De Europese Commissie heeft ambitieuze doelen geformuleerd: 55 % minder uitstoot in 2030, koolstofneutraal in 2050. Zoals de Belgische overheid nu bezig is, zullen die doelstellingen niet worden gehaald. Momenteel loopt er zelfs een rechtszaak, omdat een groep bezorgde burgers de overheid heeft aangeklaagd vanwege haar klimaatnalatigheid. Die Klimaatzaak is geïnspireerd op initiatieven uit andere landen. Hoe komt het dat onze en andere overheden zo’n moeite hebben met adequaat klimaatbeleid, ondanks overstromingen aan de Maas, bosbranden in Zuid-Europa en temperatuurrecords die vallen als dominostenen? Kan het ook anders?
Beleid maken is natuurlijk geen kinderspel. Maar in de klimaatkwestie heeft het er ook mee te maken dat beleidsmakers, burgers, en andere maatschappelijke partijen nog steeds uitgaan van continue groei: toenemende welvaart in termen van bruto binnenlands product. Meer groei betekent meer gebruik van grondstoffen, energie en uitstoot van broeikasgassen en vervuiling.
Beleidsmakers gokken op technologie die nog niet gerealiseerd is
Technologische vooruitgang heeft het gebruik van grondstoffen en energie wat kunnen inperken. Een moderne auto verbruikt minder benzine dan een auto uit 1990. Beleidsmakers gaan ervan uit dat technologie zo goed zal worden dat meer groei volledig loskomt van extra nood aan energie en grondstoffen. Dat heet absolute loskoppeling.
Optimistisch? Volgens sommige onderzoekers wel: ze beschouwen zo’n absolute loskoppeling als onmogelijk of in het beste geval enkel haalbaar in de verre toekomst. In De Morgen van 27 september 2023 werd nog verwezen naar een recente analyse van onderzoekers Hickel en Vogel die aantoont dat groene groei ons aan het huidige tempo pas over 200 jaar naar koolstofneutraliteit zal brengen. Toch wagen beleidsmakers die gok. Is dat een manier om als goede huisvaders om te gaan met de toekomst?
Het kan ook anders. Binnen de economische wetenschappen is er een zijtak genaamd Ecological Economics die vertrekt vanuit andere aannames dan klassieke economie. Binnen de klassieke economie wordt er niet standaard rekening gehouden met de draagkracht van de aarde. Binnen Ecological Economics is dat daarentegen een fundamentele voorwaarde voor een gezonde economie. Ecologisch economen stellen dat de hoeveelheid energie en grondstoffen die je op een duurzame manier kan gebruiken nu eenmaal beperkt is en we mogen die grenzen niet overschrijden.
Een ander kenmerk van ecologisch economen is hun “techno-pessimistische” visie. Ze vinden het geen goed idee om te vertrouwen op nog ongerealiseerde technologische vooruitgang en baseren zich dus liever op technologie die nu beschikbaar is. Mochten we toch grote sprongen maken qua technologie, dan is dat gewoon mooi meegenomen. De matrix hieronder, al in 1989 opgesteld door Robert Constanza, laat zien hoe gevaarlijk het kan zijn om op onbewezen technologische innovatie te vertrouwen.
Het zal niet als een verrassing komen dat aanhangers van Ecological Economics continue groei meestal niet wenselijk vinden. Zo beargumenteren sommige economen van die stroming bijvoorbeeld dat zero growth of zelfs degrowth waardevolle beleidselementen kunnen zijn om koolstofneutraliteit te bereiken. Aangezien groei op dit moment nog steeds leidt tot een hoger verbruik van grondstoffen en energie, zal een economie die niet groeit, of krimpt, logischerwijs minder grondstoffen en energie verbruiken.
Bij een lagere economische productie hoef je minder te werken
Een economie die stagneert of krimpt, dat klinkt misschien angstaanjagend als we groei gewend zijn. Maar dat hoeft niet zo te zijn. Bij een lagere economische productie zal je bijvoorbeeld minder hoeven te werken. Extra vrije tijd kan je op een waardevolle manier invullen met hobby’s, zelfontplooiing, sociale connecties, … Een decennialange studie aan Harvard heeft bijvoorbeeld aangetoond dat de grootste bron van geluk sociale fitheid is.
Voordat je radicale veranderingen doorvoert, wil je natuurlijk kunnen inschatten wat de gevolgen zullen zijn. Economen en beleidsmakers doen dat tegenwoordig met modellen en simulaties die verschillende toekomstscenario’s nagaan. Wat als we een economie simuleren die uitgaat van degrowth? In welke mate zou de economie moeten krimpen?
Als je zoiets wil simuleren, komt het erop neer dat je een complex model gebruikt waarin je allerlei variabelen kan aanpassen. Denk aan variabelen zoals bevolkingsgroei of de jaarlijkse groei van zonne-energie. De resultaten van die simulaties vergelijk je met een scenario dat je “business as usual” (BAU) noemt, oftewel: wat er zou gebeuren als je verder doet zoals nu.
