Variability Of Water Column Denitrification and its Drivers in the Eastern Tropical Pacific Oxygen Deficient Zones
Waterkolom denitrificatie is geen lachertje
Waterkolom denitrificatie is geen lachertje
De Blauwe Planeet - zo wordt onze aarde genoemd. De oceanen, kilometers ver en diep onontgonnen gebieden, spelen een cruciale rol als regulator van ons klimaat. Ongeveer 30% van de uitgestoten koolstofdioxide wordt opgenomen door de oceaan, maar ook een deel van de overvloed aan uitgestoten stikstof. Zo spelen de oceanen een essentiële rol in het bepalen van hoe klimaatverandering zich de komende decennia zal ontwikkelen.
Zuurstofminimumzones
De toenemende uitstoot van broeikasgassen en de opwarming van de aarde hebben echter verstrekkende gevolgen voor de oceanen. Ze worden steeds warmer, zuurder en verliezen zuurstof. Deze veranderingen hebben grote gevolgen voor mariene ecosystemen en de regulering van ons klimaat. Langs de kusten van Peru en Mexico, in de Tropische Stille Oceaan, bevinden zich de twee grootste 'zuurstofminimumzones' op aarde. Deze gebieden hebben extreem lage zuurstofniveaus, minder dan 5 millimol per kubieke meter in vergelijking met meer dan 200 millimol aan het wateroppervlak. Deze zones, onder suboxische omstandigheden, zijn onleefbaar voor de meeste zeedieren. Het gebrek aan zuurstof is echter de ideale broedplaats voor anaerobe bacteriën. Deze bacteriën overleven door, in plaats van zuurstof, nitraat te consumeren voor de remineralisatie van organisch materiaal. Dit doen ze via ‘waterkolom denitrificatie’.
Waterkolom Denitrificatie en de Productie van Lachgas
Waterkolom denitrificatie omvat twee belangrijke mechanismen: canonieke denitrificatie en anaerobe ammoniumoxidatie, die gezamenlijk als waterkolom denitrificatie worden aangeduid. Tijdens dit proces zetten bacteriën nitraat om in stikstofgas, wat leidt tot het verlies van stikstof in de oceaan. Hoewel minder dan 0,05% van de wereldwijde oceanen suboxische omstandigheden heeft, zijn ze verantwoordelijk voor tot wel 50% van het verlies aan oceanische stikstof. Zo heeft dit proces cruciale implicaties voor zowel de mariene ecosystemen als het wereldwijde klimaat. Enerzijds is nitraat een essentiële voedingsstof voor de groei van fytoplankton in mariene ecosystemen. De beschikbaarheid hiervan heeft aanzienlijke invloed op de productiviteit van het ecosysteem, en beïnvloedt daarbij het biologische pompmechanisme van de koolstofcyclus van de oceanen die zorgt voor een opname van koolstofdioxide uit de atmosfeer. Het meest opvallende gevolg van waterkolom denitrificatie is de productie van distikstofmonoxide, beter bekend als lachgas. Lachgas is een broeikasgas dat 300 maal krachtiger is dan koolstofdioxide in termen van opwarmingseffecten op onze atmosfeer.
Ondanks het belang van waterkolom denitrificatie is er weinig bekend over de oorzaken en effecten hiervan. Dit is deels te danken aan de zeer dynamische en complexe evolutie van dit proces. Het doel van mijn masterthesis was om de variabiliteit van waterkolom denitrificatie en de drijvende krachten ervan te karakteriseren. Het onderzoek hiervan wordt echter bemoeilijkt door de grote klimaatvariatie en door de beperkte beschikbaarheid van observatiegegevens. Daarom werd hiervoor een oceaanmodel gebruikt die ons in staat stelt alle processen in de oceaan te simuleren doorheen de jaren. Het model bedraagt zowel fysische processen zoals oceaanstromingen of temperatuursveranderingen, als biologische componenten zoals de verschillende fytoplankton groepen.
De resultaten tonen aan dat waterkolom denitrificatie aanzienlijke variabiliteit vertoont. Dit varieert van maandelijkse schommelingen bepaald door o.a. de seizoenen en de aanwezigheid van kilometers wijde draaikolken, en op langere tijdschalen door klimaatfenomenen zoals El Niño. Verschillende factoren drijven deze schommelingen, zoals veranderingen in de oceaanstromingen die de concentraties zuurstof en nutriënten controleren of de toevoer van organisch materiaal voor remineralisatie.
