Hoe patiëntspecifieke modellering de bestraling van levertumoren kan verbeteren

Elien
Woestenborghs

Hepatocellulair carcinoom (HCC) is de meest voorkomende vorm van leverkanker en de op twee na belangrijkste oorzaak van kanker gerelateerde sterfgevallen wereldwijd. Wanneer het wegsnijden van de tumor geen optie is, wordt HCC vaak behandeld met transarteriële radio-embolisatie (TARE). Tijdens deze behandeling wordt een katheter in de leverslagader ingebracht en worden radioactieve partikels geïnjecteerd om de tumor te bestralen. Omdat de straling hoofdzakelijk op de tumor gericht is, kunnen in vergelijking met andere behandelingen hogere en effectievere stralingsdoses worden gebruikt. 

 

image-20230925102507-1Figuur 1: TARE-procedure. (Bron: [9])

Patiëntspecifieke simulaties 

Hoe de partikels zich verspreiden in de patiënt en hoeveel dosis de tumor en de lever toebedeeld krijgen, hangt af van meerdere variabelen. Zo spelen de geometrie van de slagaders, die heel patiëntspecifiek is, en de katheterlocatie een belangrijke rol, alsook de snelheid, de hoek en de timing van de injectie. Daarnaast kan ook de diameter en de densiteit van de partikels de distributie beïnvloeden. Om de stroming van het bloed en de partikels in de slagaders te simuleren kan men gebruik maken van computational fluid dynamics (CFD)-simulaties. Uit deze simulaties verkrijgt men de partikeldistributie waardoor men kan afleiden hoeveel partikels door elke slagader stromen en of deze naar de tumor of de lever gaan. Door te variëren met de parameters kan de behandeling geoptimaliseerd worden om zo veel mogelijk partikels naar de tumor te sturen en niet naar de gezonde lever. De arts weet dan op welke positie de katheter moet geplaatst worden en met welke snelheid hij de partikels best injecteert.  

De optimale dosis? 

Echter, uit de partikeldistributie kan men geen informatie afleiden over de geabsorbeerde dosis van tumor, lever en andere omliggende organen. Partikels kunnen namelijk, naast de diameter en de dichtheid, ook variëren door de aangewende radioactieve bron, ook wel radionuclide genoemd. Radionucliden verschillen van elkaar in radioactief verval, halveringstijd en energie, factoren die de dosisverdeling sterk beïnvloeden. Om het verval van de partikels te simuleren kunnen Monte Carlo simulaties toegepast worden. Hierbij wordt het verval niet één keer, maar vele malen gesimuleerd. Daardoor kan men niet alleen de dosisverdeling, maar ook de probabiliteit ervan bepalen. 

Doel van het onderzoek 

In dit onderzoek wordt de invloed van het type partikel op de dosisverdeling onderzocht voor een patiëntspecifieke case. Dit gebeurt aan de hand van Monte Carlo simulaties op basis van via CFD-simulaties verkregen partikeldistributies. De CFD-simulaties maken gebruik van een hybride partikel-stromingsmodel. Dit houdt in dat de partikels alleen worden gemodelleerd in de eerste paar vertakkingen; daarna wordt aangenomen dat ze de bloedstroom volgen. Daarnaast wordt ook gewerkt met een CT-scan van de patiënt om rekening te houden met de patiëntspecifieke dichtheden en weefsels.  

De dosisverdeling van vijf verschillende radionucliden wordt met elkaar vergeleken, met name yttrium-90 (Y-90), holmium-166 (Ho-166), renium-188 (Re-188), lutetium-177 (Lu-177) en fosfor-32 (P-32). Daarnaast richt het onderzoek zich ook op de drie commercieel verkrijgbare partikels: SIR-Spheres (Y-90), TheraSpheres (Y-90) en QuiremSpheres (Ho-166). Deze verschillen immers ook in diameter en dichtheid. 

De optimale dosis! 

De resultaten tonen aan dat voor een specifieke patiënt de gebruikelijke aanbevolen dosimetriemodellen de vereiste activiteit overschatten en een hogere tumordosis leveren dan nodig. Het gevolg is echter ook dat de dosis die de lever ondergaat ook overschat wordt. De resultaten suggereren zelfs dat de drempeldosis van de lever waarschijnlijk overschreden zal worden met de voorgestelde dosis. 