Uit mijn simulaties bleek dat degrowth alleen onvoldoende is om een nuluitstoot te bereiken. Dan heb ik verder gezocht welk bijkomend beleid er nodig is om toch de klimaatdoelstellingen te behalen. Zo kwam ik uit op twee mogelijke scenario's. In beide gevallen was de minimale economische productie voor een behoorlijk bestaan de doorslaggevende variabele om de mate van degrowth te bepalen. Beide scenario's maken uiteindelijk gebruik van degrowth, verhoogde energie-efficiëntie, elektrificering van de transportsector, een hoge mate van carbon capture en versnelde ontwikkeling van hernieuwbare energiebronnen. Dat wordt geïllustreerd in de volgende grafieken:
Hier zie je een BAU-scenario, een MLT-scenario (dat is een meer gematigd klimaatbeleid), en de twee scenario’s met degrowth. De degrowth-scenario’s laten zien dat het mogelijk is om gecontroleerd toe te werken naar de gewenste economische productiviteit.
En hier zie je dat de twee degrowth-scenario’s in 2050 de nuluitstoot bereiken, terwijl de BAU en MLT-scenario's daar nog ver van verwijderd zijn. Zoals verwacht: hoe meer degrowth, hoe minder verregaand de andere maatregelen hoeven te zijn.
Wereldwijd staan politici voor een herculeaanse uitdaging als ze de klimaatdoelstellingen willen behalen. De maatschappij verwacht nog steeds toenemende materiële rijkdom. Dat gaat duidelijk ten koste van onze natuurlijke omgeving. “Business as usual” zou catastrofale gevolgen hebben. Maar een scenario waarin men vertrouwt op technologische mirakels om “green growth” mogelijk te maken, dat lijkt ook onverstandig.
Gelukkig staan politici er niet alleen voor. Economen doen hun best om hen te hulp te staan door na te denken over alternatieven en door beredeneerde voorspellingen te doen over de toekomst. Uit mijn simulaties blijkt dat het mogelijk is om tegen 2050 een nuluitstoot te bereiken. Maar dan moeten onze politici daar wel naar handelen.
Ackerman, Frank and Elizabeth A. Stanton (2012). “Climate risks and carbon prices: Revising the social cost of carbon.” In: Economics 6, pp. 0–26. issn: 18646042. doi:10.5018/economics-ejournal.ja.2012-10.
Akerlof, George A. (2003). “Behavioral Macroeconomics and Macroeconomic Behavior.” In: American Economist 47.1, pp. 25–47. issn: 23281235. doi: 10.1177/056943450304700102.
Althouse, Jeffrey, Giulio Guarini, and Jose Gabriel Porcile (2020). “Ecological macroeconomics in the open economy: Sustainability, unequal exchange and policy coordination in a center-periphery model.” In: Ecological Economics 172.August 2019. issn:09218009. doi: 10.1016/j.ecolecon.2020.106628.
Bachner, G. et al. (2020). “Uncertainties in macroeconomic assessments of low-carbon transition pathways - The case of the European iron and steel industry.” In: Ecological Economics 172.February, p. 106631. issn: 09218009. doi: 10.1016/j.ecolecon.2020.106631. url: https://doi.org/10.1016/j.ecolecon.2020.106631.
Bardi, Ugo (2019). “Peak oil, 20 years later: Failed prediction or useful insight?” In: Energy Research and Social Science 48.March 2018, pp. 257–261. issn: 22146296. doi:10.1016/j.erss.2018.09.022. url: https://doi.org/10.1016/j.erss.2018.09. 022.
Batker, David (2020). “Implementing ecological economics.” In: Ecological Economics 172.August 2019, p. 106606. issn: 09218009. doi: 10.1016/j.ecolecon.2020.106606. url: https://doi.org/10.1016/j.ecolecon.2020.106606.
BBC (2012). If we fail to correct current consumption trends, then when will our most valuable natural resources run out? url: https://www.bbc.com/future/article/ 20120618-global-resources-stock-check (visited on 04/14/2022).
Bercegol, Hervé and Henri Benisty (2022). “An energy-based macroeconomic model validated by global historical series since 1820.” In: Ecological Economics 192.July 2021. issn: 09218009. doi: 10.1016/j.ecolecon.2021.107253.
Bishop, Richard C. (1978). “Endangered Species and Uncertainty: The Economics of a Safe Minimum Standard.” In: American Journal of Agricultural Economics 60.1, pp. 10–18. issn: 0002-9092. doi: 10.2307/1240156.
Blampied, Nicol´as (2021). “Economic growth, environmental constraints and convergence: The declining growth premium for developing economies.” In: Ecological Economics 181.July 2020. issn: 09218009. doi: 10.1016/j.ecolecon.2020.106919.
Brandt, Adam R. (2017). “How Does Energy Resource Depletion Affect Prosperity? Mathematics of a Minimum Energy Return on Investment (EROI).” In: BioPhysical Economics and Resource Quality 2.1, pp. 1–12. issn: 2366-0112. doi: 10.1007/ s41247-017-0019-y.
Büchs, Milena and Max Koch (2019). “Challenges for the degrowth transition: The debate about wellbeing.” In: Futures 105.February 2018, pp. 155–165. issn: 00163287. doi: 10.1016/j.futures.2018.09.002. url: https://doi.org/10.1016/j. futures.2018.09.002.
Capellán-Pérez, Iñigo et al. (2020a). “MEDEAS - Deliverable 10 (D3.2) Transition scenarios 2.” In: pp. 1–174. url: https://www.medeas.eu/system/files/documentation/ files/Deliverable3.2{\%}28D10{\%}29{\_}Transitionscenarios2.pdf.