De Impact op de Oceanen en het Wereldwijde Klimaat
Belangrijk is dat waterkolom denitrificatie een aanzienlijke invloed heeft op de beschikbaarheid van nitraat in het fotische zone, daar waar licht doordringt en dus fytoplankton kan groeien. Dit roept vragen op over de potentiële effecten op primaire productie en de efficiëntie van de biologische pomp die koolstofdioxide uit de atmosfeer kan opnemen en herbergen in de diepten van de oceaan. Door onze kennis van deze processen te vergroten, hopen wetenschappers een basis te leggen voor het voorspellen van toekomstige veranderingen in de dynamiek van waterkolom denitrificatie. Dit begrip is van vitaal belang om de diepgaande impact van waterkolom denitrificatie op mariene ecosystemen en de mondiale biogeochemische cycli te begrijpen.
In een tijd van toenemende zorg over de gezondheid van onze oceanen en de impact van klimaatverandering, benadrukt dit onderzoek het belang van het begrijpen van waterkolom denitrificatie en zijn rol in het complexe web van mariene ecosystemen en het wereldwijde klimaatsysteem. Het biedt inzicht in de processen die onze oceanen vormgeven en de uitdagingen waarmee ze worden geconfronteerd in de komende decennia.
Altabet, M. A., Ryabenko, E., Stramma, L., Wallace, D. W. R., Frank, M., Grasse, P., & Lavik, G. (2012). An eddy-stimulated hotspot for fixed N-loss from the Peru oxygen minimum zone. Biogeosciences, 9(12), 4897–4908. https://doi.org/10.5194/bg-9-4897-2012
Amador, J. A., Alfaro, E. J., Lizano, O. G., & Magaña, V. (2006). Atmospheric forcing of the eastern tropical Pacific: A review. Progress in Oceanography, 69(2–4), 101–142. https://doi.org/10.1016/j.pocean.2006.03.007
Armstrong, R. C., Lee, C., Hedges, J. I., Honjo, S., & Wakeham, S. G. (2001). A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep-sea Research Part Ii-topical Studies in Oceanography, 49(1–3), 219–236. https://doi.org/10.1016/s0967-0645(01)00101-1
Auger, P. A., Bento, J. P., Hormazabal, S., Morales, C. E., & Bustamante, A. (2021). Mesoscale Variability in the Boundaries of the Oxygen Minimum Zone in the Eastern South Pacific: Influence of Intrathermocline Eddies. Journal of Geophysical Research: Oceans, 126(2). https://doi.org/10.1029/2019jc015272
Babbin, A. R., Bianchi, D., Jayakumar, A., & Ward, B. B. (2015). Rapid nitrous oxide cycling in the suboxic ocean. Science, 348(6239), 1127–1129. https://doi.org/10.1126/science.aaa8380
Battaglia, G., & Joos, F. (2018). Marine N2O Emissions From Nitrification and Denitrification Constrained by Modern Observations and Projected in Multimillennial Global Warming Simulations. Global Biogeochemical Cycles, 32(1), 92–121. https://doi.org/10.1002/2017gb005671
Bianchi, D., Weber, T., Kiko, R., & Deutsch, C. (2018). Global niche of marine anaerobic metabolisms expanded by particle microenvironments. Nature Geoscience, 11(4), 263–268. https://doi.org/10.1038/s41561-018-0081-0
Bianchi, D., Dunne, J. P., Sarmiento, J. L., and Galbraith, E. D. (2012). Data-based estimates of suboxia, denitrification, and N2O production in the ocean and their sensitivities to dissolved O2. Global Biogeochem. Cycles, 26(2):GB2009.
