Helpen suikerbindende eiwitten ons in de zoektocht naar nieuwe kankertherapieën?

Lien
Ervijn

Elk uur krijgen 8 Belgen de diagnose ‘kanker’. Ondanks de vele nieuwe behandelingen blijven tumoren de belangrijkste doodsoorzaak in België, met jaarlijks meer dan 27.000 overlijdens. Lectinen, een groep van suikerbindende eiwitten, zijn veelbelovend als toekomstige kankertherapie.

Wat maakt kankercellen ‘the bad guys’?

Kankercellen verschillen van gewone cellen, onder andere in de suikerlaag die elke cel bedekt. Door de suikerstructuren in deze laag te veranderen, slagen kankercellen erin om onherkenbaar te blijven. Dit ‘trucje’ zorgt ervoor dat ze zich ongelimiteerd kunnen vermeerderen, celdood kunnen ontlopen en zich kunnen verspreiden in het lichaam. 

Lectinen uit peulvruchten

Vlinderbloemigen zijn planten die peulen vormen, zoals bonen en erwten. Peulvruchtlectinen zijn eiwitten die specifiek kunnen binden aan suikers. Ze gedragen zich volgens het sleutel-slot-principe. Wanneer deze ‘lectine’-sleutels binden aan specifieke suikers, kunnen ze een kettingreactie van signalen activeren die er uiteindelijk voor zorgt dat de kankercel zichzelf doodt. Dankzij het sleutel-slot principe bieden peulvruchtlectinen dus mogelijkheden als nieuwe gerichte kankertherapieën.

Tijdens eerder onderzoek werden twee nieuwe peulvruchtlectinen opgezuiverd: Dioclea megacarpa lectine (DmegA) en Vatairea lundellii lectine (VLL). Deze eiwitten zijn afkomstig uit de zaden van twee tropische planten. Beide lectinen vertoonden interessante resultaten in experimenten met kankercellen tijdens eerste onderzoeken. 

Tijdens de zoektocht naar het werkingsprincipe van deze peulvruchtlectinen werd gebruik gemaakt van verschillende celculturen, biochemische testen, microscopie, affiniteitschromatografie en kwantitatieve PCR (qPCR). 

DmegA: een eerste elegante ‘kankersleutel’

DmegA vertoonde een groot potentieel voor de behandeling van pancreaskanker tijdens vervolgonderzoek. Pancreaskanker is één van de meest dodelijke kankertypes. Vijf jaar na de diagnose van pancreaskanker is minder dan 5% van de patiënten nog in leven. DmegA wordt opgenomen in de pancreaskankercellen en kan op deze manier de kankercel niet alleen via de buitenkant maar ook van binnenuit aanvallen. Het onderzoek toonde ook aan dat DmegA snel opgenomen wordt door de kankercellen, namelijk al na 2 uur. 

Opname van DmegA in pancreaskankercellen na 24u. Rood kleurt de celmembraan, blauw de celkern en groen DmegA. 

Het type celdood dat geactiveerd wordt tijdens kankertherapieën beïnvloedt in grote mate de immuunrespons van de patiënt. Een ongewenste immuunrespons leidt tot bijwerkingen voor de patiënt. Het is dus belangrijk om na te gaan hoe de lectinen de kankercellen afdoden.

De binding van DmegA aan het oppervlak van de pancreascellen lijdt tot de activatie van apoptose, een vorm van geprogrammeerde celdood. De activatie leidt tot de afbraak van de cel van binnenuit, waarna de restanten worden opgeruimd door het lichaam om de omliggende cellen te beschermen. Daarenboven wordt apoptose ook geactiveerd door het DmegA dat de cel binnendrong. 

Tenslotte leidt de aanwezigheid van DmegA in de cel ook tot stress in het endoplasmatisch reticulum, de eiwitfabriek van de cel.  Eiwitten worden hier gemaakt en vervolgens getransporteerd naar de plaats in de cel waar ze nodig zijn. DmegA verstoort de goede werking van de eiwitfabriek en veroorzaakt een verhoging in de hoeveelheid niet-opgevouwen eiwitten. Deze minder goede werking van de eiwitfabriek is dus nadelig voor de kankercel.  

VLL: een tweede ‘kankersleutel’

Naast DmegA ontpopte ook VLL zich tot een aantrekkelijk peulvruchtlectine voor kankeronderzoek. VLL is mogelijk een nieuwe sleutel in het kankervraagstuk gezien het andere suikers herkent dan DmegA. VLL vertoont een goede activiteit in het doden van fibrosarcoom cellen. Een fibrosarcoom is een tumor in het bindweefsel, het is een zeldzaam maar heel agressief kanker type. Fibrosarcomen worden niet alleen bij volwassenen aangetroffen, 10% van de patiënten zijn kinderen of jongvolwassenen. VLL wordt snel in fibrosarcoomcellen geïnternaliseerd, binnen de 5 minuten. VLL kan dus net zoals DmegA de kankercellen zowel via de binnenkant als de buitenkant aanvallen. Bovendien werd aangetoond dat VLL geen effect heeft op gezonde bindweefselcellen wat essentieel is om de bijwerkingen van een behandeling in te perken.

Opname van VLL in fibrosarcoomcellen na 24u. Rood kleurt de celmembraan, blauw de celkern en groen VLL.

Opname van VLL in fibrosarcoomcellen na 24u. Rood kleurt de celmembraan, blauw de celkern en groen VLL.

De snelle opname van VLL zorgt voornamelijk voor de activatie van celdood van binnenin de cel. Apoptose wordt geactiveerd door interne signalen en een verhoogde hoeveelheid niet‑opgevouwen eiwitten leidt tot stress in het endoplasmatisch reticulum. Tot slot zorgt de binding van VLL aan het celoppervlak ook voor de activatie van geprogrammeerde celdood via de buitenkant van de cel. 

Wat brengt de toekomst?

Verschillende peulvruchtlectinen vertonen veelbelovende resultaten tegenover uiteenlopende types van kanker, en kunnen kankercellen aanvallen op een specifieke manier zonder gezonde cellen te beschadigen. Peulvruchtlectinen kunnen dus mogelijk uitgroeien tot de nieuwe sleutels voor kankerbehandelingen.

Uiteraard zijn verdere studies essentieel vooraleer deze nieuwe kankerbehandeling beschikbaar wordt voor patiënten. 