Capellán-Pérez, Iñigo et al. (2020b). “MEDEAS: A new modeling framework integrating global biophysical and socioeconomic constraints.” In: Energy and Environmental Science 13.3, pp. 986–1017. issn: 17545706. doi: 10.1039/c9ee02627d.
Capellán-Pérez, Iñigo et al. (2022). Medeas Model. url: https://www.medeas.eu/ model/medeas-model (visited on 09/13/2022).
Carson, Rachel and Edward O. Wilson (2002). Silent Spring (50th Anniversary Edition). 1st ed. New York: Mariner Books, p. 421. isbn: 0618249060.
Chertow, M. R. (2000). “The IPAT equation and its variants: Changing views of technology and environmental impact.” In: Journal of Industrial Ecology 4.4, pp. 13–29. issn: 10881980. doi: 10.1162/10881980052541927.
Club of Rome (2022). The Club of Rome - History. url: https://www.clubofrome. org/history/ (visited on 04/05/2022).
Coile, Courtney C. and Phillip B. Levine (2011). “Recessions, Retirement, and Social Security.” In: The American Economic Review 101.3, pp. 110–114. url: https:// www.jstor.org/stable/29783708.
Costanza, Robert (1989). “What is ecological economics?” In: Ecological Economics 1.1, pp. 1–7. issn: 09218009. doi: 10.1016/0921-8009(89)90020-7.
Costanza, Robert et al. (2014). “Changes in the global value of ecosystem services.” In: Global Environmental Change 26.1, pp. 152–158. issn: 09593780. doi: 10.1016/j. gloenvcha.2014.04.002. url: http://dx.doi.org/10.1016/j.gloenvcha.2014. 04.002.
Council of European Union (2022). 5 facts about the EU’s goal of climate neutrality. url: https://www.consilium.europa.eu/en/5-facts-eu-climate-neutrality/ (visited on 12/18/2022).
Dafermos, Yannis, Giogos Galanis, and Maria Nikolaidi (2016). A new ecological macroeconomic model.
Dafermos, Yannis, Giorgos Galanis, and Maria Nikolaidi (2022). DEFINE - An ecological stock-flow consistent model. url: https://define-model.org/ (visited on 08/01/2022).
Dafermos, Yannis and Maria Nikolaidi (2022). “Assessing climate policies: an ecological stock–flow consistent perspective.” In: pp. 1–20.
Dafermos, Yannis, Maria Nikolaidi, and Giorgos Galanis (2017). “A stock-flow-fund ecological macroeconomic model.” In: Ecological Economics 131, pp. 191–207. issn: 09218009. doi: 10.1016/j.ecolecon.2016.08.013. url: http://dx.doi.org/10.1016/j.ecolecon.2016.08.013.
D’Alessandro, S et al. (2018). “EUROGREEN Model of Job Creation in a Post-Growth Economy.” In: January, pp. 1–9.
Daly, Herman (1968). “Economics as life science.” In: Journal of Political Economy 76.3, pp. 398–406.
Daly, Herman (2019). “Some overlaps between the first and second thirty years of ecological economics.” In: Ecological Economics 164.June, p. 106372. issn: 09218009. doi: 10.1016/j.ecolecon.2019.106372. url: https://doi.org/10.1016/j.ecolecon. 2019.106372.
Dávila-Fernández, Marwil J. and Serena Sordi (2020). “Attitudes towards climate policies in a macrodynamic model of the economy.” In: Ecological Economics 169.March 2019, p. 106319. issn: 09218009. doi: 10.1016/j.ecolecon.2019.04.031. url: https://doi.org/10.1016/j.ecolecon.2019.04.031.
De Steiguer, J. E. (1995). “Three theories from economics about the environment.” In: BioScience 45.8, pp. 552–557. issn: 00063568. doi: 10.2307/1312701.
Delannoy, Louis et al. (2021). “Peak oil and the low-carbon energy transition: A netenergy perspective.” In: Applied Energy 304, pp. 1–17.
Distelkamp, Martin and Mark Meyer (2019). “Pathways to a Resource-Efficient and Low-Carbon Europe.” In: Ecological Economics 155, pp. 88–104. issn: 09218009. doi: 10.1016/j.ecolecon.2017.07.014.
Edenhofer, Ottmar, Max Franks, and Matthias Kalkuhl (2021). “Pigou in the 21st Century: a tribute on the occasion of the 100th anniversary of the publication of The Economics of Welfare.” In: International Tax and Public Finance 28.5, pp. 1090– 1121. issn: 15736970. doi: 10.1007/s10797-020-09653-y. url: https://doi.org/10.1007/s10797-020-09653-y.
Environmental Protection Agency (2022). The Origins of EPA. url: https://www.epa. gov/history/origins-epa (visited on 12/26/2022).
Espinoza, Vicente Sebastian et al. (2022). “Analysis of energy future pathways for Ecuador facing the prospects of oil availability using a system dynamics model. Is degrowth inevitable?” In: Energy 259.June 2021, p. 124963. issn: 03605442. doi: 10.1016/j.energy.2022.124963. url: https://doi.org/10.1016/j.energy. 2022.124963.
European Commission (2022). Climate strategies & targets. url: https://climate. ec.europa.eu/eu-action/climate-strategies-targets{\_}en (visited on 10/19/2022).