Boyer, T. P., Baranova, O., Locarnini, R. A., & Zweng, M. (2019). WORLD OCEAN ATLAS 2018 Product Documentation Ocean Climate Laboratory NCEI / NESDIS / NOAA NOAA National. . . ResearchGate. https://doi.org/10.13140/RG.2.2.34758.01602
Busecke, J., Resplandy, L., Ditkovsky, S. J., & John, J. (2022). Diverging Fates of the Pacific Ocean Oxygen Minimum Zone and Its Core in a Warming World. AGU Advances, 3(6). https://doi.org/10.1029/2021av000470
Busecke, J., Resplandy, L., & Dunne, J. P. (2019). The Equatorial Undercurrent and the Oxygen Minimum Zone in the Pacific. Geophysical Research Letters, 46(12), 6716–6725. https://doi.org/10.1029/2019gl082692
Cabré, A., Marinov, I., Bernardello, R., & Bianchi, D. (2015). Oxygen minimum zones in the tropical Pacific across CMIP5 models: mean state differences and climate change trends. Biogeosciences, 12(18), 5429–5454. https://doi.org/10.5194/bg-12-5429-2015
Callbeck, C. M., Lavik, G., Stramma, L., Kuypers, M. M. M., & Bristow, L. A. (2017). Enhanced N Loss by Eddy-Induced Vertical Transport in the Offshore Peruvian Oxygen Minimum Zone. PLOS ONE, 12(1), e0170059. https://doi.org/10.1371/journal.pone.0170059
Carton, J. A., Chepurin, G. A., & Chen, L. (2018). SODA3: A New Ocean Climate Reanalysis. Journal of Climate, 31(17), 6967–6983. https://doi.org/10.1175/jcli-d-18-0149.1
Castro, C. L., Chavez, F. P., & Collins, C. A. (2001). Role of the California Undercurrent in the export of denitrified waters from the eastern tropical North Pacific. Global Biogeochemical Cycles, 15(4), 819–830. https://doi.org/10.1029/2000gb001324
Chang, B. X., Devol, A. H., & Emerson, S. (2010). Denitrification and the N gas excess in the eastern tropical South Pacific oxygen deficient zone. Deep-sea Research Part I-oceanographic Research Papers, 57(9), 1092–1101. https://doi.org/10.1016/j.dsr.2010.05.009
Codispoti, L. A. (1973). Denitrification in the Eastern Tropical North Pacific. PhD thesis, University of Washington.
Codispoti, L. (2010). Interesting Times for Marine N 2 O. Science, 327(5971), 1339–1340. https://doi.org/10.1126/science.1184945
Codispoti, L. A. and Packard, T. T. (1980). Denitrification rates in the eastern tropical southpacific. J. Mar. Res., 38:453—-477.
Codispoti, L. A. and Richards, F. A. (1976). JSTORAn Analysis of the Horizontal Regime of Denitrification in the Eastern Tropical North Pacific. Limnology and Oceanography.
Dalsgaard, T., Thamdrup, B., Farías, L., & Revsbech, N. P. (2012). Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific. Limnology and Oceanography, 57(5), 1331–1346. https://doi.org/10.4319/lo.2012.57.5.1331
Deutsch, C., Gruber, N., and Key, R. M. (2001). Denitrification and N2 fixation in the Pacific Ocean. Global Biogeochemical Cycles.
Deutsch, C., Emerson, S., & Thompson, L. (2006). Physical-biological interactions in North Pacific oxygen variability. Journal of Geophysical Research, 111(C9). https://doi.org/10.1029/2005jc003179
Deutsch, C., Sarmiento, J. L., Sigman, D. M., Gruber, N., & Dunne, J. P. (2007). Spatial coupling of N inputs and losses in the ocean. Nature, 445(7124), 163–167. https://doi.org/10.1038/nature05392
Deutsch, C., Brix, H., Ito, T., Frenzel, H., & Thompson, L. (2011). Climate-Forced Variability of Ocean Hypoxia. Science, 333(6040), 336–339. https://doi.org/10.1126/science.1202422
Deutsch, C., Berelson, W. M., Thunell, R. C., Weber, T., Tems, C., McManus, J., Crusius, J., Ito, T., Baumgartner, T. S., Ferreira, V., Mey, J. L., & Van Geen, A. (2014). Centennial changes in North Pacific anoxia linked to tropical trade winds. Science, 345(6197), 665–668. https://doi.org/10.1126/science.1252332
DeVries, T., Deutsch, C., Primeau, F., Chang, B., and Devol, A. (2012). Global rates of watercolumn denitrification derived from N gas measurements. Nature Geoscience, 5:547–550.