Bibliografie

Adepu, S., & Ramakrishna, S. (2021). Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules, 26(19). doi:10.3390/molecules26195905

Adeshakin, F. O., Adeshakin, A. O., Afolabi, L. O., Yan, D., Zhang, G., & Wan, X. (2021). Mechanisms for Modulating Anoikis Resistance in Cancer and the Relevance of Metabolic Reprogramming. Frontiers in Oncology, 11, 626577. doi:10.3389/fonc.2021.626577 

American Cancer Society. (2023, October 13). Treatment Types. Retrieved from https://www.cancer.org/cancer/managing-cancer/treatment-types.html 

ATCC. (2023a, December 14). PANC-1. Retrieved from https://www.atcc.org/products/crl-1469#:~:text=PANC%2D1%20is%20a%20cell,be%20used%20in%20cancer%20research

ATCC. (2023b, December 14). MCF7. Retrieved from https://www.atcc.org/products/htb-22  

ATCC. (2024a, May 14). Primary Mammary Epithelial Cells; Normal, Human (HMEC). Retrieved from https://www.atcc.org/products/pcs-600-010 

ATCC. (2024b, May 14). hTERT-HPNE. Retrieved from https://www.atcc.org/products/crl-4023

Bertheloot, D., Latz, E., & Franklin, B. S. (2021). Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cellular & Molecular Immunology, 18(5), 1106-1121. doi:10.1038/s41423-020-00630-3

Bhutia, S. K., Panda, P. K., Sinha, N., Praharaj, P. P., Bhol, C. S., Panigrahi, D. P., . . . Maiti, T. K. (2019). Plant lectins in cancer therapeutics: Targeting apoptosis and autophagy-dependent cell death. Pharmacological Research, 144, 8-18. doi:10.1016/j.phrs.2019.04.001

Brentnall, M., Rodriguez-Menocal, L., De Guevara, R. L., Cepero, E., & Boise, L. H. (2013). Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol, 14, 32. doi:10.1186/1471-2121-14-32 

Brockhausen, I. (1993). Clinical aspects of glycoprotein biosynthesis. Critical Reviews in Clinical Laboratory Sciences, 30(2), 65-151. doi:10.3109/10408369309084666

Brockhausen, I. (1999). Pathways of O-glycan biosynthesis in cancer cells. Biochimica Et Biophysica Acta-General Subjects, 1473(1), 67-95. doi:10.1016/s0304-4165(99)00170-1

Brockhausen I, Wandall HH, Hagen KGT, et al. O-GalNAc Glycans. In: Varki A, Cummings RD, Esko JD, et al., editors. Essentials of Glycobiology [Internet]. 4th edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2022. Chapter 10. Available from: https://www.ncbi.nlm.nih.gov/books/NBK579921/ doi: 10.1101/glycobiology.4e.10

Brockhausen, I., Yang, J. M., Burchell, J., Whitehouse, C., & Taylorpapadimitriou, J. (1995). Mechanisms underlying aberrant glycosylation of MUC1 mucin in breast cancer cells. European Journal of Biochemistry, 233(2), 607-617. doi:10.1111/j.1432-1033.1995.607_2.x

Burdette, B. E., Esparza, A. N., Zhu, H., & Wang, S. Z. (2021). Gasdermin D in pyroptosis. Acta Pharmaceutica Sinica B, 11(9), 2768-2782. doi:10.1016/j.apsb.2021.02.006

Cavada, B. S., Pinto-Junior, V. R., Osterne, V. J. S., & Nascimento, K. S. (2018). ConA-Like Lectins: High Similarity Proteins as Models to Study Structure/Biological Activities Relationships. International Journal of Molecular Sciences, 20(1), 30. doi:10.3390/ijms20010030 

CLS. (2023a, September 16). HeLa. Retrieved from https://cls.shop/HeLa/300194 

CLS. (2023b, September 16). HT-1080. Retrieved from https://cls.shop/HT-1080/300216 

CELL BIOLABS. (2023, September 16). HeLa/GFP Cell Line. Retrieved from https://www.cellbiolabs.com/sites/default/files/AKR-213-gfp-hela-cell-line.pdf 

Chang, C. P., Yang, M. C., Liu, H. S., Lin, Y. S., & Lei, H. Y. (2007). Concanavalin A induces autophagy in hepatoma cells and has a therapeutic effect in a murine in situ hepatoma model. Hepatology, 45(2), 286-296. doi:10.1002/hep.21509

Chen, P., De Schutter, K., Pauwels, J., Gevaert, K., Van Damme, E. J. M., & Smagghe, G. (2021). The lectin Orysata induces phosphatase-mediated and carbohydrate-independent aggregation of insect cells. J Insect Physiol, 131, 104241. doi:10.1016/j.jinsphys.2021.104241

Chen, S., Lóssio, C. F., Verbeke, I., Verduijn, J., Parakhonskiy, B., Van der Meeren, L., . . . Van Damme, E. J. M. (2021). The type-1 ribosome-inactivating protein OsRIP1 triggers caspase-independent apoptotic-like death in HeLa cells. Food Chem Toxicol, 157, 112590. doi:10.1016/j.fct.2021.112590 

Chen, S. (2022). Functional study of the rice ribosome-inactivating protein, OsRIP1, and its cytotoxicity for plant and mammalian cells. PhD thesis, Ghent University, Belgium

Comsa, S., Cîmpean, A. M., & Raica, M. (2015). The Story of MCF-7 Breast Cancer Cell Line: 40 years of Experience in Research. Anticancer Research, 35(6), 3147-3154. 

Creative Proteomics Blog. (2023, September 5). O-glycan analysis: understanding the importance of glycosylation in protein function. Retrieved from https://www.creative-proteomics.com/blog/index.php/o-glycan-analysis-understanding-the-importance-of-glycosylation-in-protein-function/

Cytion. (2024, January 26). Panc-1. Retrieved from https://www.cytion.com/Panc-1/300228 

Dai, Z., Liu, W. C., Chen, X. Y., Wang, X., Li, J. L., & Zhang, X. (2023). Gasdermin D-mediated pyroptosis: mechanisms, diseases, and inhibitors. Frontiers in Immunology, 14, 1178662. doi:10.3389/fimmu.2023.1178662 

D'Arcy, M. S. (2019). Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biology International, 43(6), 582-592. doi:10.1002/cbin.11137

De Coninck, T., & Van Damme, E. J. M. (2021). Review: The multiple roles of plant lectins. Plant Sci, 313, 111096. doi:10.1016/j.plantsci.2021.111096

den Hartigh, A. B., & Fink, S. L. (2018). Pyroptosis Induction and Detection. Current protocols in immunology, 122(1), e52. doi:10.1002/cpim.52