European Space Agency (2022). Carbon emissions rebound in 2021, new study finds. url: https://climate.esa.int/en/news-events/carbon-emissions-reboundin-2021-… (visited on 12/13/2022).
Farley, Joshua and Kaitlin Kish (2021). “Ecological economics: The next 30 years.” In: Ecological Economics 190.May. issn: 09218009. doi: 10.1016/j.ecolecon.2021.107211.
Farmer, Michael C and Alan Randall (1998). “The Rationality of a Safe Minimum Standard.” In: Land Economics 74.3, pp. 287–302. url: https://www.jstor.org/stable/3147113.
Fiddaman, Tom et al. (2022). “C-ROADS SIMULATOR REFERENCE GUIDE.” In: url: https://img.climateinteractive.org/wp-content/uploads/2022/03/CROADS{\_}Reference{\_}Guide{\_}030122.pdf.
Fitzpatrick, John J. (2020). “Target Ecological Limits and Not Economic Growth.” In: World 1.2, pp. 135–148. doi: 10.3390/world1020011.
Fizaine, Florian and Victor Court (2016). “Energy expenditure, economic growth, and the minimum EROI of society.” In: Energy Policy 95, pp. 172–186. issn: 03014215. doi: 10.1016/j.enpol.2016.04.039.
Forster, Piers et al. (2022). What does the “global carbon budget” mean? Have we got 9 years left? url: https://energypost.eu/what-does-the-global-carbonbudget-mean-have-we-go… (visited on 12/13/2022).
Georgescu-Roegen, Nicholas (1974). The Entropy Law and the Economic Process. 2nd. Cambridge, Massachusetts: HARVARD UNIVERSITY PRESS, p. 457. isbn: 0674257804. doi: 10.4159/harvard.9780674281653.
Gerber, Julien Fran¸cois (2016). “The Legacy of K. William Kapp.” In: Development and Change 47.4, pp. 902–917. issn: 14677660. doi: 10.1111/dech.12238.
Giampietro, Mario (2019). “On the Circular Bioeconomy and Decoupling: Implications for Sustainable Growth.” In: Ecological Economics 162.November 2018, pp. 143–156. issn: 09218009. doi: 10.1016/j.ecolecon.2019.05.001. url: https://doi.org/10.1016/j.ecolecon.2019.05.001.
Godley, Wynne (2012). The Stock-Flow Consistent Approach. Ed. by Marc Lavoie and Gennaro Zezza. 1st ed. London: Palgrave Macmillan, p. 276. isbn: 978-0-230-29311-3. doi: 10.1057/9780230353848.
Gray, Lewis Cecil (1914). “Rent Under the Assumption of Exhaustibility.” In: The Quarterly Journal of Economics 28.3, pp. 466–489. url: http://www.jstor.org/stable/1884984.
Hafner, Sarah, Aled Jones, and Annela Anger-Kraavi (2021). “Economic impacts of achieving a net-zero emissions target in the power sector.” In: Journal of Cleaner Production 312.July 2020, p. 127610. issn: 09596526. doi: 10.1016/j.jclepro.2021.127610. url: https://doi.org/10.1016/j.jclepro.2021.127610.
Hall, Thomas E and William R Hart (2010). “The Samuelson-Solow “Phillips Curve” and the Great Inflation.” In: Department of Economics Working Paper October, p. 17.
Halttunen, Krista, Raphael Slade, and Iain Staffell (2022). “What if we never run out of oil? From certainty of “peak oil” to “peak demand”.” In: Energy Research and Social Science 85.October 2021, p. 102407. issn: 22146296. doi: 10.1016/j.erss.2021.102407. url: https://doi.org/10.1016/j.erss.2021.102407.
Hardt, Lukas and Daniel W. O’Neill (2017). “Ecological Macroeconomic Models: Assessing Current Developments.” In: Ecological Economics 134, pp. 198–211. issn: 09218009. doi: 10.1016/j.ecolecon.2016.12.027. url: http://dx.doi.org/10.1016/j.ecolecon.2016.12.027.
Hardt, Lukas et al. (2021). “What structural change is needed for a post-growth economy: A framework of analysis and empirical evidence.” In: Ecological Economics 179.May 2020, p. 106845. issn: 09218009. doi: 10.1016/j.ecolecon.2020.106845. url: https://doi.org/10.1016/j.ecolecon.2020.106845.
Heikkinen, Tiina (2020). “A study of degrowth paths based on the von Neumann equilibrium model.” In: Journal of Cleaner Production 251. issn: 09596526. doi: 10.1016/j.jclepro.2019.119562.
Heylen, Freddy (2020). Macro-economie. Ed. by Wannes Swings. 4th. Ghent: Owl Press, p. 873. isbn: 9789089318718.
Hickel, Jason (2020). “The sustainable development index: Measuring the ecological efficiency of human development in the anthropocene.” In: Ecological Economics 167.November 2019, p. 106331. issn: 09218009. doi: 10.1016/j.ecolecon.2019.05.011. url: https://doi.org/10.1016/j.ecolecon.2019.05.011.
Hickel, Jason and Giorgos Kallis (2020). “Is Green Growth Possible?” In: New Political Economy 25.4, pp. 469–486. issn: 14699923. doi: 10.1080/13563467.2019.1598964. url: https://doi.org/10.1080/13563467.2019.1598964.