DeVries, T., Deutsch, C., Rafter, P. A., & Primeau, F. (2013). Marine denitrification rates determined from a global 3-D inverse model. Biogeosciences, 10(4), 2481–2496. https://doi.org/10.5194/bg-10-2481-2013
DeVries, T., & Weber, T. (2017). The export and fate of organic matter in the ocean: New constraints from combining satellite and oceanographic tracer observations. Global Biogeochemical Cycles, 31(3), 535–555. https://doi.org/10.1002/2016gb005551
Dussin, R., Barnier, B., Brodeau, L., & Molines, J. M. (2016). The Making Of the DRAKKAR FORCING SET DFS5. In CNRS. Retrieved March 4, 2023, from https://www.drakkar-ocean.eu/publications/reports/report_DFS5v3_April2016.pdf
Duteil, O., Frenger, I., & Getzlaff, J. (2021). The riddle of eastern tropical Pacific Ocean oxygen levels: the role of the supply by intermediate-depth waters. Ocean Science, 17(5), 1489–1507. https://doi.org/10.5194/os-17-1489-2021
Echevin, V., Aumont, O., Ledesma, J., & Flores, G. (2008). The seasonal cycle of surface chlorophyll in the Peruvian upwelling system: A modelling study. Progress in Oceanography, 79(2–4), 167–176. https://doi.org/10.1016/j.pocean.2008.10.026
Elkins, J. W. (1978). Aquatic sources and sinks for nitrous oxide. PhD thesis, Harvard.
Falkowski, P. G. (1997). Evolution of the N cycle and its influence on the biological sequestration of CO2 in the ocean. Nature, 387(6630), 272–275. https://doi.org/10.1038/387272a0
FAO. (n.d.). Review of the state of world marine fishery resources. FAO.org. Retrieved May 2, 2023, from https://www.fao.org/3/y5852e/Y5852E07.htm
Fiedler, P. C. (2002). The annual cycle and biological effects of the Costa Rica Dome. Deep-sea Research Part I-oceanographic Research Papers, 49(2), 321–338. https://doi.org/10.1016/s0967-0637(01)00057-7
Frenger, I., Bianchi, D., Stührenberg, C., Oschlies, A., Dunne, J. P., Deutsch, C., Galbraith, E. D., & Schütte, F. (2018). Biogeochemical Role of Subsurface Coherent Eddies in the Ocean: Tracer Cannonballs, Hypoxic Storms, and Microbial Stewpots? Global Biogeochemical Cycles, 32(2), 226–249. https://doi.org/10.1002/2017gb005743
Frischknecht, M. F. (2018). New Perspectives on the Three- Dimensional Cycling of Carbon and Nutrients in the California Current System and its Response to ENSO [Doctoral Thesis]. ETH Zurich.
Frischknecht, M., Münnich, M., & Gruber, N. (2018). Origin, Transformation, and Fate: The Three‐Dimensional Biological Pump in the California Current System. Journal of Geophysical Research: Oceans, 123(11), 7939–7962. https://doi.org/10.1029/2018jc013934
Frölicher, T. L., Joos, F., Plattner, G., Steinacher, M., & Doney, S. C. (2009). Natural variability and anthropogenic trends in oceanic oxygen in a coupled carbon cycle-climate model ensemble. Global Biogeochemical Cycles, 23(1), n/a. https://doi.org/10.1029/2008gb003316
Frölicher, T. L., Aschwanden, M., Gruber, N., Jaccard, S. L., Dunne, J. P., & Paynter, D. (2020). Contrasting Upper and Deep Ocean Oxygen Response to Protracted Global Warming. Global Biogeochemical Cycles, 34(8). https://doi.org/10.1029/2020gb006601
Gazitúa, M. C., Vik, D. R., Roux, S., Gregory, A. C., Bolduc, B., Widner, B., Mulholland, M. R., Hallam, S. J., Ulloa, O., & Sullivan, M. B. (2021). Potential virus-mediated N cycling in oxygen-depleted oceanic waters. The ISME Journal, 15(4), 981–998. https://doi.org/10.1038/s41396-020-00825-6
Goering, J. (1968). Denitrification in the oxygen minimum layer of the eastern tropical Pacific Ocean. Deep Sea Research and Oceanographic Abstracts. https://doi.org/10.1016/0011-7471(68)90037-5
Graf, D., Jones, C. W., & Hallin, S. (2014). Intergenomic Comparisons Highlight Modularity of the Denitrification Pathway and Underpin the Importance of Community Structure for N2O Emissions. PLOS ONE, 9(12), e114118. https://doi.org/10.1371/journal.pone.0114118