Dennis, J. W., Laferte, S., Waghorne, C., Breitman, M. L., & Kerbel, R. S. (1987). Beta 1-6 branching of Asn-linked oligosaccharides is directly associated with metastasis. Science, 236(4801), 582-585. doi:10.1126/science.2953071

Dhuriya, Y. K., & Sharma, D. (2018). Necroptosis: a regulated inflammatory mode of cell death. Journal of Neuroinflammation, 15(1), 199. doi:10.1186/s12974-018-1235-0

Dlamini, M. B., Gao, Z. Y., Hasenbilige, Jiang, L. P., Geng, C. Y., Li, Q. J., . . . Cao, J. (2021). The crosstalk between mitochondrial dysfunction and endoplasmic reticulum stress promoted ATF4-mediated mitophagy induced by hexavalent chromium. Environmental Toxicology, 36(6), 1162-1172. doi:10.1002/tox.23115

Elmore, S. (2007). Apoptosis: A review of programmed cell death. Toxicologic Pathology, 35(4), 495-516. doi:10.1080/01926230701320337

Esmail, S., & Manolson, M. F. (2021). Advances in understanding N-glycosylation structure, function, and regulation in health and disease. European Journal of Cell Biology, 100(7-8),151186. doi:10.1016/j.ejcb.2021.151186

Faheina-Martins, G. V., da Silveira, A. L., Cavalcanti, B. C., Ramos, M. V., Moraes, M. O., Pessoa, C., & Araújo, D. A. (2012). Antiproliferative effects of lectins from Canavalia ensiformis and Canavalia brasiliensis in human leukemia cell lines. Toxicology in vitro : an international journal published in association with BIBRA, 26(7), 1161-1169. doi:10.1016/j.tiv.2012.06.017

Fouad, Y. A., & Aanei, C. (2017). Revisiting the hallmarks of cancer. American Journal of Cancer Research, 7(5), 1016-1036.

Fritsch, M., Gunther, S. D., Schwarzer, R., Albert, M. C., Schorn, F., Werthenbach, J. P., . . . Kashkar, H. (2019). Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature, 575(7784), 683-+. doi:10.1038/s41586-019-1770-6

Gagneux, P., & Varki, A. (1999). Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology, 9(8), 747-755. doi:10.1093/glycob/9.8.747

Gagneux P, Hennet T, Varki A. Biological Functions of Glycans. In: Varki A, Cummings RD, Esko JD, et al., editors. Essentials of Glycobiology [Internet]. 4th edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2022. Chapter 7. Available from: https://www.ncbi.nlm.nih.gov/books/NBK579984/ doi: 10.1101/glycobiology.4e.7

Galluzzi, L., Kepp, O., Trojel-Hansen, C., & Kroemer, G. (2012). Mitochondrial Control of Cellular Life, Stress, and Death. Circulation Research, 111(9), 1198-1207. doi:10.1161/circresaha.112.268946

Gazzaniga, P., Gradilone, A., Vercillo, R., Gandini, O., Silvestri, I., Napolitano, M., . . . Agliano, A. M. (1996). bcl-2/bax mRNA expression ratio as prognostic factor in low-grade urinary bladder cancer. International Journal of Cancer, 69(2), 100-104. doi:10.1002/(sici)1097-0215(19960422)69:2<100::Aid-ijc5>3.0.Co;2-4

Goldstein, I. J., Hughes, R. C., Monsigny, M., Osawa, T., & Sharon, N. (1980). What should be called a lectin. Nature, 285(5760), 66-66. doi:10.1038/285066b0

Gondim, A. C. S., Romero-Canelon, I., Sousa, E. H. S., Blindauer, C. A., Butler, J. S., Romero, M. J., . . . Sadler, P. J. (2017). The potent anti-cancer activity of Dioclea lasiocarpa lectin. Journal of Inorganic Biochemistry, 175, 179-189. doi:10.1016/j.jinorgbio.2017.07.011

Gong, Y. T., Fan, Z. Y., Luo, G. P., Yang, C., Huang, Q. Y., Fan, K., . . . Liu, C. (2019). The role of necroptosis in cancer biology and therapy. Molecular Cancer, 18(1), 100. doi:10.1186/s12943-019-1029-8

Halasi, M., Wang, M., Chavan, T. S., Gaponenko, V., Hay, N., & Gartel, A. L. (2013). ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors. Biochemical Journal, 454, 201-208. doi:10.1042/bj20130282

Halliwell, B. (2011). Free radicals and antioxidants - quo vadis? Trends in Pharmacological Sciences, 32(3), 125-130. doi:10.1016/j.tips.2010.12.002

Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57-70. doi:10.1016/s0092-8674(00)81683-9

Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of Cancer: The Next Generation. Cell, 144(5), 646-674. doi:10.1016/j.cell.2011.02.013

Hanahan, D. (2022). Hallmarks of Cancer: New Dimensions. Cancer Discovery, 12(1), 31-46. doi:10.1158/2159-8290.Cd-21-1059

Hanisch, F. G., & Baldus, S. E. (1997). The Thomsen-Friedenreich (TF) antigen: A critical review on the structural, biosynthetic and histochemical aspects of a pancarcinoma-associated antigen. Histology and Histopathology, 12(1), 263-281. doi:10.14670/HH-12.263

Hicks, S. W., & Machamer, C. E. (2005). Golgi structure in stress sensing and apoptosis. Biochimica Et Biophysica Acta-Molecular Cell Research, 1744(3), 406-414. doi:10.1016/j.bbamcr.2005.03.002

Hitomi, J., Katayama, T., Eguchi, Y., Kudo, T., Taniguchi, M., Koyama, Y., . . . Tohyama, M. (2004). Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Aβ-induced cell death. Journal of Cell Biology, 165(3), 347-356. doi:10.1083/jcb.200310015

Ho, W. L., Hsu, W. M., Huang, M. C., Kadomatsu, K., & Nakagawara, A. (2016). Protein glycosylation in cancers and its potential therapeutic applications in neuroblastoma. Journal of Hematology & Oncology, 9, 100. doi:10.1186/s13045-016-0334-6

Hu, G. C., Li, J., Zeng, Y., Liu, L. X., Yu, Z. W., Qi, X. Y., . . . Yao, H. L. (2023). The anoikis-related gene signature predicts survival accurately in colon adenocarcinoma. Scientific Reports, 13(1), 13919. doi:10.1038/s41598-023-40907-x

Hu, H., Tian, M. X., Ding, C., & Yu, S. Q. (2019). The C/EBP Homologous Protein (CHOP) Transcription Factor Functions in Endoplasmic Reticulum Stress-Induced Apoptosis and Microbial Infection. Frontiers in Immunology, 9, 3083. doi:10.3389/fimmu.2018.03083