Holt, Richard P.F., Steven Pressman, and Clive L. Spash (2009). Post keynesian and ecological economics: Confronting environmental issues. Edward Elgar Publishing Limited. isbn: 9781847206688. doi: 10.1080/09538259.2011.636599.
Hone, Thomas et al. (2019). “Effect of economic recession and impact of health and social protection expenditures on adult mortality: a longitudinal analysis of 5565 Brazilian municipalities.” In: The Lancet Global Health 7.11, e1575–e1583. issn: 2214109X. doi: 10.1016/S2214-109X(19)30409-7. url: http://dx.doi.org/10.1016/S2214-109X(19)30409-7.
Howard, Peter H. and Thomas Sterner (2017). “Few and Not So Far Between: A Metaanalysis of Climate Damage Estimates.” In: Environmental and Resource Economics 68.1, pp. 197–225. issn: 15731502. doi: 10.1007/s10640-017-0166-z.
International Energy Agency (2021). “Net Zero by 2050: A Roadmap for the Global Energy Sector.” In: The International Energy Agency, p. 224. url: https://www. iea.org/reports/net-zero-by-2050.
International Renewable Energy Agency (2019). Global Energy Transformation: A Roadmap to 2050 (2019 Edition), p. 52. isbn: 978-92-9260-059-4.
IPCC (2014). “Climate Change 2014: Synthesis Report.” In: 151. url: https://www. ipcc.ch/report/ar5/syr/.
Jackson, Andrew and Tim Jackson (2021). “Modelling energy transition risk : The impact of declining energy return on investment ( EROI ).” In: Ecological Economics 185.March, p. 107023. issn: 0921-8009. doi: 10.1016/j.ecolecon.2021.107023. url: https://doi.org/10.1016/j.ecolecon.2021.107023.
Jackson, Tim (2016). Prosperity without Growth: Foundations for the Economy of Tomorrow. 2nd. New York: Routledge. isbn: 9781315677453.
Jackson, Tim, Peter Victor, and Asjad Naqvi (2016). “Towards a Stock-Flow Consistent Ecological Macroeconomics.” In: WWWforEurope 114, p. 65. url: https://www. econstor.eu/handle/10419/146611.
Jackson, Tim and Peter A Victor (2019). “Unraveling the claims for (and against) green growth.” In: Science 366.6468.
Jackson, Tim and Peter A. Victor (2020). “The Transition to a Sustainable Prosperity-A Stock-Flow-Consistent Ecological Macroeconomic Model for Canada.” In: Ecological Economics 177.July, p. 106787. issn: 09218009. doi: 10.1016/j.ecolecon.2020.106787. url: https://doi.org/10.1016/j.ecolecon.2020.106787.
Jørgensen, S.E. (2008). Exergy. url: https://www.sciencedirect.com/topics/ earth-and-planetary-sciences/exergy (visited on 12/26/2022).
Kawamiya, Michio et al. (2020). “Two decades of Earth system modeling with an emphasis on Model for Interdisciplinary Research on Climate (MIROC).” In: Progress in Earth and Planetary Science 7.1. issn: 21974284. doi: 10.1186/s40645-020-00369-5.
Keen, Steve, Robert U. Ayres, and Russell Standish (2019). “A Note on the Role of Energy in Production.” In: Ecological Economics 157.August 2018, pp. 40–46. issn: 09218009. doi: 10.1016/j.ecolecon.2018.11.002. url: https://doi.org/10.1016/j.ecolecon.2018.11.002.
Kemp-Benedict, Eric (2014). “The inverted pyramid: A neo-Ricardian view on the economy-environment relationship.” In: Ecological Economics 107, pp. 230–241. issn: 09218009. doi: 10.1016/j.ecolecon.2014.08.012. url: http://dx.doi.org/10.1016/j.ecolecon.2014.08.012.
Kennedy, Christopher (2022). “The Intersection of Biophysical Economics and Political Economy.” In: Ecological Economics 192.March 2021, p. 107272. issn: 09218009. doi: 10.1016/j.ecolecon.2021.107272. url: https://doi.org/10.1016/j.ecolecon. 2021.107272.
Kerschner, Christian and Iñigo Capellán-Pérez (2017). “PEAK-OIL AND ECOLOGICAL ECONOMICS.” In: ROUTLEDGE HANDBOOK OF ECOLOGICAL ECONOMICS. Ed. by Clive L. Spash. 1st ed. Chap. 41, pp. 425–435.
Keyßer, Lorenz T. and Manfred Lenzen (2021). “1.5 C degrowth scenarios suggest the need for new mitigation pathways.” In: Nature Communications 12.1, pp. 1–16. issn: 20411723. doi: 10.1038/s41467-021-22884-9. url: http://dx.doi.org/10.1038/ s41467-021-22884-9.
King, Carey W. (2020). “An integrated biophysical and economic modeling framework for long-term sustainability analysis: the HARMONEY model.” In: Ecological Economics 169.December 2019, p. 106464. issn: 09218009. doi: 10.1016/j.ecolecon.2019.106464. url: https://doi.org/10.1016/j.ecolecon.2019.106464.
King, J E (2015). Advanced Introduction to Post Keynesian Economics. Northampton: Edward Elgar Publishing Limited, p. 169. isbn: 9781782548430.
King, Robert G. and Sergio T. Rebelo (1989). “Transitional dynamics and economic growth in the neoclassical.” In: Nber working paper series 3185.