Gruber, N. (2008). The Marine N Cycle. In Elsevier eBooks (pp. 1–50). https://doi.org/10.1016/b978-0-12-372522-6.00001-3
Gruber, N. (2011). Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1943), 1980–1996. https://doi.org/10.1098/rsta.2011.0003
Gruber, N. (2016). Elusive marine nitrogen fixation. Proceedings of the National Academy of Sciences of the United States of America, 113(16), 4246–4248. https://doi.org/10.1073/pnas.1603646113
Gruber, N., & Galloway, J. N. (2008). An Earth-system perspective of the global N cycle. Nature, 451(7176), 293–296. https://doi.org/10.1038/nature06592
Gruber, N., Boyd, P. W., Frölicher, T. L., & Vogt, M. (2021). Biogeochemical extremes and compound events in the ocean. Nature, 600(7889), 395–407. https://doi.org/10.1038/s41586-021 03981-7
Gruber, N., & Sarmiento, J. L. (1997). Global patterns of marine N fixation and denitrification. Global Biogeochemical Cycles, 11(2), 235–266. https://doi.org/10.1029/97gb00077
Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Array programming with NumPy. Nature 585, 357–362 (2020). DOI: 10.1038/s41586-020-2649-2.
Haumann, F. A., Gruber, N., Münnich, M., Frenger, I., & Kern, S. (2016). Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature, 537(7618), 89–92. https://doi.org/10.1038/nature19101
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R. N., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., . . . Villaume, S. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803
Horak, R. E. A., Ruef, W., Ward, B. B., & Devol, A. H. (2016). Expansion of denitrification and anoxia in the eastern tropical North Pacific from 1972 to 2012. Geophysical Research Letters, 43(10), 5252–5260. https://doi.org/10.1002/2016gl068871
Iversen, M. H., & Ploug, H. (2010). Ballast minerals and the sinking carbon flux in the ocean: carbon-specific respiration rates and sinking velocity of marine snow aggregates. Biogeosciences, 7(9), 2613–2624. https://doi.org/10.5194/bg-7-2613-2010
José, Y. S., Stramma, L., Schmidtko, S., & Oschlies, A. (2019). ENSO-driven fluctuations in oxygen supply and vertical extent of oxygen-poor waters in the oxygen minimum zone of the Eastern Tropical South Pacific. Biogeosciences. In press. https://doi.org/10.5194/bg-2019-155
Kalvelage, T., Lavik, G., Lam, P., Contreras, S., Arteaga, L., Löscher, C. R., Oschlies, A., Paulmier, A., Stramma, L., & Kuypers, M. M. M. (2013). N cycling driven by organic matter export in the South Pacific oxygen minimum zone. Nature Geoscience, 6(3), 228–234. https://doi.org/10.1038/ngeo1739
Karl, D. M., Michaels, A. F., Bergman, B., Capone, D., Carpenter, E. P., Letelier, R. M., Lipschultz, F., Paerl, H. W., Sigman, D. M., & Stal, L. J. (2002). DiN fixation in the world’s oceans. In Springer eBooks (pp. 47–98). https://doi.org/10.1007/978-94-017-3405-9_2
Karstensen, J., Stramma, L., & Visbeck, M. (2008). Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans. Progress in Oceanography, 77(4), 331–350. https://doi.org/10.1016/j.pocean.2007.05.009
Keeling, R. F., & Garcia, H. G. (2002). The change in oceanic O 2 inventory associated with recent global warming. Proceedings of the National Academy of Sciences of the United States of America, 99(12), 7848–7853. https://doi.org/10.1073/pnas.122154899
Keeling, R. F., Körtzinger, A., & Gruber, N. (2010). Ocean Deoxygenation in a Warming World. Annual Review of Marine Science, 2(1), 199–229. https://doi.org/10.1146/annurev.marine.010908.163855
Köhn, E. E. (2023). Water column perspectives on marine heatwaves and low oxygen extreme events in the Eastern Pacific [Doctoral Thesis]. ETH Zurich.