Huang, J. M., Huang, J. M., & Zhang, G. A. (2022). Insights into the Role of Sialylation in Cancer Metastasis, Immunity, and Therapeutic Opportunity. Cancers, 14(23), 5840. doi:10.3390/cancers14235840

Huang, Y., Wang, J. W., Huang, J., Tang, L., Xu, Y. H., Sun, H., . . . Wang, G. (2022). Pyroptosis, a target for cancer treatment? Apoptosis, 27(1-2), 1-13. doi:10.1007/s10495-021-01703-y

Huldani, H., Rashid, A. I., Turaev, K. N., Opulencia, M. J. C., Abdelbasset, W. K., Bokov, D. O., . . . Ahmadi, S. H. (2022). Concanavalin A as a promising lectin-based anti-cancer agent: the molecular mechanisms and therapeutic potential. Cell Communication and Signaling, 20(1), 167. doi:10.1186/s12964-022-00972-7

Jeong, S. H., Jang, J. H., & Lee, Y. B. (2020). Pharmacokinetic Comparison of Three Different Administration Routes for Topotecan Hydrochloride in Rats. Pharmaceuticals (Basel), 13(9). doi:10.3390/ph13090231

Jian, Q., Yang, Z., Shu, J., Liu, X. W., Zhang, J., & Li, Z. (2018). Lectin BS-I inhibits cell migration and invasion via AKT/GSK-3β/β-catenin pathway in hepatocellular carcinoma. Journal of Cellular and Molecular Medicine, 22(1), 315-329. doi:10.1111/jcmm.13320

Jiang, H. R., Wen, X. X., Zhang, X., & Zhang, B. Y. (2022). Concanavalin A inhibits human liver cancer cell migration by regulating F-actin redistribution and assembly via MAPK signaling pathway. Oncology Letters, 24(5), 405. doi:10.3892/ol.2022.13525

Julien, S., Krzewinski-Recchi, M. A., Harduin-Lepers, A., Gouyer, V., Huet, G., Le Bourhis, X., & Delannoy, P. (2001). Expression of Sialyl-Tn antigen in breast cancer cells transfected with the human CMP-Neu5Ac:: GalNAc α2,6-sialyltransferase (ST6GalNAc 1) cDNA. Glycoconjugate Journal, 18(11-12), 883-893. doi:10.1023/a:1022200525695

Kabir, K. M. A., Amin, R., Hasan, I., Asaduzzaman, A. K. M., Khatun, H., & Kabir, S. R. (2019). Geodorum densiflorum rhizome lectin inhibits Ehrlich ascites carcinoma cell growth by inducing apoptosis through the regulation of BAX, p53 and NF-kappa B genes expression. International Journal of Biological Macromolecules, 125, 92-98. doi:10.1016/j.ijbiomac.2018.12.042

Kanehisa, M., & Goto, S. (2024, May 14). KEGG Pathway Database. Retrieved from https://www.kegg.jp/kegg-bin/search_pathway_text?map=map&keyword=CHOP&mode=1&viewImage=true 

Katoch, R., & Tripathi, A. (2021). Research advances and prospects of legume lectins. Journal of Biosciences, 46(4), 104. doi:10.1007/s12038-021-00225-8

Kim, W. K., Choi, W., Deshar, B., Kang, S., & Kim, J. (2023). Golgi Stress Response: New Insights into the Pathogenesis and Therapeutic Targets of Human Diseases. Molecules and Cells, 46(4), 191-199. doi:10.14348/molcells.2023.2152

Kinoo, J. (2023). Novel legume lectins: evaluating their anticancer potential across different specificities. Ghent University, Ghent. 

Konozy, E. H. E., & Osman, M. E. M. (2022). Plant lectin: A promising future anti-tumor drug. Biochimie, 202, 136-145. doi:10.1016/j.biochi.2022.08.002

Lagarda-Diaz, I., Guzman-Partida, A. M., & Vazquez-Moreno, L. (2017). Legume Lectins: Proteins with Diverse Applications. International Journal of Molecular Sciences, 18(6), 1242. doi:10.3390/ijms18061242

Lai, Y. C., Chuang, Y. C., Chang, C. P., & Yeh, T. M. (2015). Macrophage migration inhibitory factor has a permissive role in concanavalin A-induced cell death of human hepatoma cells through autophagy. Cell Death & Disease, 6, e2008. doi:10.1038/cddis.2015.349

Lattová, E., Tomanek, B., Bartusik, D., & Perreault, H. (2010). N-Glycomic Changes in Human Breast Carcinoma MCF-7 and T-Lymphoblastoid Cells After Treatment with Herceptin and Herceptin/Lipoplex. Journal of Proteome Research, 9(3), 1533-1540. doi:10.1021/pr9010266

Lau, K. S., Partridge, E. A., Grigorian, A., Silvescu, C. I., Reinhold, V. N., Demetriou, M., & Dennis, J. W. (2007). Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell, 129(1), 123-134. doi:10.1016/j.cell.2007.01.049

Li, M. (2021). The role of P53 up-regulated modulator of apoptosis (PUMA) in ovarian development, cardiovascular and neurodegenerative diseases. Apoptosis, 26(5-6), 235-247. doi:10.1007/s10495-021-01667-z

Li, P., Zhou, L. B., Zhao, T., Liu, X. X., Zhang, P. C., Liu, Y., . . . Li, Q. (2017). Caspase-9: structure, mechanisms and clinical application. Oncotarget, 8(14), 23996-24008. doi:10.18632/oncotarget.15098

Li, W. W., Yu, J. Y., Xu, H. L., & Bao, J. K. (2011). Concanavalin A: A potential anti-neoplastic agent targeting apoptosis, autophagy and anti-angiogenesis for cancer therapeutics. Biochemical and Biophysical Research Communications, 414(2), 282-286. doi:10.1016/j.bbrc.2011.09.072

Li, Y., Rasheed, M., Liu, J., Chen, Z., & Deng, Y. (2024). Deciphering the Molecular Nexus: An In-Depth Review of Mitochondrial Pathways and Their Role in Cell Death Crosstalk. Cells, 13(10), 863. doi:10.3390/cells13100863

Liu, Z. H., Lu, H. M., Shi, H. L., Du, Y. C., Yu, J., Gu, S., . . . Hu, C. A. A. (2005). PUMA overexpression induces reactive oxygen species generation and proteasome-mediated stathmin degradation in colorectal cancer cells. Cancer Research, 65(5), 1647-1654. doi:10.1158/0008-5472.Can-04-1754