Daarnaast blijkt dat binnen de commercieel verkrijgbare partikels de QuiremSpheres de beste optie zijn voor de behandeling van de gesimuleerde patiënt. Globaal genomen blijkt dat Lu-177 gecombineerd met partikels met een diameter van 30 µm en een dichtheid van 1,4 g/cm³ de meest effectieve behandelingsoptie is. Vergeleken met de andere radionucliden en partikeldistributies levert het de hoogste geabsorbeerde tumordosis terwijl het meeste gezonde leverweefsel gespaard blijft. 

Bibliografie

[1] B. Cornell, “Liver blood flow,” 2016. [Online]. Available: https://ib.bioninja.com.au/ options/option-d-human-physiology/d3-functions-of-the-liver/liver-blood-flow.html

[2] L. Sibulesky, “Normal liver anatomy,” Clinical Liver Disease, vol. 2, no. S1, p. S1–S3, Mar 2013.

[3] J. L. Petrick, A. A. Florio, A. Znaor, D. Ruggieri, M. Laversanne, C. S. Alvarez, J. Ferlay, P. C. Valery, F. Bray, K. A. McGlynn, and et al., “International trends in hepatocellular carcinoma incidence, 1978–2012,” International Journal of Cancer, vol. 147, no. 2, p. 317–330, Oct 2019.

[4] W. H. O. World Health Organization, “Cancer today,” 2020. [Online]. Available: http://gco.iarc.fr/today

[5] L. Kulik and H. B. El-Serag, “Epidemiology and management of hepatocellular carcinoma,” Gastroenterology, vol. 156, no. 2, Oct 2018.

[6] C. Santillan, K. Fowler, Y. Kono, and V. Chernyak, “Li-rads major features: Ct, mri with extracellular agents, and mri with hepatobiliary agents,” Abdominal Radiology, vol. 43, no. 1, p. 75–81, Aug 2017.

[7] J. Trojan, S. Zangos, and A. A. Schnitzbauer, “Diagnostics and treatment of hepatocellular carcinoma in 2016: Standards and developments,” Visceral Medicine, vol. 32, no. 2, p. 116–120, Feb 2016.

[8] J. W. Kung and K. K. Ng, “Role of locoregional therapies in the management of patients with hepatocellular carcinoma,” Hepatoma Research, vol. 8, p. 17, Apr 2022.

[9] “Radiation therapy: Sbrt and sirt,” Jun 2022. [Online]. Available: https://www. cancercouncil.com.au/liver-cancer/treatment/radiotherapy/

[10] S. A. Gulec and A. J. McGoron, “Radiomicrosphere dosimetry: Principles and current state of the art,” Seminars in Nuclear Medicine, vol. 52, no. 2, p. 215–228, Mar 2022. 

[11] R. Wang, B. Ponsard, H. Wolterbeek, and A. Denkova, “Core–shell structured gold nanoparticles as carrier for 166dy/166ho in vivo generator,” EJNMMI Radiopharmacy and Chemistry, vol. 7, no. 1, Jul 2022.

[12] “Iodine-131-decay-scheme-simplified,” Mar 2011. [Online]. Available: https://commons. wikimedia.org/wiki/File:Iodine-131-decay-scheme-simplified.svg

[13] B. Mahoney and V. Yeluru, “Nuclear medicine: Fundamentals,” Apr 2020. [Online]. Available: https://radiologykey.com/nuclear-medicine-fundamentals/

[14] A. Dash, M. R. Pillai, and F. F. Knapp, “Production of 177lu for targeted radionuclide therapy: Available options,” Nuclear Medicine and Molecular Imaging, vol. 49, no. 2, p. 85–107, Feb 2015.

[15] R. Anuradha, D. Kulkarni, L. Joseph, and M. Kulkarni, “Standardisation of rhenium-188 and determination of calibration factors for secondary standard and radionuclide calibrator,” Applied Radiation and Isotopes, vol. 152, p. 52–56, Jun 2019.

[16] F. Jaubert, “Standardization of a 186re sodium perrhenate radiochemical solution using the tdcr method in liquid scintillation counting,” Applied Radiation and Isotopes, vol. 66, no. 6-7, p. 960–964, Feb 2008.