Köhn, E. E., Münnich, M., Vogt, M., Desmet, F., & Gruber, N. (2022). Strong Habitat Compression by Extreme Shoaling Events of Hypoxic Waters in the Eastern Pacific. Journal of Geophysical Research: Oceans, 127(6). https://doi.org/10.1029/2022jc018429
Köhn, E. E., Gruber, N., Munnich, M., and Vogt, M. (2023a). On the vertical structure and propagation of marine heatwaves in the Eastern Pacific. [Manuscript in preparation].
Köhn, E. E., Gruber, N., Munnich, M., and Vogt, M. (2023b) Seasonal and inter-annual variability of vertically propagating marine heatwaves in the Eastern Pacific. [Manuscript in preparation].
Kwiecinski, J. V., & Babbin, A. R. (2021). A High‐Resolution Atlas of the Eastern Tropical Pacific Oxygen Deficient Zones. Global Biogeochemical Cycles, 35(12). https://doi.org/10.1029/2021gb007001
Lam, P., & Kuypers, M. M. M. (2011). Microbial N Cycling Processes in Oxygen Minimum Zones. Annual Review of Marine Science, 3(1), 317–345. https://doi.org/10.1146/annurev-marine-120709-142814
Lauvset, S. K., Key, R. M., Olsen, A., Van Heuven, S., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Pérez, F. F., Suzuki, T., & Watelet, S. (2016). A new global interior ocean mapped climatology: the 1° × 1° GLODAP version 2. Earth System Science Data, 8(2), 325–340. https://doi.org/10.5194/essd-8-325-2016.
Levin, L. A. (2018). Manifestation, Drivers, and Emergence of Open Ocean Deoxygenation. Annual Review of Marine Science, 10(1), 229–260. https://doi.org/10.1146/annurev-marine-121916-063359
Lévy, M., Resplandy, L., Palter, J. B., Couespel, D., & Lachkar, Z. (2022). The crucial contribution of mixing to present and future ocean oxygen distribution. In Elsevier eBooks (pp. 329–344). https://doi.org/10.1016/b978-0-12-821512-8.00020-7
Liu, K.-K. (1976). Geochemistry of inorganic N compounds in two marine environments: the Santa Barbara Basin and the ocean off Peru [PhD Thesis]. University of California, Los Angeles.
Longhurst, A. R., & Harrison, W. T. A. (1989). The biological pump: Profiles of plankton production and consumption in the upper ocean. Progress in Oceanography, 22(1), 47–123. https://doi.org/10.1016/0079-6611(89)90010-4
Löscher, C. R., Bange, H. W., Schmitz, R. A., Callbeck, C. M., Engel, A., Hauss, H., Kanzow, T., Kiko, R., Lavik, G., Loginova, A., Melzner, F., Meyer, J., Neulinger, S. C., Pahlow, M., Riebesell, U., Schunck, H., Thomsen, S., & Wagner, H. (2016). Water column biogeochemistry of oxygen minimum zones in the eastern tropical North Atlantic and eastern tropical South Pacific oceans. Biogeosciences, 13(12), 3585–3606. https://doi.org/10.5194/bg-13-3585-2016
Luyten, J. R., Pedlosky, J., & Stommel, H. (1983). The Ventilated Thermocline. Journal of Physical Oceanography, 13(2), 292–309. https://doi.org/10.1175/1520-0485(1983)013
Ma, Y., Yuan, N., Dong, T., & Dong, W. (2022). On the Pacific Decadal Oscillation Simulations in CMIP6 Models: A New Test-Bed from Climate Network Analysis. Asia-pacific Journal of Atmospheric Sciences, 59(1), 17–28. https://doi.org/10.1007/s13143-022-00286-1
Mantua, N. J. (1997). A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production. AMETSOC. https://doi.org/10.1175/1520-0477(1997)078
Mantua, N. J., & Hare, S. R. (2002). The Pacific Decadal Oscillation. Journal of Oceanography, 58(1), 35–44. https://doi.org/10.1023/a:1015820616384
Marchesiello, P., McWilliams, J.C., & Shchepetkin, A.F. (2003). Equilibrium Structure and Dynamics of the California Current System. Journal of Physical Oceanography, 33(4), 753–783. https://doi.org/10.1175/1520-0485(2003)33
Margolskee, A., Frenzel, H., Emerson, S. U., & Deutsch, C. (2019). Ventilation Pathways for the North Pacific Oxygen Deficient Zone. Global Biogeochemical Cycles, 33(7), 875–890. https://doi.org/10.1029/2018gb006149
McCreary, J. P., Lee, H. J., & Enfield, D. B. (1989). The response of the coastal ocean to strong offshore winds: With application to circulations in the Gulfs of Tehuantepec and Papagayo. Journal of Marine Research, 47(1), 81–109. https://doi.org/10.1357/002224089785076343
Moore, J. K., Doney, S. C., & Lindsay, K. (2004). Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Global Biogeochemical Cycles, 18(4), n/a-n/a. https://doi.org/10.1029/2004gb002220
Moore, J. K., Lindsay, K., Doney, S. C., Long, M. C., & Misumi, K. (2013). Marine Ecosystem Dynamics and Biogeochemical Cycling in the Community Earth System Model [CESM1(BGC)]: Comparison of the 1990s with the 2090s under the RCP4.5 and RCP8.5 Scenarios. Journal of Climate, 26(23), 9291–9312. https://doi.org/10.1175/jcli-d-12-00566.1
NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Chlorophyll Data; 2022 Reprocessing. NASA OB.DAAC, Greenbelt, MD, USA. doi: 10.5067/ORBVIEW-2/SEAWIFS/L3M/CHL/2022.