Lossio, C. F., Osterne, V. J. S., Pinto, V. R., Jr., Chen, S. M., Oliveira, M. V., Verduijn, J., . . . Nascimento, K. S. (2023). Structural Analysis and Characterization of an Antiproliferative Lectin from Canavalia villosa Seeds. International Journal of Molecular Sciences, 24(21), 15966. doi:10.3390/ijms242115966

Lowe, J. B., & Marth, J. D. (2003). A genetic approach to mammalian glycan function. Annual Review of Biochemistry, 72, 643-691. doi:10.1146/annurev.biochem.72.121801.161809

Lu, Q., Li, N., Luo, J., Yu, M., Huang, Y., Wu, X., . . . Li, G. (2012). Pinellia pedatisecta agglutinin interacts with the methylosome and induces cancer cell death. Oncogenesis, 1(10), e29. doi:10.1038/oncsis.2012.30

Ma, K. L., Zhang, Z., Chang, R., Cheng, H. C., Mu, C. L., Zhao, T., . . . Chen, Q. (2020). Dynamic PGAM5 multimers dephosphorylate BCL-xL or FUNDC1 to regulate mitochondrial and cellular fate. Cell Death and Differentiation, 27(3), 1036-1051. doi:10.1038/s41418-019-0396-4

Magalhães, A., Duarte, H. O., & Reis, C. A. (2021). The role of O-glycosylation in human disease. Molecular Aspects of Medicine, 79, 100964. doi:10.1016/j.mam.2021.100964

Mao, C., Wang, M., Zhuang, L., & Gan, B. (2024). Metabolic cell death in cancer: Ferroptosis, cuproptosis, disulfidptosis, and beyond. Protein Cell, pwae003. Advance online publication. doi:10.1093/procel/pwae003

Martínez-Alarcón, D., Blanco-Labra, A., & García-Gasca, T. (2018). Expression of Lectins in Heterologous Systems. International Journal of Molecular Sciences, 19(2), 616. doi:10.3390/ijms19020616

Mazalovska, M., & Kouokam, J. C. (2020). Plant-Derived Lectins as Potential Cancer Therapeutics and Diagnostic Tools. Biomed Research International, 2020, 1631394. doi:10.1155/2020/1631394

McVeigh, P., Cwiklinski, K., Garcia-Campos, A., Mulcahy, G., O'Neill, S. M., Maule, A. G., & Dalton, J. P. (2018). In silico analyses of protein glycosylating genes in the helminth Fasciola hepatica (liver fluke) predict protein-linked glycan simplicity and reveal temporally-dynamic expression profiles. Scientific Reports, 8(1), 11700. doi:10.1038/s41598-018-29673-3

Merck. (2023a, September 16). HeLa Cell Line human. Retrieved from https://www.sigmaaldrich.com/BE/en/product/sigma/cb_93021013 

Merck. (2023b, September 16). HT 1080. Retrieved from https://www.sigmaaldrich.com/BE/en/product/sigma/cb_85111505?gclid=CjwKCAjw3dCnBhBCEiwAVvLcu9DCpGUgChtJwpbtKiBL9eFl5Kmi3fNk3M53omiAkMhD8qwWlStYmhoCSpkQAvD_BwE 

Merck. (2023c, September 16). Normal Human Dermal Fibroblasts (NHDF). Retrieved from https://www.sigmaaldrich.com/BE/en/product/sigma/c12300 

Merck. (2023d, December 14). PANC-1 Cell Line human. Retrieved from https://www.sigmaaldrich.com/BE/en/product/sigma/cb_87092802 

Monte, L. G., Santi-Gadelha, T., Reis, L. B., Braganhol, E., Prietsch, R. F., Dellagostin, O. A., . . . Pinto, L. S. (2014). Lectin of Abelmoschus esculentus (okra) promotes selective antitumor effects in human breast cancer cells. Biotechnology Letters, 36(3), 461-469. doi:10.1007/s10529-013-1382-4

Morishita, K., Watanabe, K., & Ichijo, H. (2019). Cell volume regulation in cancer cell migration driven by osmotic water flow. Cancer Science, 110(8), 2337-2347. doi:10.1111/cas.14079

Munkley, J. (2019). The glycosylation landscape of pancreatic cancer. Oncology Letters, 17(3), 2569-2575. doi:10.3892/ol.2019.9885

Munkley, J., & Elliott, D. J. (2016). Hallmarks of glycosylation in cancer. Oncotarget, 7(23), 35478-35489. doi:10.18632/oncotarget.8155

Mybiosource.com. (2023, September 16). HeLa/GFP Cell Line. Retrieved from https://www.mybiosource.com/cell-line/hela-gfp/168642 

Nascimento, A. P. M., Knaut, J. L., Rieger, D. K., Wolin, I. A. V., Heinrich, I. A., Mann, J., . . . Leal, 

R. B. (2018). Anti-glioma properties of DVL, a lectin purified from Dioclea violacea. International Journal of Biological Macromolecules, 120, 566-577. doi:10.1016/j.ijbiomac.2018.08.106

Nascimento, K. S., Silva, M. T. L., Oliveira, M. V., Lossio, C. F., Pinto, V. R., Osterne, V. J. S., & Cavada, B. S. (2020). Dalbergieae lectins: A review of lectins from species of a primitive Papilionoideae (leguminous) tribe. International Journal of Biological Macromolecules, 144, 509-526. doi:10.1016/j.ijbiomac.2019.12.117

Niggli, V., Schlicht, D., & Affentranger, S. (2009). Specific roles of Rac1 and Rac2 in motile functions of HT1080 fibrosarcoma cells. Biochemical and Biophysical Research Communications, 386(4), 688-692. doi:10.1016/j.bbrc.2009.06.098

Oliveira, C., Nicolau, A., Teixeira, J. A., & Domingues, L. (2011). Cytotoxic Effects of Native and Recombinant Frutalin, a Plant Galactose-Binding Lectin, on HeLa Cervical Cancer Cells. Journal of Biomedicine and Biotechnology, 2011, 568932. doi:10.1155/2011/568932

OpenAI. (2023). ChatGTP. Retrieved from https://chat.openai.com

Oslowski, C. M., & Urano, F. (2011). Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Methods Enzymol, 490, 71-92. doi:10.1016/b978-0-12-385114-7.00004-0