[17] N. A. Hashikin, C. H. Yeong, S. Guatelli, B. J. Abdullah, K. H. Ng, A. Malaroda, A. B. Rosenfeld, and A. C. Perkins, “Organ doses from hepatic radioembolization with90y,153sm,166ho and177lu: A monte carlo simulation study using geant4,” Journal of Physics: Conference Series, vol. 694, p. 012059, 2016.

[18] A. Pashazadeh and C. Hoeschen, “Comparison of the y-90 brachytherapy and ir-192 brachytherapy of skin tumors: A simulation study,” Current Directions in Biomedical Engineering, vol. 8, no. 2, p. 388–391, Sep 2022.

[19] R. Z. Abdel-Misih Sherif and M. Bloomston, “Liver anatomy,” Surgical Clinics of North America, vol. 90, no. 4, p. 643–653, Aug 2010.

[20] S. Sethi and T. Newman, “The liver: Structure, function, and disease,” Aug 2022. [Online]. Available: https://www.medicalnewstoday.com/articles/305075

[21] A. Kalra, E. Yetiskul, C. Wehrle, and et al., “Physiology, liver,” Updated 2022 May 8. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK535438/

[22] J. Balogh, D. Victor, E. H. Asham, S. G. Burroughs, M. Boktour, A. Saharia, X. Li, M. Ghobrial, and H. Monsour, “Hepatocellular carcinoma: A review,” Journal of Hepatocellular Carcinoma, vol. Volume 3, p. 41–53, Oct 2016.

[23] H. B. El-Serag, J. A. Marrero, L. Rudolph, and K. R. Reddy, “Diagnosis and treatment of hepatocellular carcinoma,” Gastroenterology, vol. 134, no. 6, p. 1752–1763, May 2008.

[24] A. I. Gomaa, S. A. Khan, M. B. Toledano, I. Waked, and S. D. Taylor-Robinson, “Hepatocellular carcinoma: Epidemiology, risk factors and pathogenesis,” World Journal of Gastroenterology, vol. 14, no. 27, p. 4300, Jul 2008.

[25] H. B. El–Serag and K. L. Rudolph, “Hepatocellular carcinoma: Epidemiology and molecular carcinogenesis,” Gastroenterology, vol. 132, no. 7, p. 2557–2576, Jun 2007.

[26] K. A. McGlynn, J. L. Petrick, and H. B. El‐Serag, “Epidemiology of hepatocellular carcinoma,” Hepatology, vol. 73, no. S1, p. 4–13, Nov 2020.

[27] A. Waghray, K. N. Menon, and A. R. Murali, “Hepatocellular carcinoma: From diagnosis to treatment,” World Journal of Hepatology, vol. 7, no. 8, p. 1020, May 2015.

[28] A. S. Befeler and A. M. di Bisceglie, “Hepatocellular carcinoma: Diagnosis and treatment,” Gastroenterology, vol. 122, no. 6, p. 1609–1619, May 2002.

[29] J. M. Llovet, M. Schwartz, and V. Mazzaferro, “Resection and liver transplantation for hepatocellular carcinoma,” Seminars in Liver Disease, vol. 25, no. 02, p. 181–200, 2005.

[30] R. Kianmanesh, J. M. Regimbeau, and J. Belghiti, “Selective approach to major hepatic resection for hepatocellular carcinoma in chronic liver disease,” Surgical Oncology Clinics of North America, vol. 12, no. 1, p. 51–63, Jan 2003.

[31] Z. Chen, H. Xie, M. Hu, T. Huang, Y. Hu, N. Sang, and Y. Zhao, “Review article recent progress in treatment of hepatocellular carcinoma,” American Journal of Cancer Research, Sep 2020.

[32] C. Bouvry, X. Palard, J. Edeline, V. Ardisson, P. Loyer, E. Garin, and N. Lepareur, “Transarterial radioembolization (tare) agents beyond 90y-microspheres,” BioMed Research International, vol. 2018, p. 1–14, Dec 2018.

[33] X. Liu and S. Qin, “Immune checkpoint inhibitors in hepatocellular carcinoma: Opportunities and challenges,” The Oncologist, vol. 24, no. S1, Feb 2019.