Accessed on 05/25/2023
NCEI. (n.d.). El Niño/Southern Oscillation (ENSO) | National Centers for Environmental Information (NCEI). Retrieved May 22, 2023, from https://www.ncei.noaa.gov/access/monitoring/enso/
Neuer, S., Davenport, R., Freudenthal, T., Wefer, G., Llinás, O., Rueda, M. J., Steinberg, D. K., & Karl, D. M. (2002). Differences in the biological carbon pump at three subtropical ocean sites. Geophysical Research Letters, 29(18), 32–34. https://doi.org/10.1029/2002gl015393
NOAA.(2009). Climate Variability: Oceanic Niño Index. https://www.climate.gov/news-features/understanding-climate/climate-variability-oceanic-ni%C3%B1o-index
Oschlies, A., Schulz, K. G., Riebesell, U., & Schmittner, A. (2008). Simulated 21st century’s increase in oceanic suboxia by CO2-enhanced biotic carbon export. Global Biogeochemical Cycles, 22(4), n/a. https://doi.org/10.1029/2007gb003147
Pajares, S., & Ramos, R. (2019). Processes and Microorganisms Involved in the Marine N Cycle: Knowledge and Gaps. Frontiers in Marine Science, 6. https://doi.org/10.3389/fmars.2019.00739
Paulmier, A., Ruiz-Pino, D., Garçon, V., & Farías, L. (2006). Maintaining of the Eastern South Pacific Oxygen Minimum Zone (OMZ) off Chile. Geophysical Research Letters, 33(20). https://doi.org/10.1029/2006gl026801
Paulmier, A., & Ruiz-Pino, D. (2009). Oxygen minimum zones (OMZs) in the modern ocean. Progress in Oceanography, 80(3–4), 113–128. https://doi.org/10.1016/j.pocean.2008.08.001
Pennington, J. T., Mahoney, K. J., Kuwahara, V. S., Kolber, D. D., Calienes, R., & Chavez, F. P. (2006). Primary production in the eastern tropical Pacific: A review. Progress in Oceanography, 69(2–4), 285–317. https://doi.org/10.1016/j.pocean.2006.03.012
Poupon, M. A., Resplandy, L., Lévy, M., & Bopp, L. (2023). Pacific Decadal Oscillation Influences Tropical Oxygen Minimum Zone Extent and Obscures Anthropogenic Changes. Geophysical Research Letters, 50(7). https://doi.org/10.1029/2022gl102123
Rasmusson, E. M., & Wallace, J. L. (1983). Meteorological Aspects of the El Niño/Southern Oscillation. Science, 222(4629), 1195–1202. https://doi.org/10.1126/science.222.4629.1195
Sarmiento, J. L., & Gruber, N. (2006). Ocean Biogeochemical Dynamics. Princeton University Press.
Schepetkin, A. F., & McWilliams, J. C. (2005). The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4), 347–404. https://doi.org/10.1016/j.ocemod.2004.08.002
Schmidtko, S., Stramma, L., & Visbeck, M. (2017). Decline in global oceanic oxygen content during the past five decades. Nature, 542(7641), 335–339. https://doi.org/10.1038/nature21399
Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E.A. Quintero, Charles R Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. (2020) SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17(3), 261-272.