Kreager, Phillip (2022). Smith or Malthus? A Sea-Change in the Concept of a Population. url: https://onlinelibrary.wiley.com/doi/full/10.1111/padr.12488 (visited on 12/26/2022).
Lenaerts, Klaas, Simone Tagliapietra, and Guntram Wolff (2021). “Can climate change be tackled without ditching economic growth?” In: Working Paper. url: https://www.bruegel.org/2021/09/can-climate-change-be-tackled-withoutdi….
Loschky, David and Maw Lin Lee (1987). “Malthusian Population Oscillations.” In: The Economic Journal 97.387, pp. 727–739. url: https://www.jstor.org/stable/2232933.
Lundgren, Jakob (2022). “Unity through disunity: Strengths, values, and tensions in the disciplinary discourse of ecological economics.” In: Ecological Economics 191.October 2020, p. 107241. issn: 09218009. doi: 10.1016/j.ecolecon.2021.107241. url: https://doi.org/10.1016/j.ecolecon.2021.107241.
Marschall, Alfred (1920). Principles of economics. 8th. Liberty Fund, Inc., p. 627. url: https://eet.pixel-online.org/files/etranslation/original/Marshall,Princ….
Matthews, H Damon et al. (2020). “Opportunities and challenges in using remaining carbon budgets to guide climate policy.” In: Nature Geoscience 13.12, pp. 769–779. issn: 1752-0908. doi: 10.1038/s41561-020-00663-3. url: https://doi.org/10.1038/s41561-020-00663-3.
McGlade, Christophe and Paul Ekins (2015). “The geographical distribution of fossil fuels unused when limiting global warming to 2 C.” In: Nature 517.7533, pp. 187–190. issn: 14764687. doi: 10.1038/nature14016.
Meadows, Donella, Jorgen Randers, and Dennis Meadows (2004). The limits to growth: The 30-year update. Chelsea Green Publishing, p. 338. isbn: 1-931498-58-X.
Merriam-Webster (2022). Entropy. url: https://www.merriam-webster.com/dictionary/ entropy (visited on 04/08/2022).
Miller, Ronald E. and Peter D. Blair (2009). Input-Output Analysis: Foundations and Extensions - 2nd edition. 2nd ed. New York: Cambridge University Press, pp. 782 / 784. isbn: 9780521739023.
Millward-Hopkins, Joel et al. (2020). “Providing decent living with minimum energy: A global scenario.” In: Global Environmental Change 65.August, p. 102168. issn: 09593780. doi: 10.1016/j.gloenvcha.2020.102168. url: https://doi.org/10.1016/j.gloenvcha.2020.102168.
Mimmo, Iannelli and Andrea Pugliese (2014). An Introduction to Mathematical Population Dynamics: Along the trail of Volterra and Lotka. Springer International Publishing, p. 351.
Monserand, Antoine (2019). Degrowth in a neo-Kaleckian model of growth and distribution? A theoretical compatibility and stability analysis. Tech. rep., p. 12. url: https://hal.archives-ouvertes.fr/hal-02012632.
Moss, Richard H. et al. (2010). “The next generation of scenarios for climate change research and assessment.” In: Nature 463.7282, pp. 747–756. issn: 00280836. doi: 10.1038/nature08823.
Muradian, Roldan (2019). “Frugality as a choice vs. frugality as a social condition. Is de-growth doomed to be a Eurocentric project?” In: Ecological Economics 161.March, pp. 257–260. issn: 09218009. doi: 10.1016/j.ecolecon.2019.03.027. url: https://doi.org/10.1016/j.ecolecon.2019.03.027.
Murphy, Mark (2019). The Natural Law Tradition in Ethics. url: https://plato. stanford.edu/entries/natural-law-ethics/{\#}KeyFeaNatLawThe (visited on 03/01/2022).
National Oceanic and Atmospheric Administration (2022). What is eutrophication? url: https://oceanservice.noaa.gov/facts/eutrophication.html (visited on 12/28/2022).
Neumann, James E. et al. (2020). “Climate damage functions for estimating the economic impacts of climate change in the United States.” In: Review of Environmental Economics and Policy 14.1, pp. 25–43. issn: 17506824. doi: 10.1093/reep/rez021.
Nieto, Jaime et al. (2020). “An ecological macroeconomics model: The energy transition in the EU.” In: Energy Policy 145.June. issn: 03014215. doi: 10.1016/j.enpol.2020.111726.
Nopens, Ingmar (2013). Modelleren en Simuleren van biosystemen. Ghent, p. 128.
Nordhaus, William and Paul Sztorc (2013). “DICE 2013R : Introduction and User’s Manual.” In: October, pp. 1–102.
Nordhaus, William D. (1992). The ’DICE’ Model: Background and Structure of a Dynamic Integrated Climate-Economy Model of the Economics of Global Warming. url: http://ideas.repec.org/p/cwl/cwldpp/1009.html.
– (2017). “Revisiting the social cost of carbon.” In: Proceedings of the National Academy of Sciences of the United States of America 114.7, pp. 1518–1523. issn: 10916490. doi:10.1073/pnas.1609244114.
OECD (2022). Real GDP long-term forecast. url: https://data.oecd.org/gdp/realgdp-long-term-forecast.htm{\#}indicator-chart (visited on 11/03/2022).