[34] D. Plachouris, K. A. Mountris, P. Papadimitroulas, T. Spyridonidis, K. Katsanos, D. Apostolopoulos, N. Papathanasiou, J. D. Hazle, D. Visvikis, G. C. Kagadis, and et al., “Clinical evaluation of a three-dimensional internal dosimetry technique for liver radioembolization with 90y microspheres using dose voxel kernels,” Cancer Biotherapy and Radiopharmaceuticals, vol. 36, no. 10, p. 809–819, Dec 2021.

[35] A. Alrfooh, A. Patel, and S. Laroia, “Transarterial radioembolization agents: A review of the radionuclide agents and the carriers,” Nuclear Medicine and Molecular Imaging, vol. 55, no. 4, p. 162–172, Jul 2021.

[36] K. Memon, R. J. Lewandowski, L. Kulik, A. Riaz, M. F. Mulcahy, and R. Salem, “Radioembolization for primary and metastatic liver cancer,” Seminars in Radiation Oncology, vol. 21, no. 4, p. 294–302, Oct 2011.

[37] F. Giammarile, L. Bodei, C. Chiesa, G. Flux, F. Forrer, F. Kraeber-Bodere, B. Brans, B. Lambert, M. Konijnenberg, F. Borson-Chazot, and et al., “Eanm procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 38, no. 7, p. 1393–1406, Apr 2011.

[38] J. M. Ludwig, E. M. Ambinder, A. Ghodadra, M. Xing, H. J. Prajapati, and H. S. Kim, “Lung shunt fraction prior to yttrium-90 radioembolization predicts survival in patients with neuroendocrine liver metastases: Single-center prospective analysis,” CardioVascular and Interventional Radiology, vol. 39, no. 7, p. 1007–1014, Mar 2016.

[39] H. Dittmann, D. Kopp, J. Kupferschlaeger, D. Feil, G. Groezinger, R. Syha, M. Weissinger, and C. la Fougère, “A prospective study of quantitative spect/ct for evaluation of lung shunt fraction before sirt of liver tumors,” Journal of Nuclear Medicine, vol. 59, no. 9, p. 1366–1372, Sep 2018.

[40] C. Van de Wiele, A. Maes, E. Brugman, Y. D’Asseler, B. De Spiegeleer, G. Mees, and K. Stellamans, “Sirt of liver metastases: Physiological and pathophysiological considerations,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 39, no. 10, p. 1646–1655, Jul 2012.

[41] “Application of isotopes in industry and technology,” Nov 2022. [Online]. Available: https://rinconeducativo.org/en/recursos-educativos/aplicacion-de-los-is…industria-y-tecnologia/

[42] J. Burrill, U. Hafeli, and D. M Liu, “Advances in radioembolization - embolics and isotopes,” Journal of Nuclear Medicine & amp; Radiation Therapy, vol. 01, no. 01, Jun 2011.

[43] P. d’Abadie, M. Hesse, A. Louppe, R. Lhommel, S. Walrand, and F. Jamar, “Microspheres used in liver radioembolization: From conception to clinical effects,” Molecules, vol. 26, no. 13, p. 3966, Jun 2021.

[44] A. Dash, J. Farahati, F. Giammarile, and A. Jalilian, “Production, quality control and clinical applications of radiosynovectomy agents,” Aug 2019. [Online]. Available: https://www.iaea.org/publications/13500/production-quality-control-and-…applications-of-radiosynovectomy-agents

[45] Y. Du, A. Cortez, A. Josefsson, M. Zarisfi, R. Krimins, E. Liapi, and J. R. Nedrow, “Preliminary evaluation of alpha-emitting radioembolization in animal models of hepatocellular carcinoma,” PLOS ONE, vol. 17, no. 1, Jan 2022. 

[46] S. Subramanian, K. Vimalnath, and A. Dash, “Preparation and preliminary in vivo evaluation of 166ho-labeled microspheres for possible use in radioembolic therapy of liver cancer,” Journal of Labelled Compounds and Radiopharmaceuticals, vol. 61, no. 6, p. 509–514, Feb 2018.

[47] S.-J. Wang, W.-Y. Lin, M.-N. Chen, C.-S. Chi, J.-T. Chen, W.-L. Ho, B.-T. Hsieh, L.- H. Shen, Z.-T. Tsai, G. Ting, and et al., “Intratumoral injection of rhenium-188 microspheres into an animal model of hepatoma,” Journal of Nuclear Medicine, vol. 39, no. 10, p. 1752–1757, Oct 1998.

