdc.201900695

76.     Francesco EM De, Ózsvári B, Sotgia F, Lisanti MP. Dodecyl-TPP Targets Mitochondria and Potently Eradicates Cancer Stem Cells (CSCs): Synergy With FDA-Approved Drugs and Natural Compounds (Vitamin C and Berberine). Front Oncol [Internet]. 2019 Aug 7 [cited 2023 May 28];9:615. Available from: /pmc/articles/PMC6692486/

77.     Xiao Q, Du W, Dong X, Du S, Ong SY, Tang G, et al. Cell-Penetrating Mitochondrion-Targeting Ligands for the Universal Delivery of Small Molecules, Proteins and Nanomaterials. Chemistry – A European Journal [Internet]. 2021 Aug 19 [cited 2023 Apr 24];27(47):12207–14. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/chem.202101989

78.     Zielonka J, Joseph J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J, et al. Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chem Rev [Internet]. 2017 Aug 8 [cited 2023 May 28];117(15):10043. Available from: /pmc/articles/PMC5611849/

79.     Li Y, Wang L, Zheng M, Lin Y, Xu H, Liu A, et al. Thin-layer chromatography coupled with HPLC-DAD/UHPLC-HRMS for target and non-target determination of emerging halogenated organic contaminants in animal-derived foods. Food Chem. 2023 Mar 15;404:134678.

80.     Santiago M, Strobel S. Thin Layer Chromatography. Methods Enzymol. 2013 Jan 1;533:303–24.

81.     Schlemmer W, Egger M, Dächert M, Lahti J, Gschiel M, Walzl A, et al. Rapid Separation and Quantitative Analysis of Complex Lipophilic Wood Pulp Extractive Mixtures Based on 2D Thin Layer Chromatography. ACS Sustain Chem Eng [Internet]. 2020 Aug 24 [cited 2023 Apr 29];8(33):12534–41. Available from: https://pubs.acs.org/doi/full/10.1021/acssuschemeng.0c03512

82.     Singh MK, Singh A. Nuclear magnetic resonance spectroscopy. Characterization of Polymers and Fibres [Internet]. 2022 Jan 1 [cited 2023 Apr 29];321–39. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128239865000117

83.     Babij NR, McCusker EO, Whiteker GT, Canturk B, Choy N, Creemer LC, et al. NMR Chemical Shifts of Trace Impurities: Industrially Preferred Solvents Used in Process and Green Chemistry. Org Process Res Dev [Internet]. 2016 Mar 18 [cited 2023 May 3];20(3):661–7. Available from: https://pubs.acs.org/doi/full/10.1021/acs.oprd.5b00417

84.     Hanson JE. NMR spectroscopy in nondeuterated solvents (No-D NMR): Applications in the undergraduate organic laboratory. ACS Symposium Series [Internet]. 2013 [cited 2023 May 3];1128:69–81. Available from: https://pubs.acs.org/doi/pdf/10.1021/bk-2013-1128.ch005

85.     Pitt JJ. Principles and Applications of Liquid Chromatography-Mass Spectrometry in Clinical Biochemistry. Clin Biochem Rev [Internet]. 2009 Feb [cited 2023 Apr 29];30(1):19. Available from: /pmc/articles/PMC2643089/

86.     Mukherjee PK. LC–MS: A Rapid Technique for Understanding the Plant Metabolite Analysis. Quality Control and Evaluation of Herbal Drugs. 2019 Jan 1;459–79.

87.     Ho CS, Lam CWK, Chan MHM, Cheung RCK, Law LK, Lit LCW, et al. Electrospray Ionisation Mass Spectrometry: Principles and Clinical Applications. Clin Biochem Rev [Internet]. 2003 [cited 2023 May 2];24(1):3. Available from: /pmc/articles/PMC1853331/

88.     Pitt JJ. Principles and Applications of Liquid Chromatography-Mass Spectrometry in Clinical Biochemistry. Clin Biochem Rev [Internet]. 2009 Feb [cited 2023 May 2];30(1):19. Available from: /pmc/articles/PMC2643089/

89.     Banerjee S, Mazumdar S. Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte. Int J Anal Chem [Internet]. 2012 [cited 2023 May 4];2012:1–40. Available from: /pmc/articles/PMC3348530/

90.     Wang M, Shen J, Thomas JC, Mu T, Liu W, Wang Y, et al. Particle Size Measurement Using Dynamic Light Scattering at Ultra-Low Concentration Accounting for Particle Number Fluctuations. Materials [Internet]. 2021 Oct 1 [cited 2023 May 10];14(19). Available from: /pmc/articles/PMC8510349/

91.     Tosi MM, Ramos AP, Esposto BS, Jafari SM. Dynamic light scattering (DLS) of nanoencapsulated food ingredients. Characterization of Nanoencapsulated Food Ingredients. 2020 Jan 1;191–211.

92.     Bhattacharjee S. DLS and zeta potential - What they are and what they are not? J Control Release [Internet]. 2016 Aug 10 [cited 2023 May 10];235:337–51. Available from: https://pubmed.ncbi.nlm.nih.gov/27297779/

93.     Zeta Potential and Particle Size Analyzer - Departement Materiaalkunde [Internet]. [cited 2023 May 10]. Available from: https://www.mtm.kuleuven.be/equipment/powder-metallurgy/zeta-potential-…

94.     Stetefeld J, McKenna SA, Patel TR. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev [Internet]. 2016 Dec 1 [cited 2023 May 17];8(4):409. Available from: /pmc/articles/PMC5425802/

95.     Conejos-Sánchez I, Gallon E, Niño-Pariente A, Smith JA, De La Fuente AG, Di Canio L, et al. Polyornithine-based polyplexes to boost effective gene silencing in CNS disorders. Nanoscale. 2020 Mar 21;12(11):6285–99.

96.     Gottlieb HE, Kotlyar V, Nudelman A. NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. 1997;

97.     Carter M, Shieh JC. Molecular Cloning and Recombinant DNA Technology. Guide to Research Techniques in Neuroscience. 2010 Jan 1;207–27.

98.     Vasiliu T, Cojocaru C, Rotaru A, Pricope G, Pinteala M, Clima L. Optimization of Polyplex Formation between DNA Oligonucleotide and Poly(l-Lysine): Experimental Study and Modeling Approach. Int J Mol Sci [Internet]. 2017 Jun 17 [cited 2023 May 7];18(6). Available from: /pmc/articles/PMC5486112/

99.     Li R, Nanoscale /, Moore MJ, Bodera F, Hernandez C, Shirazi N, et al. The dance of the nanobubbles: detecting acoustic backscatter from sub-micron bubbles using ultra-high frequency acoustic microscopy. 2020;12:21420.

100.   Stellwagen NC. Electrophoresis of DNA in agarose gels, polyacrylamide gels and in free solution. Electrophoresis. 2009;30(1).

Universiteit of Hogeschool
Universiteit Gent
Thesis jaar
2023
Promotor(en)
Prof. Dr. María J. Vicent, Prof. Stefaan De Smedt,