O’Neill, Brian C. et al. (2017). “The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century.” In: Global Environmental Change 42, pp. 169–180. issn: 09593780. doi: 10.1016/j.gloenvcha.2015.01.004. url: http://dx.doi.org/10.1016/j.gloenvcha.2015.01.004.
Owais, Ali (2022). The IPCC Report 2022: A Summary. url: https://www.azocleantech. com/article.aspx?ArticleID=1584 (visited on 07/15/2022).
Parrique, Timothée et al. (2019). “Decoupling debunked: Evidence and arguments against green growth as a sole strategy for sustainability.” In: European Environmental Bureau. url: www.eeb.org.
Pearce, David (2002). “An intellectual history of environmental economics.” In: Annual Review of Energy and the Environment 27, pp. 57–81. issn: 10563466. doi: 10.1146/annurev.energy.27.122001.083429.
Post-Keynesian Economics Society (2022). Post-Keynesian Economics. url: http://www.postkeynesian.net/post-keynesian-economics/ (visited on 04/13/2022).
Pruyt, Eric (2013). Small System Dynamics Models for Big Issues: Triple Jump towards Real-World Complexity. TU Delft Library. isbn: 978-94-6186-195-5.
Raworth, Kate (2017). Doughnut Economics. London: Random House Business Books, p. 372. isbn: 9781847941398.
Ritchie, Hannah (2021). If the world adopted a plant-based diet we would reduce global agricultural land use from 4 to 1 billion hectares. url: https://ourworldindata.org/land-use-diets (visited on 12/18/2022).
Ritchie, Hannah, Pablo Rosado, and Max Roser (2019). Meat and Dairy Production. url: https://ourworldindata.org/meat-production (visited on 12/18/2022). Roman, Philippe and Géraldine Thiry (2017). “SUSTAINABILITY INDICATORS.” In: ROUTLEDGE HANDBOOK OF ECOLOGICAL ECONOMICS. Ed. by Clive L. Spash. 1st ed. Chap. 37, pp. 382–392.
Røpke, Inge (2004). “The early history of modern ecological economics.” In: Ecological Economics 50.3-4, pp. 293–314. issn: 09218009. doi: 10.1016/j.ecolecon.2004.02.012.
– (2005). “Trends in the development of ecological economics from the late 1980s to the early 2000s.” In: Ecological Economics 55.2, pp. 262–290. issn: 09218009. doi: 10.1016/j.ecolecon.2004.10.010.
Safarzyńska, Karolina and Jeroen C J M van den Bergh (2022). “ABM-IAM: optimal climate policy under bounded rationality and multiple inequalities.” In: Environ. Res. Lett 17. url: https://iopscience.iop.org/article/10.1088/1748-9326/ac8b25.
Saidi, Kais and Anis Omri (2020). “Reducing CO2 emissions in OECD countries: Do renewable and nuclear energy matter?” In: Progress in Nuclear Energy 126.June, p. 103425. issn: 01491970. doi: 10.1016/j.pnucene.2020.103425. url: https://doi.org/10.1016/j.pnucene.2020.103425.
Samsó, Roger and Jordi Solé Ollé (2019). “Pymedeas Model: User’s manual.” In: 11.691287, pp. 1–625. url: www.medeas.eu.
Sawyer, M. and G. Fontana (2016). “Towards Post-Keynesian Ecological Macroeconomics by.” In: Ecological Economics, pp. 186–195. url: http://eprints.whiterose. ac.uk/87723/.
Scalia, Massimo et al. (2020). “An Ecology and Economy Coupling Model. A global stationary state model for a sustainable economy in the Hamiltonian formalism.” In: Ecological Economics 172.April, p. 106497. issn: 09218009. doi: 10.1016/j.ecolecon.2019.106497. url: https://doi.org/10.1016/j.ecolecon.2019. 106497.
Scilab Enterprises (2015). TIME DELAY. url: https://help.scilab.org/doc/5.5. 2/en{\_}US/TIME{\_}DELAY.html (visited on 04/07/2022).
Solé, J. et al. (2020). “Modelling the renewable transition: Scenarios and pathways for a decarbonized future using pymedeas, a new open-source energy systems model.” In: Renewable and Sustainable Energy Reviews 132.July, pp. 37–49. issn: 18790690. doi: 10.1016/j.rser.2020.110105.
Spash, Clive L. (1999). “The Development of Environmental Thinking in Economics.” In: Environmental Values 8 4, pp. 413–435.
– (2017). Routledge Handbook of Ecological Economics. 1st ed. New York: Routledge, p. 551. isbn: 978-1-315-67974-7.
Steffen, Will et al. (2015). “Planetary boundaries: Guiding human development on a changing planet.” In: Science 347.6223. issn: 10959203. doi: 10.1126/science.1259855.
Stockhammer, Engelbert (2022). “Post-Keynesian Macroeconomic Foundations for Comparative Political Economy.” In: Politics and Society 50.1, pp. 156–187. issn: 15527514. doi: 10.1177/00323292211006562.
Suh, Sangwon (2004). “A note on the calculus for physical input-output analysis and its application to land appropriation of international trade activities.” In: Ecological Economics 48.1, pp. 9–17. issn: 09218009. doi: 10.1016/j.ecolecon.2003.09.003.
Svartzman, Romain, Dominique Dron, and Etienne Espagne (2019). “From ecological macroeconomics to a theory of endogenous money for a finite planet.” In: Ecological Economics 162.April, pp. 108–120. issn: 09218009. doi: 10.1016/j.ecolecon.2019.04.018. url: https://doi.org/10.1016/j.ecolecon.2019.04.018.