[48] L. Caldarola, U. Rosa, F. Badellino, S. Sosi, and A. Cavalli, “Preparation of 32-p labelled resin microspheres for radiation treatment of tumours by intra-arterial injection,” Minerva nucleare, vol. 55, p. 169–174, 1964.

[49] S. P. Kim, C. Cohalan, N. Kopek, and S. A. Enger, “A guide to 90y radioembolization and its dosimetry,” Physica Medica, vol. 68, p. 132–145, Nov 2019.

[50] “Therasphere™ y-90 glass microspheres - product specifications,” 2023. [Online]. Available: https://www.bostonscientific.com/en-US/products/cancer-therapies/theras…y90-glass-microspheres/product-specifications.html

[51] R. F. Costa, M. B. Azevedo, N. Nascimento, F. F. Sene, J. R. Martinelli, and J. A. Osso, “Production of microspheres labeled with holmium-166 for liver cancer therapy: the preliminary experience at ipen-cnen/sp,” INAC, 2009.

[52] R. F. Brown, L. C. Lindesmith, and D. E. Day, “166holmiumcontaining glass for internal radiotherapy of tumors,” International Journal of Radiation Applications and Instrumentation. Part B. NuclearMedicine and Biology, vol. 18, no. 7, p. 783–790, 1991.

[53] U. O. Häfeli, S. Casillas, D. W. Dietz, G. J. Pauer, L. A. Rybicki, S. D. Conzone, and D. E. Day, “Hepatic tumor radioembolization in a rat model using radioactive rhenium (186re/188re) glass microspheres,” International Journal of Radiation Oncology*Biology*Physics, vol. 44, no. 1, p. 189–199, Apr 1999.

[54] L. Yan, Z. Li, L. Li, L. Wang, W. Lu, X. Xie, and Z. Liang, “The relationship between effects and radiation doses of intra-arterial phosphorus-32 glass microspheres embolization therapy for patients with advanced liver cancer,” Zhonghua Wai Ke Za Zhi, vol. 38, no. 11, p. 837–840, Nov 2000.

[55] G. Wunderlich, A. Drews, and J. Kotzerke, “A kit for labeling of [188re] human serum albumin microspheres for therapeutic use in nuclear medicine,” Applied Radiation and Isotopes, vol. 62, no. 6, p. 915–918, Feb 2005.

[56] G. Wunderlich, E. Schiller, R. Bergmann, and H.-J. Pietzsch, “Comparison of the stability of y-90-, lu-177- and ga-68- labeled human serum albumin microspheres (dota-hsam),” Nuclear Medicine and Biology, vol. 37, no. 8, p. 861–867, Jul 2010.

[57] V. M. Petriev, T. R. Bochkova, D. G. Khachirov, and S. V. Seryĭ, “Obtaining i131- microspheres from human blood serum albumin and their distribution in the body of experimental animals,” Meditsinskaia Radiologiia, vol. 21, no. 6, p. 39–44, Jun 1976.

[58] Guerbet, 2020. [Online]. Available: https://www.guerbet.com/nl-nl/products-solutions/ contrast-agents/lipiodol-ultra-fluid

[59] Dong Wha Pharmaceuticals. [Online]. Available: https://dong-wha.co.kr/english/rnd/ rnd02_01.asp

[60] J. K. Kim, K.-H. Han, J. T. Lee, Y. H. Paik, S. H. Ahn, J. D. Lee, K. S. Lee, C. Y. Chon, and Y. M. Moon, “Long-term clinical outcome of phase iib clinical trial of percutaneous injection with holmium-166/chitosan complex (milican) for the treatment of small hepatocellular carcinoma,” Clinical Cancer Research, vol. 12, no. 2, p. 543–548, Jan 2006.

[61] M. Wondergem, M. L. Smits, M. Elschot, H. W. de Jong, H. M. Verkooijen, M. A. van den Bosch, J. F. Nijsen, and M. G. Lam, “99mtc-macroaggregated albumin poorly predicts the intrahepatic distribution of 90y resin microspheres in hepatic radioembolization,” Journal of Nuclear Medicine, vol. 54, no. 8, p. 1294–1301, Aug 2013.