Osterne, V. J. S., Oliveira, M., De Schutter, K., Serna, S., Reichardt, N. C., Smagghe, G., . . . Nascimento, K. S. (2023). A galactoside-specific Dalbergieae legume lectin from seeds of Vataireopsis araroba (Aguiar) Ducke. Glycoconjugate Journal, 40(1), 85-95. doi:10.1007/s10719-022-10082-8

Oyadomari, S., & Mori, M. (2004). Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death and Differentiation, 11(4), 381-389. doi:10.1038/sj.cdd.4401373

Paoli, P., Giannoni, E., & Chiarugi, P. (2013). Anoikis molecular pathways and its role in cancer progression. Biochimica Et Biophysica Acta-Molecular Cell Research, 1833(12), 3481-3498. doi:10.1016/j.bbamcr.2013.06.026

Papoff, G., Presutti, D., Lalli, C., Bolasco, G., Santini, S., Manelfi, C., . . . Ruberti, G. (2018). CASP4 gene silencing in epithelial cancer cells leads to impairment of cell migration, cell-matrix adhesion and tissue invasion. Scientific Reports, 8(1), 17705doi:10.1038/s41598-018-35792-8

Park, M. Y., Ha, S. E., Vetrivel, P., Kim, H. H., Bhosale, P. B., Abusaliya, A., & Kim, G. S. (2021). Differences of Key Proteins between Apoptosis and Necroptosis. Biomed Research International, 2021, 3420168. doi:10.1155/2021/3420168

Patel, A. (2014). Isolation, characterization and production of a new recombinant lectin protein from leguminous plants. Biochemical Compounds, 2, 2. doi:10.7243/2052-9341-2-2

Peixoto, A., Relvas-Santos, M., Azevedo, R., Santos, L. L., & Ferreira, J. A. (2019). Protein Glycosylation and Tumor Microenvironment Alterations Driving Cancer Hallmarks. Frontiers in Oncology, 9, 380. doi:10.3389/fonc.2019.00380

Peng, H., Lv, H., Wang, Y., Liu, Y. H., Lia, C. Y., Meng, L., . . . Bao, J. K. (2009). Clematis montana lectin, a novel mannose-binding lectin from traditional Chinese medicine with antiviral and apoptosis-inducing activities. Peptides, 30(10), 1805-1815. doi:10.1016/j.peptides.2009.06.027

Petrovic, J., Glamoclija, J., Ilic-Tomic, T., Sokovic, M., Robajac, D., Nedic, O., & Pavic, A. (2020). Lectin from Laetiporus sulphureus effectively inhibits angiogenesis and tumor development in the zebrafish xenograft models of colorectal carcinoma and melanoma. International Journal of Biological Macromolecules, 148, 129-139. doi:10.1016/j.ijbiomac.2020.01.033

Peumans, W. J., & Van Damme, E. J. (1995). Lectins as plant defense proteins. Plant physiology, 109(2), 347-352. doi:10.1104/pp.109.2.347

Pinto, V. R., Correia, J. L. A., Pereira, R. I., Pereira, F. N., Santiago, M. Q., Osterne, V. J. S., . . . Cavada, B. S. (2016). Purification and molecular characterization of a novel mannose-specific lectin from Dioclea reflexa hook seeds with inflammatory activity. Journal of Molecular Recognition, 29(4), 134-141. doi:10.1002/jmr.2512

Plaetzer, K., Kiesslich, T., Krammer, B., & Hammerl, P. (2002). Characterization of the cell death modes and the associated changes in cellular energy supply in response to AlPcS4PDT. Photochemical & Photobiological Sciences, 1(3), 172-177. doi:10.1039/b108816e

Polito, L., Bortolotti, M., Pedrazzi, M., Mercatelli, D., Battelli, M. G., & Bolognesi, A. (2016). Apoptosis and necroptosis induced by stenodactylin in neuroblastoma cells can be completely prevented through caspase inhibition plus catalase or necrostatin-1. Phytomedicine, 23(1), 32-41. doi:10.1016/j.phymed.2015.11.006

Posit team (2024). RStudio:Integrated Development Environment for R. Posit Software, PBC, Boston, MA. URL http://www.posit.co/.

PromoCell. (2023, September 16). Normal Human Dermal Fibroblasts (NHDF). Retrieved from https://promocell.com/product/normal-human-dermal-fibroblasts-nhdf/ 

Raemaekers, R. J. M., de Muro, L., Gatehouse, J. A., & Fordham-Skelton, A. P. (1999). Functional phytohemagglutinin (PHA) and Galanthus nivalis agglutinin (GNA) expressed in Pichia pastoris -: Correct N-terminal processing and secretion of heterologous proteins expressed using the PHA-E signal peptide. European Journal of Biochemistry, 265(1), 394-403. doi:10.1046/j.1432-1327.1999.00749.x

Rehana, D., Mahendiran, D., Kumar, R. S., & Rahiman, A. K. (2017). Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomedicine & Pharmacotherapy, 89, 1067-1077. doi:10.1016/j.biopha.2017.02.101

Reily, C., Stewart, T. J., Renfrow, M. B., & Novak, J. (2019). Glycosylation in health and disease. Nature Reviews Nephrology, 15(6), 346-366. doi:10.1038/s41581-019-0129-4

Redza-Dutordoir, M., & Averill-Bates, D. A. (2016). Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica Et Biophysica Acta-Molecular Cell Research, 1863(12), 2977-2992. doi:10.1016/j.bbamcr.2016.09.012

Röttger, S., White, J., Wandall, H. H., Olivo, J. C., Stark, A., Bennett, E. P., . . . Nilsson, T. (1998). Localization of three human polypeptide GalNAc-transferases in HeLa cells suggests initiation of O-linked glycosylation throughout the Golgi apparatus. Journal of Cell Science, 111 ( Pt 1), 45-60. doi:10.1242/jcs.111.1.45 

Roufayel, R., Younes, K., Al-Sabi, A., & Murshid, N. (2022). BH3-Only Proteins Noxa and Puma Are Key Regulators of Induced Apoptosis. Life-Basel, 12(2), 256. doi:10.3390/life12020256

Runwal, G., Stamatakou, E., Siddiqi, F. H., Puri, C., Zhu, Y., & Rubinsztein, D. C. (2019). LC3-positive structures are prominent in autophagy-deficient cells. Scientific Reports, 9(1), 10147. doi:10.1038/s41598-019-46657-z

Saarinen, J., Welgus, H. G., Flizar, C. A., Kalkkinen, N., & Helin, A. (1999). N-glycan structures of matrix metalloproteinase-1 derived from human fibroblasts and from HT-1080 fibrosarcoma cells. European Journal of Biochemistry, 259(3), 829-840. doi:10.1046/j.1432-1327.1999.00105.x