The Food and Agriculture Organization (2013). Major cuts of greenhouse gas emissions from livestock within reach. url: https://www.fao.org/news/story/en/item/ 197623/icode/ (visited on 01/08/2023).
The International Energy Agency (2021a). Greenhouse Gas Emissions from Energy Data Explorer. url: https://www.iea.org/data-and-statistics/data-tools/ greenhouse-gas-emissions-from-energy-data-explorer (visited on 01/07/2023).
– (2021b). Renewable electricity growth is accelerating faster than ever worldwide, supporting the emergence of the new global energy economy. url: https://www.iea.org/ news/renewable-electricity-growth-is-accelerating-faster-than-everworldwide-supporting-the-emergence-of-the-new-global-energy-economy (visited on 12/18/2022).
– (2022a). Global energy-related CO2 emissions, 1990-2020. url: https://www.iea. org/data-and-statistics/charts/global-energy-related-co2-emissions1990-2020 (visited on 01/02/2023).
– (2022b). Renewable power’s growth is being turbocharged as countries seek to strengthen energy security. url: https://www.iea.org/news/renewable-power-s-growthis-being-turbocharged-… (visited on 01/03/2023).
The World Bank (2020). COVID-19 to Plunge Global Economy into Worst Recession since World War II. url: https://www.worldbank.org/en/news/press-release/
2020/06/08/covid-19-to-plunge-global-economy-into-worst-recessionsince-world-war-ii (visited on 01/07/2023).
Tietenberg, Tom and Lynne Lewys (2018). Environmental and Natural Resource Economics. 11th ed. Routledge, p. 587. isbn: 9781138632295. doi: 10.4324/9781315620190.
Tokarska, Katarzyna B. and Nathan P. Gillett (2018). “Cumulative carbon emissions budgets consistent with 1.5 c global warming.” In: Nature Climate Change 8.4, pp. 296–299. issn: 17586798. doi: 10.1038/s41558-018-0118-9. url: http://dx.doi.org/10.1038/s41558-018-0118-9.
TU Wien (2022). What is Stock-Flow-Modelling? url: https://www.fvv.tuwien.ac. at/institut/kompetenzfelder/system-dynamics-engl/what-is-stock-flowmodelling/ (visited on 04/08/2022).
Turner, Graham M. (2008). “A comparison of The Limits to Growth with 30 years of reality.” In: Global Environmental Change 18.3, pp. 397–411. issn: 09593780. doi: 10.1016/j.gloenvcha.2008.05.001.
– (2014). “Is global collapse imminent? An updated comparison of the limits to growth with historical data.” In: Melbourne Sustainable Society Institute 53.9, pp. 1689–1699. issn: 1098-6596. arXiv: arXiv:1011.1669v3.
United Nations Development Programme (2022). Sustainable Development Goals. url: https://www.undp.org/sustainable-development-goals (visited on 04/14/2022). United Nations Framework Convention on Climate Change (2022). The Paris Agreement. url: https://unfccc.int/process-and-meetings/the-paris-agreement/theparis-ag… (visited on 10/05/2022).
Victor, Peter A. and Gideon Rosenbluth (2007). “Managing without growth.” In: Ecological Economics 61.2-3, pp. 492–504. issn: 09218009. doi: 10.1016/j.ecolecon.2006.03.022.
Vita, Gibran et al. (2019). “The Environmental Impact of Green Consumption and Sufficiency Lifestyles Scenarios in Europe: Connecting Local Sustainability Visions to Global Consequences.” In: Ecological Economics 164.June 2018, p. 106322. issn: 09218009. doi: 10.1016/j.ecolecon.2019.05.002. url: https://doi.org/10.1016/j.ecolecon.2019.05.002.
Vuuren, Detlef P. van et al. (2011a). “How well do integrated assessment models simulate climate change?” In: Climatic Change 104.2, pp. 255–285. issn: 01650009. doi:10.1007/s10584-009-9764-2.
Vuuren, Detlef P. van et al. (2011b). “The representative concentration pathways: An overview.” In: Climatic Change 109.1, pp. 5–31. issn: 01650009. doi: 10.1007/ s10584-011-0148-z.
WEF (2022). How hard could climate change hit the global economy, and where would suffer most? url: https://www.weforum.org/agenda/2022/04/climate-changeglobal-gdp-risk/ (visited on 11/16/2022).
Weisz, Helga and Faye Duchin (2006). “Physical and monetary input-output analysis: What makes the difference?” In: Ecological Economics 57.3, pp. 534–541. issn:09218009. doi: 10.1016/j.ecolecon.2005.05.011.
Welsby, Dan et al. (2021). “Unextractable fossil fuels in a 1.5 C world.” In: Nature 597.7875, pp. 230–234. issn: 14764687. doi: 10.1038/s41586-021-03821-8.
World Commission on Environment and Development (1987). Our common Future. Vol. 4. 1, p. 12. isbn: 019282080X.
Zhao, Zi Jian et al. (2020). “Global climate damage in 2 C and 1.5 C scenarios based on BCC_ SESM model in IAM framework.” In: Advances in Climate Change Research 11.3, pp. 261–272. issn: 16749278. doi: 10.1016/j.accre.2020.09.008.