[62] BackTable Vascular & Interventional, May 2022. [Online]. Available: https: //www.youtube.com/watch?v=tRf_OA_YTEE&t=744s

[63] H. Ahmadzadehfar, H.-J. Biersack, and S. Ezziddin, “Radioembolization of liver tumors with yttrium-90 microspheres,” Seminars in Nuclear Medicine, vol. 40, no. 2, p. 105–121, Mar 2010.

[64] Sirtex, “Sir-spheres microspheres,” Oct 2022. [Online]. Available: https://sirtex.com/ media/cttjwq41/ifu-005-eu-sir-spheres-microspheres-ifu-for-eu_rev-01.pdf

[65] S. A. Gulec, G. Mesoloras, and M. Stabin, “Dosimetric techniques in 90y-microsphere therapy of liver cancer: The mird equations for dose calculations,” Journal of Nuclear Medicine, vol. 47, no. 7, p. 1209–1211, Jul 2006.

[66] S. Gnesin, “Predictive dosimetry: Bsa vs. partition model,” Oct 2007.

[67] J. Perl, J. Shin, J. Schümann, B. Faddegon, and H. Paganetti, “Topas: An innovative proton monte carlo platform for research and clinical applications,” Medical Physics, vol. 39, no. 11, p. 6818–6837, Nov 2012. 

[68] J. Aramburu, R. Antón, A. Rivas, J. C. Ramos, B. Sangro, and J. I. v. Bilbao, “Computational assessment of the effects of the catheter type on particle–hemodynamics during liver radioembolization,” Journal of Biomechanics, vol. 49, no. 15, p. 3705–3713, Nov 2016.

[69] J. Aramburu, R. Antón, A. Rivas, J. C. Ramos, B. Sangro, and J. I. Bilbao, “Numerical investigation of liver radioembolization via computational particle–hemodynamics: The role of the microcatheter distal direction and microsphere injection point and velocity,” Journal of Biomechanics, vol. 49, no. 15, p. 3714–3721, Nov 2016.

[70] J. Aramburu, R. Antón, A. Rivas, J. C. v. Ramos, B. Sangro, and J. I. Bilbao, “The role of angled‐tip microcatheter and microsphere injection velocity in liver radioembolization: A computational particle–hemodynamics study,” International Journal for Numerical Methods in Biomedical Engineering, vol. 33, no. 12, May 2017.

[71] A. S. Kennedy, C. Kleinstreuer, C. A. Basciano, and W. A. Dezarn, “Computer modeling of yttrium-90–microsphere transport in the hepatic arterial tree to improve clinical outcomes,” International Journal of Radiation Oncology*Biology*Physics, vol. 76, no. 2, p. 631–637, Nov 2009.

[72] J. Aramburu, R. Antón, A. Rivas, J. C. Ramos, B. Sangro, and J. I. Bilbao, “Computational particle-haemodynamics analysis of liver radioembolization pretreatment as an actual treatment surrogate,” International Journal for Numerical Methods in Biomedical Engineering, vol. 33, no. 2, Mar 2016.

[73] A. S. Pasciak, G. Abiola, R. P. Liddell, N. Crookston, S. Besharati, D. Donahue, R. E. Thompson, E. Frey, R. A. Anders, M. R. Dreher, and et al., “The number of microspheres in y90 radioembolization directly affects normal tissue radiation exposure,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 47, no. 4, p. 816–827, Apr 2020.

[74] T. Bomberna, G. A. Koudehi, C. Claerebout, C. Verslype, G. Maleux, and C. Debbaut, “Transarterial drug delivery for liver cancer: Numerical simulations and experimental validation of particle distribution in patient-specific livers,” Expert Opinion on Drug Delivery, vol. 18, no. 3, p. 409–422, Dec 2020.

[75] C. A. Basciano, C. Kleinstreuer, A. S. Kennedy, W. A. Dezarn, and E. Childress, “Computer modeling of controlled microsphere release and targeting in a representative hepatic artery system,” Annals of Biomedical Engineering, vol. 38, no. 5, p. 1862–1879, Feb 2010.

[76] T. Bomberna, S. Vermijs, M. Lejoly, C. Verslype, L. Bonne, G. Maleux, and C. Debbaut, “A hybrid particle-flow cfd modeling approach in truncated hepatic arterial trees for liver radioembolization: A patient-specific case study,” Frontiers in Bioengineering and Biotechnology, vol. 10, May 2022. 