Sano, R., & Reed, J. C. (2013). ER stress-induced cell death mechanisms. Biochimica Et Biophysica Acta-Molecular Cell Research, 1833(12), 3460-3470. doi:10.1016/j.bbamcr.2013.06.028

Saranya, J., Shilpa, G., Raghu, K. G., & Priya, S. (2017). Morus alba Leaf Lectin (MLL) Sensitizes MCF-7 Cells to Anoikis by Inhibiting Fibronectin Mediated Integrin-FAK Signaling through Ras and Activation of P38 MAPK. Frontiers in Pharmacology, 8, 34. doi:10.3389/fphar.2017.00034

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676–682. doi:10.1038/nmeth.2019

Shangguan, F. G., Zhou, H. F., Ma, N. F., Wu, S. S., Huang, H. M., Jin, G. H., . . . Lan, L. H. (2021). A Novel Mechanism of Cannabidiol in Suppressing Hepatocellular Carcinoma by Inducing GSDME Dependent Pyroptosis. Frontiers in Cell and Developmental Biology, 9, 697832. doi:10.3389/fcell.2021.697832

Shao, G., Wang, L. F., Wang, X., & Fu, C. Y. (2021). Apaf-1/caspase-4 pyroptosome: a mediator of mitochondrial permeability transition-triggered pyroptosis. Signal Transduction and Targeted Therapy, 6(1), 116. doi:10.1038/s41392-021-00524-4

Sharon, N. (1993). Lectin carbohydrate complexes of plants and animals: an atomic view. Trends in Biochemical Sciences, 18(6), 221-226. doi:10.1016/0968-0004(93)90193-q

Shivamadhu, M. C., Srinivas, B. K., Jayarama, S., & Sharada, A. C. (2017). Anti-cancer and anti-angiogenic effects of partially purified lectin from Praecitrullus fistulosus fruit on in vitro and in vivo model. Biomedicine & Pharmacotherapy, 96, 1299-1309. doi:10.1016/j.biopha.2017.11.082

Shivatare, S. S., Shivatare, V. S., & Wong, C. H. (2022). Glycoconjugates: Synthesis, Functional Studies, and Therapeutic Developments. Chemical Reviews, 122(20), 15603-15671. doi:10.1021/acs.chemrev.1c01032

Simon, H. U., Haj-Yehia, A., & Levi-Schaffer, F. (2000). Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis, 5(5), 415-418. doi:10.1023/a:1009616228304

Singh, R., Nawale, L., Sarkar, D., & Suresh, C. G. (2016). Two Chitotriose-Specific Lectins Show Anti-Angiogenesis, Induces Caspase-9-Mediated Apoptosis and Early Arrest of Pancreatic Tumor Cell Cycle. Plos One, 11(1), e0146110. doi:10.1371/journal.pone.0146110

Smith, B. A. H., & Bertozzi, C. R. (2021). The clinical impact of glycobiology: targeting selectins, Siglecs and mammalian glycans. Nature Reviews Drug Discovery, 20(3), 217-243. doi:10.1038/s41573-020-00093-1

Stanley P, Moremen KW, Lewis NE, et al. N-Glycans. In: Varki A, Cummings RD, Esko JD, et al., editors. Essentials of Glycobiology [Internet]. 4th edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2022. Chapter 9. Available from: https://www.ncbi.nlm.nih.gov/books/NBK579964/ doi: 10.1101/glycobiology.4e.9

Stewart, N., & Wisnovsky, S. (2022). Bridging Glycomics and Genomics: New Uses of Functional Genetics in the Study of Cellular Glycosylation. Frontiers in Molecular Biosciences, 9, 934584. doi:10.3389/fmolb.2022.934584

Suzuki T, Cummings RD, Aebi M, et al. Glycans in Glycoprotein Quality Control. In: Varki A, Cummings RD, Esko JD, et al., editors. Essentials of Glycobiology [Internet]. 4th edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2022. Chapter 39. Available from: https://www.ncbi.nlm.nih.gov/books/NBK579973/ doi: 10.1101/glycobiology.4e.39

Tan, S., Wei, X., Song, M., Tao, J., Yang, Y., Khatoon, S., . . . Wu, B. (2014). PUMA mediates ER stress-induced apoptosis in portal hypertensive gastropathy. Cell Death & Disease, 5(3), e1128. doi:10.1038/cddis.2014.95

Tanida, I., Ueno, T., & Kominami, E. (2008). LC3 and Autophagy. Methods in molecular biology (Clifton, N.J.), 445, 77-88. doi:10.1007/978-1-59745-157-4_4

Tatsuta, T., Hosono, M., Miura, Y., Sugawara, S., Kariya, Y., Hakomori, S., & Nitta, K. (2013). Involvement of ER stress in apoptosis induced by sialic acid-binding lectin (leczyme) from bullfrog eggs. International Journal of Oncology, 43(6), 1799-1808. doi:10.3892/ijo.2013.2128

Thompson, N., & Wakarchuk, W. (2022). O-glycosylation and its role in therapeutic proteins. Bioscience reports, 42(10), BSR20220094. doi:10.1042/bsr20220094

Tsaneva, M., & Van Damme, E. J. M. (2020). 130 years of Plant Lectin Research. Glycoconjugate Journal, 37(5), 533-551. doi:10.1007/s10719-020-09942-y

Tummers, B., & Green, D. R. (2017). Caspase-8: regulating life and death. Immunological Reviews, 277(1), 76-89. doi:10.1111/imr.12541

Turiák, L., Sugar, S., Acs, A., Toth, G., Gomory, A., Telekes, A., . . . Drahos, L. (2019). Site-specific N-glycosylation of HeLa cell glycoproteins. Scientific Reports, 9(1), 14822. doi:10.1038/s41598-019-51428-x

Van Opdenbosch, N., & Lamkanfi, M. (2019). Caspases in Cell Death, Inflammation, and Disease. Immunity, 50(6), 1352-1364. doi:10.1016/j.immuni.2019.05.020

Varki, A. (1993). Biological roles of oligosaccharides: all of the theories are correct. Glycobiology, 3(2), 97-130. doi:10.1093/glycob/3.2.97 

Varki, A. (2017). Biological roles of glycans. Glycobiology, 27(1), 3-49. doi:10.1093/glycob/cww086

Varsha, D. S., Nirmala, G. S., & Santhekadur, P. K. (2022). Our Shero HeLa and Her Immortal Life The Story Behind the Famous HeLa Cells. Resonance-Journal of Science Education, 27(10), 1731-1736. doi:10.1007/s12045-022-1467-2