Sigman, D. M., & Casciotti, K. L. (2001). N Isotopes in the Ocean. In Elsevier eBooks (pp. 1884–1894). https://doi.org/10.1006/rwos.2001.0172
Stramma, L., Johnson, G. C., Sprintall, J., & Mohrholz, V. (2008). Expanding Oxygen-Minimum Zones in the Tropical Oceans. Science, 320(5876), 655–658. https://doi.org/10.1126/science.1153847
Stramma, L., Johnson, G. C., Firing, E., & Schmidtko, S. (2010). Eastern Pacific oxygen minimum zones: Supply paths and multidecadal changes. Journal of Geophysical Research, 115(C9). https://doi.org/10.1029/2009jc005976
Stramma, L., Fischer, T., Grundle, D., Krahmann, G., Bange, H. W., & Marandino, C. A. (2016). Observed El Niño conditions in the eastern tropical Pacific in October 2015. Ocean Science, 12(4), 861–873. https://doi.org/10.5194/os-12-861-2016
Strous, M., Fuerst, J. A., Kramer, E., Logemann, S., Muyzer, G., Van De Pas-Schoonen, K. T., Webb, R. I., Kuenen, J., & Jetten, M. S. M. (1999). Missing lithotroph identified as new planctomycete. Nature, 400(6743), 446–449. https://doi.org/10.1038/22749
Tans, P. P., Fung, I., & Takahashi, T. (1990). Observational Contrains on the Global Atmospheric Co 2 Budget. Science, 247(4949), 1431–1438. https://doi.org/10.1126/science.247.4949.1431
Thomsen, S., Kanzow, T., Colas, F., Echevin, V., Krahmann, G., & Engel, A. (2016). Do submesoscale frontal processes ventilate the oxygen minimum zone off Peru? Geophysical Research Letters, 43(15), 8133–8142. https://doi.org/10.1002/2016gl070548
Tsunogai, S. (1971). Ammonia in the oceanic atmosphere and the cycle of N compounds through the atmosphere and the hydrosphere. GEOCHEMICAL JOURNAL, 5(2):57–67.
Vergara, O., Dewitte, B., Montes, I., Garçon, V., Ramos, M., Paulmier, A., & Pizarro, O. (2016). Seasonal variability of the oxygen minimum zone off Peru in a high-resolution regional coupled model. Biogeosciences, 13(15), 4389–4410. https://doi.org/10.5194/bg-13-4389-2016
Voss, M., Bange, H. W., Dippner, J. W., Middelburg, J. J., Montoya, J., & Ward, B. B. (2013). The marine N cycle: recent discoveries, uncertainties and the potential relevance of climate change. Philosophical Transactions of the Royal Society, 368(1621), 20130121. https://doi.org/10.1098/rstb.2013.0121
Wang, C., & Fiedler, P. C. (2006). ENSO variability and the eastern tropical Pacific: A review. Progress in Oceanography, 69(2–4), 239–266. https://doi.org/10.1016/j.pocean.2006.03.004
Ward, B. B., Devol, A. H., Rich, J. J., Chang, B. X., Bulow, S. E., Naik, H., Pratihary, A., & Jayakumar, A. (2009). Denitrification as the dominant N loss process in the Arabian Sea. Nature, 461(7260), 78–81. https://doi.org/10.1038/nature08276
Yang, S., & Gruber, N. (2016). The anthropogenic perturbation of the marine N cycle by atmospheric deposition: N cycle feedbacks and the 15 N Haber-Bosch effect. Global Biogeochemical Cycles, 30(10), 1418–1440. https://doi.org/10.1002/2016gb005421
Yang, S. (2017). Dynamics of the contemporary marine N cycle [Doctoral Thesis]. ETH Zurich.
Yang, S., Gruber, N., Long, M. C., & Vogt, M. (2017). ENSO‐Driven Variability of Denitrification and Suboxia in the Eastern Tropical Pacific Ocean. Global Biogeochemical Cycles, 31(10), 1470–1487. https://doi.org/10.1002/2016gb005596
Zhou, Y., Gong, H., & Zhou, F. (2022). Responses of Horizontally Expanding Oceanic Oxygen Minimum Zones to Climate Change Based on Observations. Geophysical Research Letters, 49(6). https://doi.org/10.1029/2022gl097724