[77] M. F. Abdul Hadi, A. N. Abdullah, N. A. Hashikin, C. K. Ying, C. H. Yeong, T. L. Yoon, and K. H. Ng, “Utilizing 3d slicer to incorporate tomographic images into gate monte carlo simulation for personalized dosimetry in yttrium‐90 radioembolization,” Medical Physics, vol. 49, no. 12, p. 7742–7753, Sep 2022.

[78] E. Roncali, A. Taebi, C. Foster, and C. Vu, “Personalized dosimetry for liver cancer y-90 radioembolization using computational fluid dynamics and monte carlo simulation,” Annals of Biomedical Engineering, vol. 48, no. 5, p. 1499–1510, Jan 2020.

[79] A. Taebi, C. Vu, and E. Roncali, “Multiscale computational fluid dynamics modeling for personalized liver cancer radioembolization dosimetry,” Journal of Biomechanical Engineering, vol. 143, no. 1, Sep 2020.

[80] “Gate/GateMaterials.db at develop OpenGATE/Gate -github.com,” https://github.com/ OpenGATE/Gate/blob/develop/GateMaterials.db.

[81] E. Bär, P. Andreo, A. Lalonde, G. Royle, and H. Bouchard, “Optimized i-values for use with the bragg additivity rule and their impact on proton stopping power and range uncertainty,” Physics in Medicine & amp; Biology, vol. 63, no. 16, p. 165007, Aug 2018.

[82] C. C. Silva, M. B. Berdeguez, T. Barboza, S. A. Souza, D. Braz, A. X. Silva, and L. V. Sa, “Preclinical radiation internal dosimetry in the development of new radiopharmaceuticals using gate monte carlo simulation,” Radiation Physics and Chemistry, vol. 173, p. 108879, Aug 2020.

[83] E. Fermi, “An attempt of a theory of beta radiation,” Z.Phys, vol. 88, no. 161, p. 10–21, 1934.

[84] P. Cappellaro, “7.2: Beta decay,” Mar 2022. [Online]. Available: https://phys.libretexts.org/Bookshelves/Nuclear_and_Particle_Physics/In… to_Applied_Nuclear_Physics_(Cappellaro)/07%3A_Radioactive_Decay_Part_II/7. 02%3A_Beta_Decay#:~:text=Q%CE%B2%E2%88%92%3D%7B%5Bm,recoil%20of% 20the%20massive%20nucleus).

[85] D. Cheneler and M. Ward, “Power output and efficiency of beta-emitting microspheres,” Radiation Physics and Chemistry, vol. 106, p. 204–212, Aug 2014.

[86] O. Šrámek, “Long-lived and short-lived radionuclides of the earth,” Mar 2020. [Online]. Available: https://geo.mff.cuni.cz/~sramek/research/radionuclidesEarth/ radionuclidesEarth.html

[87] T. James, J. Hill, T. Fahrbach, and Z. Collins, “Differences in radiation activity between glass and resin 90y microspheres in treating unresectable hepatic cancer,” Health Physics, vol. 112, no. 3, p. 300–304, Mar 2017.

[88] Z. Zhang, R. M. Fardanesh, J. Machac, S. Heiba, K. Knesaurek, V. Zaretsky, A. Mihaila, S. Nowakowski, A. Fischman, and E. Kim, “Comparison of therapeutic response using recist criteria: Y-90 sir-spheres and therasphere treatment of unresectable hepatocellular carcinoma,” Journal of Nuclear Medicine, vol. 54, no. 2, p. 224, May 2013.

[89] M. L. Smits, J. F. Nijsen, M. A. van den Bosch, M. G. Lam, M. A. Vente, J. E. Huijbregts, A. D. van het Schip, M. Elschot, W. Bult, H. W. de Jong, and et al., “Holmium-166 radioembolization for the treatment of patients with liver metastases: Design of the phase i hepar trial,” Journal of Experimental & Clinical Cancer Research, vol. 29, no. 1, Jun 2010.

Universiteit of Hogeschool
Universiteit Gent
Thesis jaar
2023
Promotor(en)
Charlotte Debbaut, Brent van der Heyden