Wan, S., Zhang, G., Liu, R., Abbas, M. N., & Cui, H. (2023). Pyroptosis, ferroptosis, and autophagy cross-talk in glioblastoma opens up new avenues for glioblastoma treatment. Cell communication and signaling, 21(1), 115. doi:10.1186/s12964-023-01108-1

Wandall, H. H., Nielsen, M. A. I., King-Smith, S., de Haan, N., & Bagdonaite, I. (2021). Global functions of O-glycosylation: promises and challenges in O-glycobiology. Febs Journal, 288(24), 7183–7212. doi:10.1111/febs.16148

Wang, K. D., Wang, X., Hou, Y. Y., Zhou, H. H., Mai, K. S., & He, G. (2019). Apoptosis of cancer cells is triggered by selective crosslinking and inhibition of receptor tyrosine kinases. Communications Biology, 2, 231. doi:10.1038/s42003-019-0484-5

Wang, Q. Q., Zhang, L. L., Yuan, X. D., Ou, Y., Zhu, X. H., Cheng, Z. Z., . . . Zhang, L. P. (2016). The Relationship between the Bcl-2/Bax Proteins and the Mitochondria-Mediated Apoptosis Pathway in the Differentiation of Adipose-Derived Stromal Cells into Neurons. Plos One, 11(10) , e0163327. doi:10.1371/journal.pone.0163327

Wolin, I. A. V., Heinrich, I. A., Nascimento, A. P. M., Welter, P. G., Sosa, L. D., De Paul, A. L., . . . Leal, R. B. (2021). ConBr lectin modulates MAPKs and Akt pathways and triggers autophagic glioma cell death by a mechanism dependent upon caspase-8 activation. Biochimie, 180, 186-204. doi:10.1016/j.biochi.2020.11.003

Wolin, I. A. V., Nascimento, A. P. M., Seeger, R., Poluceno, G. G., Zanotto, A., Nedel, C. B., . . . Leal, R. B. (2023). The lectin DrfL inhibits cell migration, adhesion and triggers autophagy-dependent cell death in glioma cells. Glycoconjugate Journal, 40(1), 47-67. doi:10.1007/s10719-022-10095-3

World Health Organisation. (2022, October 20). Cancer. Retrieved from https://www.who.int/news-room/fact-sheets/detail/cancer#:~:text=Key%20facts,nearly%20one%20in%20six%20deaths

Wu, Z. L., Person, A. D., Zou, Y. L., Burton, A. J., Singh, R., Burroughs, B., . . . Kalabokis, V. (2020). Differential distribution of N- and O-Glycans and variable expression of sialyl-T antigen on HeLa cells-Revealed by direct fluorescent glycan imaging. Glycobiology, 30(7), 454-462. doi:10.1093/glycob/cwz110

Xie, Y. X., Sheng, Y., Li, Q. Y., Ju, S., Reyes, J., & Lebrilla, C. B. (2020). Determination of the glycoprotein specificity of lectins on cell membranes through oxidative proteomics. Chemical Science, 11(35), 9501-9512. doi:10.1039/d0sc04199h

Xu, X. C., Zhang, Z. W., Chen, Y. E., Yuan, M., Yuan, S., & Bao, J. K. (2015). Antiviral and antitumor activities of the lectin extracted from Aspidistra elatior. Zeitschrift Fur Naturforschung Section C-a Journal of Biosciences, 70(1-2), 7-13. doi:10.1515/znc-2014-4108

Yan, Q. J., Li, Y. X., Jiang, Z. Q., Sun, Y., Zhu, L. F., & Ding, Z. F. (2009). Antiproliferation and apoptosis of human tumor cell lines by a lectin (AMML) of Astragalus mongholicus. Phytomedicine, 16(6-7), 586-593. doi:10.1016/j.phymed.2008.12.024

Yan, C. S., Ma, Y., Li, H., Cui, J. T., Guo, X. Y., Wang, G., & Ji, L. (2023). Endoplasmic reticulum stress promotes caspase-1-dependent acinar cell pyroptosis through the PERK pathway to aggravate acute pancreatitis. International Immunopharmacology, 120, 110293. doi:10.1016/j.intimp.2023.110293

Yang, Z., & Klionsky, D. J. (2009). An overview of the molecular mechanism of autophagy. Current topics in microbiology and immunology, 335, 1-32. doi:10.1007/978-3-642-00302-8_1

Yu, B., Ma, J., Li, J., Wang, D. Z., Wang, Z. G., & Wang, S. S. (2020). Mitochondrial phosphatase PGAM5 modulates cellular senescence by regulating mitochondrial dynamics. Nature Communications, 11(1), 2549. doi:10.1038/s41467-020-16312-7

Yu, P., Zhang, X., Liu, N., Tang, L., Peng, C., & Chen, X. (2021). Pyroptosis: mechanisms and diseases. Signal Transduction and Targeted Therapy, 6(1), 128. doi:10.1038/s41392-021-00507-5

Zachara NE, Akimoto Y, Boyce M, et al. The O-GlcNAc Modification. In: Varki A, Cummings RD, Esko JD, et al., editors. Essentials of Glycobiology [Internet]. 4th edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2022. Chapter 19. Available from: https://www.ncbi.nlm.nih.gov/books/NBK579950/ doi: 10.1101/glycobiology.4e.19

Zeb, A., Choubey, V., Gupta, R., Kuum, M., Safiulina, D., Vaarmann, A., . . . Kaasik, A. (2021). A novel role of KEAP1/PGAM5 complex: ROS sensor for inducing mitophagy. Redox Biology, 48, 102186. doi:10.1016/j.redox.2021.102186

Zhang, Q., He, X., Yu, Q., Liu, Y. T., Zhu, Y. H., Yang, L., . . . Feng, F. F. (2022). Endoplasmic reticulum stress regulates pyroptosis in BPDE-induced BEAS-2B cells. Environmental Toxicology, 37(7), 1768-1780. doi:10.1002/tox.23524

Zheng, H. C., Xue, H., Jin, Y. Z., Jiang, H. M., & Cui, Z. G. (2022). The Oncogenic Effects, Pathways, and Target Molecules of JC Polyoma Virus T Antigen in Cancer Cells. Frontiers in Oncology, 12, 744886. doi:10.3389/fonc.2022.744886

Download scriptie (15.58 KB)
Universiteit of Hogeschool
Universiteit Gent
Thesis jaar
2024
Promotor(en)
Prof. Dr. Els Van Damme, Dr. Vinicius Jose Da Silva Osterne